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ABSTRACT If the measurand changes during the spectrum acquisition process, it easily leads to the failure
of the classic demodulation algorithms of low-finesse optical fiber Fabry-Perot (FP) sensors. To address this
problem, a novel demodulation model is proposed based on the definition of the instantaneous frequency.
The proposed model establishes the relationship between the optical path length (OPL) of the FP cavity and
the instantaneous frequency distribution of the FP interference spectrum. The link between the classic FFT
algorithm and this model is discussed, and it is found that this model can be viewed as a generalized form of
the FFT algorithm. Based on this model, the Doppler-induced demodulation error is analyzed. The analysis
uncovers that the average frequency of the FP interference spectrum should be used for the evaluation of the
error, and the error is proportional to the variation of OPL during the spectrum acquisition period. Further,
numerical simulation and an experiment were carried out to verify the proposed model, and results show
that the proposed model is effective for the dynamic low-finesse FP cavity. It is the first time that the idea
of instantaneous frequency is introduced for the FP demodulation, and this model provides us a new way to
cope with the FP sensing signal.

INDEX TERMS Dynamic demodulation, Fabry-Perot, Doppler error, instantaneous frequency,Wigner-Ville
distribution.

I. INTRODUCTION
Low-finesse optical fiber Fabry-Perot (FP) sensors are ver-
satile, and they have been widely used for detecting various
physical quantities, such as strain, temperature, pressure,
vibration, and magnetic field [1]–[8]. These FP sensors have
some differences in structure, but containing a low-finesse
FP cavity is a key similarity for them. When utilized for
measurement, the optical path length (OPL) of the FP cavity
changeswith themeasurand, so demodulating theOPL (or the
optical path difference, OPD) from the interference spectrum
plays an important role in FP sensing applications [6].

For high-accuracy demodulation of low-finesse FP sen-
sors, a variety of algorithms have been developed, such as
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phase algorithms (two [9], three [10], four [11] and five
[12] wavelength techniques), FFT algorithm [13], [14] and
its improved algorithms [1], [2], [15], DTG algorithm [9],
wavelet phase extracting (WPE) algorithm [16], and Least-
Squares fitting (LSF) [17] and its improved algorithms [18].
Yet, the models of the above-mentioned algorithms were all
established on the static FP spectrum. In other words, the
OPL of the FP cavity should be kept constant during the
spectrum acquisition process. Otherwise, the famous Doppler
phenomena [19] will distort the interference spectrum, lead-
ing to a big demodulation error, even demodulation failure.
For this reason, these algorithms are only suitable for the
measurement of the relative static measurand.

However, the dynamic measurement of physical quantities
is very important in practices. For a dynamic measurand, the
spectrum acquisition rate of an FP sensing system may not
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be quick enough to keep the OPL of the FP cavity constant
during the acquisition process. In this case, the OPLmay vary
irregularly during the spectrum acquisition process, and it is
necessary to solve the demodulation problem of the relative
dynamic FP cavity. To the best of our knowledge, little work
has been reported to address this problem.

On the other hand, the idea of instantaneous frequency
[20], [21] and time-frequency (TF) analysis methods [22],
[23] have been widely used for non-stationary signal anal-
ysis. They were even applied to fiber Bragg grating sensing
demodulation [24], but rarely to FP sensing demodulation.

In this paper, we propose a demodulation model for
dynamic low-finesse FP cavity based on the definition of
the instantaneous frequency. Using this model, the Doppler-
induced demodulation error is analyzed. Moreover, the
potential advantage of this model is demonstrated with both
simulation and experimentation.

II. MODEL
Low-finesse optical fiber FP sensor means the finesse F of
its reflection spectrum is much less than 1. In general, the
low finesse is the result of the low reflectivity of the two
surfaces forming the FP cavity. The low reflectivity makes the
secondary reflections do not contribute much to the spectrum
pattern of the interference spectrum. In fact, as long as one
of the surfaces has low reflectivity, the secondary reflection
can also be neglected [25]. Thus, the interference spectrum
of a low-finesse FP cavity can be regarded as two-beam
interference [3], [6], [8], [20], [25], and can be expressed as

I (k) = I0 {1+ γ cos (2Lk + ϕ0)} , k ∈
[
kstart, kstop

]
, (1)

where I0 is the power of the light source, k is the wavenumber
defined by k = 2π /λ (λ is the wavelength), γ is the fringe
visibility, L is the OPL of FP cavity, ϕ0 is the initial phase,
kstart the wavenumber of the spectrum’s first data point, and
kstop the wavenumber of the spectrum’s last data point. After
mean value removing and normalization, (1) can be rewritten
as

