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ABSTRACT Backlit images are from an excessive reflection of light being opposite to a capturing device.
The existing image enhancement methods cannot be directly applied to the backlit images because they
are not designed to enhance both broad light and dark regions simultaneously. Moreover, the techniques
have several limitations about over-saturation or losing contrast. This paper presents a single backlit image
enhancement method based on the novel full-piecewise non-linear automatic stretching, without input
parameter provided by a user, e.g., gamma and so on. The computer simulation results confirm that the
proposed approach can (i) undoubtedly reveal hidden details in the dark region; (ii) preserve features and
color of common and light (over-brightness) regions, and (iii) increase a local contrast of dark areas. The
proposed approach tested on Li’s backlit image database and several backlit images from commercial
devices. The simulation results demonstrate the efficiency of the proposed approach and its advantages over
the cutting-edge backlit image enhancement methods in perceptual quality.

INDEX TERMS Backlit images, color correction, contrast enhancement, image segmentation.

I. INTRODUCTION
Backlighting generally encounters ill-illumination conditions
that cause degradation of image quality. The backlight images
have a complex structure that makes them different from
other types of images, including low-light once (images
captured in low-light conditions, such as, thermal imaging
and near-infrared illuminations are the three most commonly
used night vision technologies [31], [35]), which have wide
dynamic ranges of light regions.

Also, unlike classical low light images, the backlit photos:
(i) contain concurrently both, well-exposed, very dark, and
very bright areas (over-exposed); and (ii) display detail lost
or washed-out color areas [29]–[32]. The goal of backlit
image enhancement is to remove or reduce the backlit degra-
dation and to recover ‘‘backlit scenes sectors’’ while still
preserving image details and colors [5], [32]. As a result,
the conventional, including low-light, image enhancement
(for instance, histogram equalization algorithms or Retinex-
based algorithms), cannot accomplish the proper enhanced
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effects of backlit images. For example, they are over-saturated
images, losing contrast.

Recently, supervised image enhancement methods [22],
[31] require a lot of imaging data to train the supervised
algorithms. The primary limitation of these methods is, they
need a substantial image database, and they are also time-
consuming. Reference [32]–[34] proposed the supervised
algorithms for low-light illuminance imaging conditions.
The algorithms are computationally expensive. Furthermore,
these algorithms have several other limitations; for exemplar,
theWei et al enhancement follows increasing both details and
noise in the dark regions simultaneously [32]; the Shi et al.
method generates a halo effect [33], or, the Wang et al.
process cannot distinguish the black colored objects and
foreground in extreme backlit conditions [34]. For many
applications, such as smartphones, cameras, and displays,
there is the need to develop a new unsupervised, image-
driven image enhancement approach tailored specially to the
backlit images.

Researchers have investigated this problem for recent years
and have proposed quite a few tools [1]–[6]. Despite those
efforts, the existing methods also have some significant
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TABLE 1. The advantages and disadvantages of state-of-the-art stretching methods.

TABLE 2. Existing cutting-edge backlit restoration methods.

limitations, including the problems of unnatural colors, over-
saturation, and brightness exposure. Although these methods
significantly increased the details, the contrast and brightness
are slightly over-enhanced; and finally, they require multiple
images with different exposure information to enhance a
backlit image.

To address this problem, we present an unsupervised
single backlit perception-preserving (the enhanced images
look real, comprises content, and color) image enhance-
ment method. The main contributions of this article are:
(i) a no-reference color quality assessment for backlit image
enhancement, (ii) new method of decomposing an image into
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under-exposed, over-exposed, and common regions; (iii) an
extended stretchingmethod of controlling over-enhancement,
sharpness, and colorfulness quality backlit image; and (iv) a
local weighted logarithmic histogram equalization method.
Also, the presented method outperforms the existing methods
both qualitatively and quantitatively. It has low complexity,
making it suitable for real-time applications such as the
angular viewing range of backlit image displays or video
surveillance applications. The rest of this paper is orga-
nized as follows: Section 2 presents the background of con-
trast stretching methods and backlit image enhancement.
Section 3 introduces the proposed technique to enhance
backlit images. Computer simulation results are presented in
Section 4. Finally, Section 5 offers the conclusion and ideas
that can be done for further research.