Inorm (k) = cos (2Lk + ϕ0) . (2)

The Inorm(k) is a cosine function with the variable k . Because
the L is a constant, it can be demodulated accurately in the
frequency domain of the spectrum with the widely-used FFT
algorithm [14]. But if the L changes during the spectrum
acquisition process, the variation of L should be taken into
accounts. Thus, the L should be replaced by a function L(k):

Inorm (k) = cos {2L (k) k + ϕ0} . (3)

Supposing that the instantaneous frequency of Inorm(k) is
f (k), and according to the definition of instantaneous fre-
quency (the derivative of the phase [20]), we can obtain

f (k) =
1
2π

d [2L (k) k + ϕ0]
dk

=
1
π

[
kL ′ (k)+ L (k)

]
. (4)

Equation (4) is a differential equation and its general solu-
tion is

L (k) =
1
k

[∫ k

kstart
π f (k) dk + C

]
, (5)

where C is an arbitrary constant. To find the constant C , we
assume that the L(k) could be approximated by a m-th-order
polynomial function of k in the range [kstart, kstop]. Thus, the
following equations can be obtained by taking m-th-order
derivatives of (5) at k = kstart:

π f (kstart) = kstartL ′ (kstart)+ L (kstart) ,
π f ′ (kstart) = kstartL ′′ (kstart)+ 2L ′ (kstart) ,
...

π f (m−1) (kstart) = kstartL(m) (kstart)+ mL(m−1) (kstart) ,
π f (m) (kstart) = (m+ 1) L(m) (kstart) .

(6)

From (6), we can obtain the L(kstart ):

L (kstart) = π
m∑
i=0

(−kstart)i

(i+ 1)!
f (i) (kstart) . (7)

Combing (5) and (7), we can find the C and rewrite L(k)
as

L (k)=
π

k

[∫ k

kstart
f (k) dk + kstart

m∑
i=0

(−kstart)i

(i+ 1)!
f (i) (kstart)

]
.

(8)

Because the f (i)(kstart) can be calculated through the i-th-
order derivative of the f (k), the dynamic FP cavity could be
demodulated if the f (k) (or normalized fnorm(k) = 2f (k)/fs,
fs is the sampling frequency of the spectrum) is known.
To calculate the f (k), one can use different TF analysis

methods such as short-time Fourier transform, wavelet trans-
form, andWigner-Ville distribution (WVD). In this paper, the
WVD is selected because it gives the highest energy concen-
tration in the TF plane and is a nonparametric technique [26],
[27]. The WVD of the spectrum Inorm(k) can be calculated
with the following integral:

W [k, f ] =
1
2π

∫
z
(
k −

1
2
τ

)
z∗
(
k +

1
2
τ

)
e−j2π f (k)τdτ,

z (k) = Inorm (k)+ jH [Inorm (k)] , (9)

where H is the Hilbert transform. By polynomial fitting
of the ridge line ofW [k , f ], one can get the f (k) (or fnorm(k)).
Because the model is derived from (1) which is actually an

expression for two-beam interference, theoretically, it is not
only effective for the low-finesse FP interferometer but also
the Mach-Zenhder and Michelson interferometer.

III. DISCUSSION OF THE MODEL
A. RELATIONSHIP WITH THE FFT ALGORITHM
As mentioned above, the FFT demodulation algorithm esti-
mates the L according to the frequency of the spectrum,
and the proposed demodulation model is established on the
instantaneous frequency of the spectrum. The modeling base
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of the proposed model would make it more powerful than the
FFT algorithm.

In fact, the FFT algorithm is just a special case of the
proposed model. For the case of m = 0 (indicating the FP
cavity remains still during the acquisition period of the spec-
trum), the f (k) in (8) will become a constant which equals the
frequency of the spectrum. Then, (8) can be reduced to

L (k) |m=0 =π fpeak=
π fpeak_normfs

2
=π

2fpeak_norm
1k

, (10)

where fpeak and fpeak_norm are respectively the frequency and
the normalized frequency of the spectrum, and k is the spec-
tral sampling interval. Traditionally, the fpeak is obtained by
finding the peak frequency in the frequency domain, and this
is exactly what the FFT method does. So, the demodulation
formula of the widely-used FFT algorithm [14] is the same
as (10). Obviously, the proposed demodulation model could
be seen as a generalized form of the FFT demodulation
algorithm.

B. SCOPE OF APPLICATION
For the successful application of this model to the demod-
ulation of a dynamic FP cavity, one needs to understand its
usage condition. First, the obtained FP spectrum must satisfy
theNyquist sampling theorem, i.e., the condition fnorm(k) < 1
must be guaranteed. Besides, as we usually take the positive
frequency domain when doing the TF analysis, the fnorm(k)
should be larger than 0. Thereby, the performance space of
this model is limited to

0 < fnorm(k) < 1. (11)

Theoretically, this model works as long as the condition (11)
is satisfied.

IV. DISCUSSION OF DOPPLER-INDUCED
DEMODULATION ERROR
When the OPL changes during the spectrum acquisition pro-
cess, it will cause the famous Doppler phenomenon, resulting
in a Doppler-induced demodulation error. From the view of
the frequency domain, the Doppler-induced error has been
discussed in reference [19]. Based on our model, we are
going to discuss it from the perspective of the wavenumber-
frequency domain.

In the range of [kstart, kstop], the average value of fnorm(k)
can be calculated by

favg=

∫ kstop
kstart fnorm(k)dk

kstop−kstart
=
2
fs

∫ kstop
kstart

1
π

[
kL ′ (k)+ L (k)

]
dk

kstop − kstart

=
2
π fs

{
L
(
kstop

)
+

kstart
kstop−kstart

[
L
(
kstop

)
− L (kstart)

]}
=

2
π fs

{
L
(
kstop

)
+

kstart
kstop−kstart

1L
}
, (12)

where 1L is the variation of the OPL during the spectrum
acquisition period. If one uses the favg to demodulate the OPL,

he will get

Lavg =
π fs
2
favg = L

(
kstop

)
+

kstart
kstop − kstart

1L. (13)

Obviously, the demodulation error R of the Lavg is

R =
kstart

kstop − kstart
1L. (14)

From (14), it can be seen that the Doppler-induced demod-
ulation error is determined by 1L, and this is valid for all
the cases of m > 1. For the special case of m = 1, if we
assume OPL changes with a constant velocity v during the
spectrum acquisition period 1t , the demodulation error can
be rewritten as

R |m=0 =
kstart

kstop − kstart
v1t =

fstart
fstop − fstart

v1t, (15)

where fstart and fstop are respectively the light frequencies
of the interference spectrum’s first and last data points. The
reference [19] also gave a Doppler-induced demodulation
error formula as follows

Rref = −
f0
1f0

v1t, (16)

where f0 is the center frequency of the light source, and f0
is the frequency range of the light source. For example, for
a commonly-used broadband light source with a wavelength
range of 1529nm∼1569nm, we have fstart = 196207GHz,
fstop = 191205GHz, f0 = 193673GHz, and f0 = 5002GHz.
Then, one can find R|m=0 is almost the same as Rref (R|m=0 ≈
1.01Rref). In other words, (15) (or (16)) is just a special case
of (14). From the wavenumber-frequency domain, one can
better understand the Doppler-induced error.

In addition, it should be emphasized that, the favg is cal-
culated through the fnorm(k) and different from the peak
frequency fpeak determined by the FFT algorithm. So, the
demodulation error of the FFT algorithm does not have such
an exact relationship shown by (14). But in some cases where
fpeak approximates favg, the demodulation error of FFT can
be approximated by (14). In fact, understanding the influence
of the dynamic FP cavity on the demodulation error of the
FFT algorithm is of great importance. Because, for other FP
demodulation algorithms, such as DTG [9], WPE [16], and
LSF [17], the FFT is used in the first step to make a rough
estimate of the OPL, then more accurate OPL is searched
around the estimated value. Generally, the search range is less
than a few microns, but the Doppler-induced error of FFT
easily goes far out of this range. In other words, if the FFT
algorithm gets a wrong estimation of OPL, these reported FP
demodulation algorithms will probably fail. Considering the
importance of the FFT algorithm, wewill compare its demod-
ulation result with the Lavg in our following discussions.