II. BACKGROUND
In this section, we presented an introduction to the analysis
of the related existing contrast stretching and backlit image
enhancement works. We first introduce linear and nonlinear
contrast stretching methods, and then the present works on
backlit image enhancement.

A. LINEAR AND NON-LINEAR CONTRAST STRETCHING
METHODS
The concept behind contrast stretching is to expand a dynamic
range of the image [12]. The stretching techniques can apply
to several image processing applications, such as (i) enhanc-
ing the hazy, lowlight, night-vision, thermal, underwater, and
backlit images; (ii) the adjustment of imaging sensors reso-
lution; and (iii) the improving display screen brightness [15].
The advantages and disadvantages of state-of-the-art stretch-
ing methods presented in Table 1. A lack of dynamic range
results of lack of illumination, or even wrong configuration
of a lens aperture (see Table 1).

B. BACKLIT IMAGE ENHANCEMENT
Cutting-edge backlit image restoration methods [28]–[30]
operate on under-exposed and common regions indiscrimi-
nately, avoiding the fact that there are several kinds of region
property. Li et al. [22] proposed a region-based backlit image
restoration and enhancement by categorizing the background
and foreground histograms. The accuracy of the segmentation
directly affects the image quality (see Table 2).

III. PROPOSED METHOD
We introduce the backlit image enhancement framework by
non-linear stretching luminance in piecewise regions. The
key steps of the proposed framework (see Fig. 1) are: (i) the
calculation of backlit and common region thresholds; (ii) the
design of stretching functions with optimal parameters; (iii)
the calculation of a logarithmic weighted bi-histogram equal-
ization function; and (iv) the image fusion using a minimal
weighting fusion metric.

FIGURE 1. The proposed backlit image enhancement algorithm.

A. THRESHOLD CALCULATION
Backlit images caused by light irregularities can be divided
into three components: a dark component, a gray component,
and a bright component. Let It be the intensity component
of an original backlit image, which consists of intensity level
t starting from 0 to L − 1, whereas L is the total intensity
level. The pixel density of backlit images mostly locates on
a dark component, e.g., L < 100 for an 8-bit component.
The calculations of existing thresholds cannot appropriately
categorize the pixel density for images having the special
illuminance conditions of light reflection. For calculating the
threshold for the intensity component of a backlit image,
the first threshold is to divide the whole intensity into dark
and bright components, which represent the foreground and
the background, respectively. The first threshold is calculated
by the relative local bright average of any intensities giving
the highest correlation of a dark component and a bright
component.

T = arg max
t

(
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t log
(
µ̄d
t

µ̄b
t

))
(1)

where

µ̄d
t =

µd
t − min

{
d
t
}

max
{d
t
}
− min

{d
t
} and µ̄b

t =
µb
t − min

{
b
t
}

max
{b
t
}
− min

{b
t
}
(2)

µ̄d
t and µ̄

b
t represent the normalized local average brightness

of a dark component and a bright component, respectively.
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FIGURE 2. Threshold comparison of a backlit image.

The proposed threshold tends to a light gray luminance
level. It divides the under-exposed regions into a new
grayscale distribution for more than half of the permitted
range (see Fig. 2). Therefore, the details within those regions
will be re-organized in a wider range.

B. DESIGN OF STRETCHING FUNCTIONS WITH OPTIMAL
PARAMETERS
A stretching contrast method is the most straightforward
contrast and brightness enhancement. However, state of the
art stretching routines have some limitations see Table 1).

To enhance the backlit images, we (1) decompose it under-
exposed, ‘‘general/gray’’ and exposed regions using a backlit
driven threshold, (2) apply the new contrast stretching on both
components dark and the bright components, and (3) perform
a specialized new parametric image enhancement (so-called,
a local weighted logarithmic histogram equalization method)
on the gray component. The new dynamic intensities are
calculated by the equations below.

Si,j =


f d
(
Ii,j
)
, 0 < I i,j ≤ xt

Ii,j, xt < Ii,j ≤ xO
f b
(
Ii,j
)
, xO < Ii,j ≤ xL−1

(3)

f d
(
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(
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Idmax − I
d
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)γα
+ Idmin (4)

f b
(
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(
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b
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)( Ii,j − Ibmin

Ibmax − I
b
min

)γβ
+ Ibmin (5)

where Ii,j is a backlit luminance at any ith and jth pixel
placement. Idmin, I

b
min, I

d
max and Ibmax are the minimum and

maximum luminance of under-exposed regions and exposed
regions. Sdmin, S

d
max, S

b
min and S

b
max are the new minimum and

maximum intensities of under-exposed regions and exposed
regions, respectively. γα and γβ are a contrast correction(
0 < γα < γβ < 1.0

)
.

To find the best parameter of a contrast correction, we use
two conditions: (i) highest contrast, by evaluating block-
based EME concepts - the relationship between the spread
and the sum of the two luminance values calculated in a
local block [12], and (ii) least luminance error, by using
logarithmic brightness error entropy.
• The calculation of the CEME contrast,
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• The calculation of brightness error

LBEγα,γβ = 10
(
EI − ER
EI + ER

)λ
logλ (EI − ER + c) (10)

• The optimization function

[γα, γβ ] = argmin
γα,γβ∈[0,1]

(
CEMEγα,γβ − LBEγα,γβ

)
(11)

where
(
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m,n
i,j

)
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and
(
[Imin]

m,n
i,j

)
γα,γβ

are based local

maximum and minimum luminance of local m×n-block; c is
a small number to avoid the error of logarithmic calculation.
EI and ER are the mean luminance of a captured image and a
stretched image. λ is a power factor.

C. LOGARITHMIC HISTOGRAM EQUALIZATION
It is well-known that Histogram Equalization (HE) can
increase image contrast by calculating the new brightness
levels of a mapping function. There is much research that
relies on histogram-based contrast enhancement [7], [8], [10],
[13], [14], that focuses on the definition of different thresh-
olds or even the calculation of weighting functions in global
and local regions, spatial and transformed domains, or dif-
ferent color domains. However, those methods cannot be
effective for backlit images, directly.

In this sub-section, we bring the properties of the log-
arithmic function to calculate the luminance level of the
mapping function. Let Tt be the essential mapping function of
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Bi-HistogramEqualization (BHE) using a cross-mean thresh-
old method. t is the luminance level in a permitted range.
Consequently, the calculation of the logarithmic weighted
luminance function can be written as:

Ft = ρTt + (1− ρ) log (Tt) ; 0 ≤ ρ ≤ 1 (12)

where ρ is a weighting parameter.

D. MINIMAL WEIGHTING FUSION
In general, the existing region-based backlit enhancement
method is the accuracy of the region classification [21], [22].
Those image segmentation methods take time to process
depending on the size of an image. The minimal weigh-
ing fusion metric is designed for reducing the complexity
of region segmentation and processing time. Let’s define
[σmin]i,j,k ; k = 1, 2, 3 as a normalized minimal luminance
metric by taking the lowest intensity in an original backlit
image. The fused image can be calculated as:

[YEN ]i,j,k= [σmin]i,j,k [YLBHE ]i,j,k+[1−σmin]i,j,k [YLHE ]i,j,k
(13)

The combination of image features using the lowest lumi-
nance of the original image will fuse two features into the
same image. The proposed logarithmic image (YLBHE ) has
uniform brightness in both backlit regions and common
regions while the local enhanced image (YLHE ) improve the
details on backlit areas and the contrast of the whole image.
When considering the backlit regions – the weights (σmin)
are close to zero, and the backlit areas are transformed under-
exposed parts to uniform brightness regions with substan-
tial contrast enhancement. On the other hand, the common
regions are preserved brightness with slight contrast enhance-
ment.

IV. EXPERIMENTAL RESULTS
The experiments are conducted on Li’s dataset and backlit
images taken by different devices are from [22]. In Eq. 3,
we set xt = T and xO is the Otsu’s threshold.

A. PERFORMANCE OF STRETCHING ALGORITHMS
First, we demonstrate the performance of the proposed
stretching algorithm in the color restoration of dark regions.
Figure 3 shows a comparison of restored backlit images that
are produced by the intended optimal stretching function with
several existing stretching algorithms. It prevails that the new
contrast stretching-based backlit image restoration method,
by spatially adaptive luminance stretching functions, achieve
to organize intensities in uniform lighting conditions with
all parts of the image properly exposed, leading to superior
image quality. Other stretching methods fail to achieve the
same visualization level in the background and foreground
regions.