V. SIMULATION
In this section, some simulation interference spectra are intro-
duced to validate the demodulation model and the analysis
of demodulation error. These spectra are simulated with the
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FIGURE 1. (a) A comparison between a spectrum of dynamic FP cavity with L1(k) and a spectrum of static FP cavity
with L0 (the spectrum of L0 is deliberately moved up to make it distinguishable from that of L1(k)), (b) frequency
spectrum of the dynamic spectrum, (c) the WVD of the dynamic spectrum and the fitted fnorm(k), (d) theoretical FP
cavity, and FP cavity demodulated by FFT algorithm, average frequency, and the proposed method.

same kstart, kstop, and k (kstart = 2π/1.569 (rad/µm), kstop =
2π/1.529 (rad/µm), k = (kstop-kstart)/400 (rad/µm)).
First, we let L1(k) = 500 + (k-kstart)/(kstop-kstart) (µm)

and generate an interference spectrum as shown in Fig.1(a).
Meanwhile, a spectrum of a static FP cavity with the OPL
L0 = 500µm is plotted in Fig.1(a) for comparison. Because
the expansion of OPL is only 1µm over the spectral range,
the dynamic spectrum does not look much different from the
static spectrum. In fact, the expansion of OPL just causes an
increase from 17 to 18 in the fringes of the spectrum, and it
is hard for one to distinguish whether or not such a spectrum
is from a dynamic FP cavity. Further, we plot the frequency
spectrum of the dynamic spectrum in Fig.1(b) and find it is
still a single peak. In other words, one cannot notice anything
unusual from the frequency domain as well. However, the
demodulation error of FFT (see the Lfft Fig.1(d)) reaches
about 38µm. Here, one may find the Lfft is almost the same
with Lavg, and this is because the average frequency happens
to approximate to the peak frequency. In our simulation, as
kstart/(kstop-kstart) equals 38 and the variation of the OPL
is 1µm, the theoretical error of Lavg should be 38µm. As
expected, the calculated Lavg in Fig.1(d) deviates from the
L1(kstop) by 38µm, which agrees well with the theoretical
prediction.

Then, the proposed demodulation method is applied to the
dynamic interference spectrum. To improve the frequency
resolution of the WVD, the spectrum is extended by zero-
padding (the padding length is 10 times the length of the spec-
trum). Fig.1(c) gives theW [k , f ], the wavenumber-frequency

domain of the spectrum, and the linear fitting of the ridge
line of W [k , f ]. Though it is hard for software even a
man to perceive the existence of the Doppler error from
the frequency domain, it becomes easy in the wavenumber-
frequency domain as the fnorm(k) is obviously not a constant.
Moreover, using the fitted fnorm(k), we can reduce the error
and get a more calculate cavity. The calculated dynamic FP
cavity Ltf(k) is plotted in Fig.1(d). From Fig.1(d), we can see
that the demodulation error of the proposed method is about
5µm, which makes a great improvement comparing to the
FFT algorithm.

To further investigate the effect of noise on the proposed
method, white Gaussian noises with different SNRs are added
to the dynamic spectrum. A total set of 30 spectra for each
SNR level are generated to determine the demodulation error.
The demodulation error shown in Fig.3 is the mean value of
|max[Ltf(k)-L1(k)]|, and the error bar is the standard deviation
of |max[Ltf(k)-L1(k)]|. It can be seen from Fig.2 that the
proposed model has a relatively good performance under the
condition of SNR≥30dB. In most situations, the SNR of an
FP interference spectrum can be higher than 30dB.

To further validate the application scope of the proposed
model, two extreme dynamic FP cavities with L2(k) =
500 − 12(k-kstart)/(kstop-kstart) (µm) andL3(k) = 500 +
135(k-kstart)/(kstop-kstart) (µm) are employed to generate
the interference spectra, and corresponding spectra with
SNR = 30dB are plotted in Fig.3(a) and Fig.4(a). In these
extreme conditions, traditional FP demodulation algorithms
are difficult to perform. For example, at least two peaks
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FIGURE 2. Effect of noise on the demodulation error of the proposed
method.

are needed for the phase algorithms, but the interference
spectrum in Fig.3(a) has only one peak. The frequency spec-
trum in Fig.4(b) is obviously abnormal, which frustrates these
FFT-based FP demodulation algorithms. Although these
extreme cases are rare in practices, they can demonstrate the
advantage of the proposed model.