The colorfulness (CF) [25], [26] image assessments (see
Table 3 ), which are the property of chrominance information
human sense, show excellent performance in evaluating the

FIGURE 3. Restored Backlit Image. (a) Original image; (b) Yelmanov’s
model [23]; (c) Leow’s model [24]; (d) Xin’s model [20]; (e) the proposed
optimal stretched image.

proposed backlit stretched images. The illustrative example
in Fig. 3(e) shows three significant achievements. The pro-
posed stretching algorithm with optimizations can: (i) bring
the considerable details in dark regions (foreground); (ii) pre-
serve the details in the bright areas (background), and their
colors; and (iii) avoid over-enhancement.

B. BEST COLOR MODELS FOR OUR BACKLIT
ENHANCEMENT
Second, we simulate the proposed backlit enhancement
framework on different color domains. In this experiment,
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FIGURE 4. The proposed backlit enhanced images in various color
domains. (a) Original image; (b) RGB; (c) CIELAB 1976; (d) NTSC; (e)
YCbCr; and (f) HSV.

we evaluate the best suitable color domain for the proposed
method and the final restoration resulting images in compar-
ison with various color models, as shown in Fig. 4.

For our simulation in the various color domains,
we tested our method on a luminance component. However,
the RGB domain intimately relates to color and luminance
components. For testing on the RGB domain, we combined

TABLE 3. The performance of stretching methods.

TABLE 4. The performance of the proposed method in different color
domains.

three individual components into a single component by
concatenating components, and its histogram automatically
reflects the luminance of an image.

We compare the performance of the proposed backlit
enhancement framework through various color domains.
As shown in Fig. 4, the proposed images on the HSV domain
tend to be the most colorful. Meanwhile, the enhancement of
the RGB domain destroys colors. This causes the relation-
ship between colors and a luminance component. However,
the proposed method produces content in dark regions. The
enhancement on YCbCr domain loses brightness while on
CIELAB1976 and NTSC domains achieve to preserve colors,
but their resulting images lack contrast.

Since subjective assessment depends on the human visual
system (HVS), it is challenging to estimate an objective eval-
uation that relates to a personal assessment. We evaluate the
performance of various color model domains and choose the
best suitable color model (HSV domain) for backlit image
enhancement applications (see Figure Table 4 ).

C. QUALITY ASSESSMENT FOR BACKLIT IMAGE
ENHANCEMENT
Third, we introduce the no reference color qualitymeasure for
backlit image enhancement (CQBIE). We take the attribute
combination from [29]. CQBIE consists of two components:
a) feature components are calculated by several color meth-
ods to combine chrominance information with colorfulness,
sharpness, and contrast; and (b) color artifact components
(over-enhancement, color saturation) are taken by the error
of hue and saturation components.

CQBIE =Feature− Artifact (14)

Feature= (α · CF)+ (β · CEME)+ (γ · EMES) (15)

EMES = 2χk ·
∑N

i=1

∑M

j=1

∑3

k=1
log

(
[Gmax]

m,n
i,j,k+c

[Gmin]
m,n
i,j,k+c

)
(16)

Artifact = δ ·1H + ε ·1S (17)

1H =
1

3NM

∑N

i=1

∑M

j=1

∑3

k=1
1H i,j,k (18)

1S =
1

3NM

∑N

i=1

∑M

j=1

∑3

k=1
1Di,j,k (19)
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FIGURE 5. Backlit images enhanced by existing contrast enhancement methods and the proposed method. The introduced existing methods include:
Histogram Equalization (HE), Low Light Image Enhancement [31], Orasis Commercial Software Package [30], Retinex [29], Multiscale Retinex (M-Retinex)
[28] and Li’s algorithm [22].