Because the L of L2(k) and L3(k) are respectively −12µm
and 135µm, corresponding theoretical errors of Lavg should
be about−458µmand 5160µm.As can be seen fromFig.3(d)
and Fig.4(d) that, the deviations of Lavgs from L2(kstop) and
L3(kstop) are −461µm and 5159µm, respectively. The slight
difference between the theoretical and simulation errors are
mainly due to the calculation deviation of fnorm(k). For the

Lfft shown in the Fig.3(d), its error approximates to the error
of Lavg, and this is because the frequency spectrum (see
Fig.3(b)) still does not have enough distortion. But for the
Lfft in Fig.4(d), it deviates obviously from Lavg, and this
is due to the serious distortion of the frequency spectrum
(see Fig.4(b)). By the comparison of Lfft and Lavg, it can be
concluded that favg is more suitable for the evaluation of the
Doppler-induced demodulation error than the fpeak.
From Fig.3(c) and Fig.4(c), one can find that the nor-

malized instantaneous frequency fnorm(k) approaches respec-
tively the lower and upper limits. Even so, the proposed
algorithm still stays a high demodulation accuracy (see
Ltf(k)s in Fig.3(d) and Fig.4(d)). Under the occasions of the
large variation of OPL, the proposed method exhibits more
obvious advantages over the traditional FP algorithms.

Theoretically, the proposed model is effective even when
the variation of OPL is not linear. We tried some cases of non-
linear changing OPL, but the demodulation accuracy is not as
high as the linear cases. For a non-linear changing OPL, its
interference spectrum becomes a non-linear chirped signal.
For a non-linear chirped signal, the accuracy of fnorm(k)
calculated by the WVD will decline, and this is because the
kernel of WVD is a function reconstructed from the central
finite difference estimator [28]. In fact, the accurate calcu-
lation of fnorm(k) is the core of the success of the proposed
model, and the accuracy of fnorm(k) relies entirely on the TF
analysis method adopted. For the WVD, its kernel limits it to
the linear cases, so it has to be replaced by a more powerful
TF analysis method to adapt to nonlinear cases. In theory, to
ensure the accuracy of fnorm(k) for nonlinear cases, the kernel

FIGURE 3. (a) A spectrum of a dynamic FP cavity with L2(k) (SNR = 30dB), (b) frequency spectrum of the dynamic
spectrum, (c) the WVD of the dynamic spectrum and the fitted fnorm(k), (d) theoretical FP cavity, and FP cavity
demodulated by FFT algorithm, average frequency, and the proposed method.
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FIGURE 4. (a) A spectrum of dynamic FP cavity with L3(k) (SNR = 30dB), (b) frequency spectrum of the dynamic
spectrum, (c) the WVD of the dynamic spectrum and the fitted fnorm(k), (d) theoretical FP cavity, and FP cavity
demodulated by FFT algorithm, average frequency, and the proposed method.

of the TF analysis method should have a non-linear form
similar to the real instantaneous frequency of the interference
spectrum. From the kernel’s view, some parametric TF analy-
sis methods, such as polynomial WVD [28], and polynomial
chirplet transform [23], may have potentials to address the
problem of non-linear cases. But determining the parameters
of these methods suitable for arbitrary non-linear cases is not
easy. We are going to further study it in our future work.

VI. EXPERIMENT
To experimentally verify the effectiveness of the proposed
demodulation model, we constructed a system as shown in
Fig.5 to measure the interference spectrum of a linear chang-
ing FP cavity. The waveform generator (DG4102, RIGOL)

FIGURE 5. Experimental setup for the spectrum measurement of dynamic
FP cavity.

provides a sawtooth voltage signal, and the signal is amplified
by the amplifier (HAS 4011, NF Corporation) and applied to
the PZT (PK4FTH3P2, Thorlabs). Thus, a dynamic FP cavity
is formed between the end-face of the optical fiber and the
aluminum reflective surface bonded on the PZT. Because the
reflectivity of the end-face of optical fiber is about 0.04, this
cavity is a low-finesse FP cavity (the finesse F �1 according
to its calculation formula F = π (r1r2)^(0.5)/(1-r1r2), where
r1 and r2 are the reflectivities of FP cavity boundaries). An
optical spectrum analyzer (made by Gaussian optics photo-
electric technology co. ltd, China) and a coupler are used to
measure the FP interference spectrum. The optical spectrum
analyzer is mainly composed of a tunable laser and a photode-
tector, and its spectral resolution is 10 pm, and it takes 0.4s

FIGURE 6. Demodulation flow chart of FFT algorithm, average frequency
and the proposed model for the experimentally measured spectrum.
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FIGURE 7. (a) An experimental spectrum of dynamic FP cavity (500µm FP cavity with 2µm displacement during
the spectrum measurement), (b) frequency spectrum of the dynamic spectrum, (c) the WVD of the dynamic
spectrum and the fitted fnorm(k), (d) theoretical FP cavity, and FP cavity demodulated by FFT algorithm, average
frequency, and the proposed method.

to sweep over a range of 40nm (1529∼1569nm). During the
experiment, the initial OPL L0 is adjusted to 500µm by the
cooperation of the micro stage and an online demodulation
software of static FP cavity developed by ourselves (the
resolution of our software is 10 pm). Besides, we use a laser
vibrometer (OFV-5000, Polytec) to calibrate the dynamic
displacement provided by the PZT, and the displacement
resolution is 0.1 pm.

The demodulation process of the experimentally measured
spectrum is illustrated in Fig.6. As the sampling of the raw
spectrum as shown in Fig.7(a) is relatively dense, down sam-
pling is applied to the spectrum to reduce the calculation
amount. The down sampling is acceptable as long as the
sampling law is satisfied. In this paper, the sample rate of
the spectrum is decreased by a factor of 10. In turn, the
mean value removing and the normalization are applied to
the downsampled spectrum. Because the measured spectrum
is uniformly sampled in the wavelength domain, it needs to
transform the spectrum to the wavenumber domain by the
interpolation. Here, the spline interpolation is used. After-
ward, we extend the spectrum by zero-padding to increase the
frequency resolution of the WVD and the FFT (the padding
length is 10 times the length of the downsampled spectrum).
Finally, the FFT algorithm, average frequency and the pro-
posed method are respectively used to obtain Lfft, Lavg and
Ltf(k).

Fig.7(b) shows the frequency spectrum of the experimental
dynamic spectrum. As can be seen that it is a standard peak,
which seems like one without Doppler error. But from the

wavenumber-frequency domain as shown in Fig.7(c), it is
easy to realize that there will be an error if those reported
algorithms are used. Fig.7(d) shows the comparison of Lfft,
Lavg, and Ltf(k). For Lavg, it deviates from the real cavity by
about 76µm, and this is because there is a 2µm displace-
ment during the spectrum measurement. Given the proximity
between the average frequency and peak frequency of such a
dynamic spectrum, Lfft is almost the same as Lavg. In contrast,
the demodulation error of Ltf(k) is only 4µm, much smaller
than that of the FFT algorithm. More importantly, the Ltf(k)
reconstructs the changing trend of the dynamic FP cavity. In
addition, though there is a small difference between the real
low-finesse FP spectrum and the two-beam interference spec-
trum [29], the experimental result confirms the effectiveness
of this model for the low-finesse FP cavity.

VII. CONCLUSION
In summary, a novel demodulation model for the dynamic
FP cavity is presented by introducing the instantaneous fre-
quency. To some extent, this model can be viewed as a gener-
alized form of the classical FFT demodulation algorithm, but
it is more powerful.

First, this model gives us a new perspective on the FP inter-
ference spectrum from the wavenumber-frequency domain.
When applying a traditional FP demodulation algorithm to
a dynamic spectrum, it is probably difficult to notice the
Doppler-induced error from the wavenumber or frequency
domain, but it becomes simple in the wavenumber-frequency
domain. From the view of instantaneous frequency, the
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theoretical Doppler-induced error is derived, and the variation
of OPL during the spectrum acquisition period is found to
be the determinant of the error. Besides, we suggest that the
average frequency should be used for the evaluation of the
error despite that the peak frequency is close to the average
frequency in some cases.

Second, the model provides us a new way of demodulating
dynamic FP cavity only by the use of the interference spec-
trum. Formost reported algorithms, the FFT algorithm is their
base or first step, but unfortunately, the dynamic FP cavity
has great impacts on the FFT algorithm. By the simulation
and experiment, the model has been proven to be promising
for the demodulation of the dynamic FP cavity. Although
only linear cases are used to demonstrate the effectiveness of
the model, this model is theoretically applicable to nonlinear
cases as long as the accurate instantaneous frequency distri-
bution can be obtained. The WVD adopted in the paper does
not perform well for nonlinear cases, but a more advanced TF
analysis method has the potential to cope with it and finding
such a method is our future work.
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