1Di,j,k =
∣∣Ei,j,k − Ii,j,k ∣∣ (20)

where α, β, γ, δ and ε are a constant. CF denotes a colorful-
ness. CEME represents a contrast. [Gmin]

m,n
i,j and [Gmax]

m,n
i,j

are a local minimum gradient metric and a local maximum
gradient metric. χk = 0.299, 0.587 and 0.114 [4], k is the
the order of a color component, k = 1, 2, 3. Ei,j,k and Ii,j,k

represent an enhanced image and an original image on the
HSV domain, respectively.N andM are the sizes of an image.

D. THE PROPOSED BACKLIT IMAGE ENHANCEMENT
RESULTS
Finally, we present the no-reference quality assessment met-
ric for the backlight image. Computer simulations show that
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FIGURE 5. (Continued.)

TABLE 5. The performance of the proposed method with feature and artefact assessments of Fig. 5.
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FIGURE 6. Feature and artifact attributes of existing contrast enhancement methods and the proposed method of Fig. 5.

TABLE 6. The normalized performance of the proposed method with feature andartifact assessments.

the state of art no-reference metrics is not working correctly
for backlight image [4], [7], [36]–[40]. We define CQBIE
parameters as α = 4, β = 5, γ = 10, δ = 1, and
ε = 3. The average results over the set of testing images
reported in Table 5 and Table 6. They show that the pro-
posed method achieves the highest quality in backlit (Under-
exposed) regions and common regions.

Common regions typically do not suffer from a low con-
trast issue, and it is less critical to increasing the contrast
of these regions. Classical enhancement (HE, Retinex, and
M-Retinex) methods produce under-exposed, over-enhanced,
and saturated details (see Fig. 5). Orasis [30], LIME [31] and
Li et al. [22] methods reduce the color artifacts (see Fig. 5 and
Fig. 6), but some regions of the visually extracted images (see
Fig. 6) reflect a slight color saturation and an under-exposed
luminance in the local areas.

To prove the image quality by visualization, the powerful
ill-luminance image enhancement methods, such as Orasis
[30], LIME [31] and Li et al. [22], have some limitations.

• LIME: it achieves to increase details on under-exposed
regions, but it generates over-exposure and over-
brightness on background (see region no. 2, and 7).
Some details of over-exposed regions are washed out.
Occasionally, it cannot bring more details when storing
brightness of other regions (see region no. 12).

• Orasis: it focuses on under-exposed regions to enhanced
details while preserving over-exposed regions, but the
quality of enhanced regions is not good enough (see
region no. 3, 8, and 13).

• Li’s method: it achieves to preserving background
details and attempts to increase more details on under-
exposed regions, but it is unable to remove shadows (see
region no. 4, 9, and 11).

• The proposed method: it reveals the details of under-
exposed regions and preserves the details of over-
exposed regions (see region no. 5, 10, and 15).

In the CQBIE measure, Fig. 5 and Table 6 reflect the
fact of image quality metric corresponding to the human
visual system (HVS) that such methods are prone to over-
enhancement, under-explosion and color saturation artifacts.
The proposed method achieves superior perceptual image
quality by boosting the features in under-exposed regions and
enhancing contrast without presenting undesirable artifacts.

V. CONCLUSION
This article presents a novel, automated, simple combine
stretching-based backlit image enhancement and optimal
tone mapping functions technique for the restoration of
backlit images. The presented method is a single image
unsupervised image enhancement method that does not
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FIGURE 7. Cropped Resulting in Backlit images of Fig. 5. The artifact
comparison between existing novel methods and the proposed method.

FIGURE 8. Examples of Backlit images captured by a commercial.

require specialized hardware or knowledge about the backlit
image scene structure. The new procedure identifies the best

non-linear parameters for managing the overall image lumi-
nance by detecting the highest contrast while maintaining the
least logarithmic luminance error. Our extensive quantitative
evaluation shows that the proposed enhanced images charac-
terized by better exposedness of the dark regions, improved
global contrast, edges sharpness, and less color and lightness
distortion compared to several state-of-the-art methods, such
as HE, Retinex, Multiscale Retinex, LIME, Li’s method, and
Orasis. Besides, the proposedmethod is valuable for real-time
applications; for instance, surgery cameras, surveillance, and
other commercial uses (The illustrative example is available
on the appendix section).

APPENDIX
See Figure. 8.
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