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ABSTRACT The study of disease–pathway association in human diseases is a perennial focus of the biomed-
ical field. The association of diseases and pathways can help in the discovery of the mechanisms or rela-
tionships of human diseases. The accuracy of disease identification has been less than satisfactory despite
decades of research in this area. Therefore, this study proposes a computational model for the prediction of
disease–pathway associations. The proposed computational model is based on Random Walk with Restart
on heterogeneous network (RWRH) and PageRank. The RWRH disease–pathway association model is a
novel computational model that can predict potential disease–pathway associations. Furthermore, the model
can help pathologists understand the correlations among disease–pathway associations, treatments, and
reactions. We performed a pathway-based study to expand disease variation relationships and to find new
molecular correlations between genetic mutations. We constructed a biological network on the basis of
shared gene interactions of disease–pathways and attempted to investigate the pathogenesis of a disease
by analyzing the constructed network. The network construction was based on two parts. First, the similarity
between pathway–pathway networks was calculated. Second, a disease–disease (DD) similarity network was
constructed, and the correlation between disease and disease similarity was calculated. We also investigated
the pathway seed node and disease seed node with high PageRank.Moreover, we focused onmining the com-
plexity of disease–pathway associations. We used the bipartite network of disease–pathway associations to
combine the obtained biological information, which was based on the pair similarity of sequence expression
weights. These weights, which were obtained by using the multilayer resource-allocation algorithm, were
used to calculate the prediction scores of each disease–pathway pair. Here, through leave-one-out cross-
validation, we examined a 210 × 1855 matrix, with the 210 rows representing diseases and 1855 columns
indicating pathways. The disease–pathway adjacency matrix contained 13,838 known disease–pathway
associations. The best predictive results achieved an area-under-the-curve value of 0.8218 and a two-
class precision–recall curve. These results indicate that our method has higher scientific performance than
previously proposed methods.We predicted pathogen, DD, and disease–pathway relationships by comparing
them with known associations and through publication search. We then proposed the possible reasons for
our predictions.

INDEX TERMS Pathway similarity network, disease similarity network, disease pathway association,
PageRank algorithm.

I. INTRODUCTION
In recent years, researchers have become interested in
disease–pathway associations. The existing literature on the
comparative toxicogenomic database (CTD) [1] suggests
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that genes, diseases, pathways, and chemical datasets can
be used to construct disease–pathway association networks.
Sets of proteins that are associated with a given disease
enable the construction of pathway–pathway networks with
the use of Gene Ontology (GO) datasets [2]. This approach
determines which genes in the GO datasets overlap via
two or more different or similar pathways. The present
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research focused on disease–pathways associations, which
can be defined as similarities between diseases and path-
ways. Disease diagnosis, prognosis, and treatment play a vital
role in clinical studies [3]. To date, however, scant atten-
tion has been paid to network-based approaches based on
the Random Walk with Restart (RWR) algorithm. Addition-
ally, previous research has largely overlooked the importance
of disease–pathway relationships in identifying new cancer
disease-related approaches [4]. New approaches, including
network-based approaches, have been created to integrate
different ‘‘genomic’’ information, such as gene expression,
genome-wide association studies (GWAS), and disease–
pathway association networks, to describe these difficul-
ties. The present study surveyed subsequent methodological
improvements to identify disordered connections, disease–
pathway associations, priority, and the enrichment of can-
didate disease genes in pathways [5]. Complex diseases
are mediated by multiple natural factors rather than by a
single gene. Recognizable evidence for the affected path-
way reveals insights into infection improvement systems.
Additionally, GWAS has been aggregated for pathways [6].
The genes of the same biological pathways are assumed to
promote diseases. Moreover, every normal variety of these
genes contributes to the risk of disease [7]. The combi-
nation of heredity and molecular biology results in dras-
tic simplification [8], [9]. In recent years, researchers have
become increasingly interested in human genome sequenc-
ing, GWAS, transcriptomics, and proteomics; disease gene
tracking has also received considerable research attention
[10]. Current research indicates that understanding the unique
methods for identifying infections enables us to compre-
hend human diseases [11], [12]. Several computing strate-
gies for integrating complex and heterogeneous information
datasets, which include information expression, sequential
data, pathway function annotations, and biomedical scientific
literature, help in prioritizing future research approaches in a
straightforward manner [13]. Li et al. set up a unique gene
network that can anticipate various information sources and
consolidate networks into a single network that is described
by multigraphs [14]. The existing literature emphasizes that
disease genes, which are associated with genetic diseases,
have enhanced homeopathic care and improved the under-
standing of human gene associations and pathways. Amethod
for prioritizing candidate disease genes based on using global
network distance measure and randomwalk analysis was also
presented [15]. The prediction of the relationship between
genetic diseases and pathogenic genes is a key challenge
related to human health. The latest computing methods help
scientists in improved inference of these correlations by
understanding genetic interactions in human pathways in
GWAS [16]. Numerous scholars have acknowledged that
recognition of disease genes through differentiation is neces-
sary to explain the relationship between genes and diseases.

The present study aimed to investigate how pathogenic
genes are predicted with the help of the integrated pheno-
typic and genomic data. Several genetic diseases are similar

in terms of either heredity or phenotype. Researchers have
extended RWR algorithms to heterogeneous networks [17].
The cross-validation method has also been applied to assess
the capability of these algorithms to detect phenotypic rela-
tionships. García-Campos Miguel A et al. (2017) established
a link between pathways in a biological network contain-
ing natural interactions with biomolecules, such as proteins,
nucleotides, or genes. The available pathway nodes, also
known as pathway elements, might be linked to various
pathways, and their functions may differ in varied cellular
contexts [18]. We emphasize the scarcity of research articles
in computer biology and bioinformational research showing
substantial performance gains compared with established
algorithms through the use of competitions. These algorithms
include those used to create multiple-edge graphics models
for several biological networks, such as gene-cutting asso-
ciations, disease–gene (DG) associations, disease–pathway
associations, and gene ontological annotations. Boundaries
are weighted by form, reliability, and computerization [19].
Complex improvements in cellular machinery must consider
diseases. Cell gene expression profiles exhibit characteristic
patterns related to diseases. Using these profiles, we can
obtain new biological knowledge of a disease, improve diag-
nostic capacity, and determine disease risks. Researchers also
seek to reveal disease–disease (DD) correlations, disease–
pathway associations, and DG associations based on data and
multiscale cellular organizations. ThomasGaudelet et al. [20]
proposed neural networks with structures based on multiple
protein organizations in protein complexes and pathways in
a cell. Such analysis can accurately predict the diagnosis
of the majority of patients. By studying trained models,
we predicted the relationships of pathogens, diseases, and
diseases–pathways by comparing them with known associ-
ations and publication search. Moreover, we proposed pos-
sible reasons for our predictions. The discovery of disease
pathways in the form of protein sets related to a particular
disorder is an important issue that can potentially provide
clinically useful insights into the diagnosis, prognosis, and
treatment of illnesses. Computer methods support discovery
through the use of DD, DG, and disease–pathway networks.
We then analyzed cutting-edge methods for disease discovery
and showed poor performance in diseases with disconnected
pathways. Thus, the connectivity structure of a network alone
may be insufficient for disease detection. We also demon-
strated a promising pathway for the development of new
methods, such as small subgraphs, for high-order network
structures [2]. Finding real-life disease markers or signatures
is critical for the successful diagnosis, treatment, and progno-
sis of complex disorders, such as pathway cancers. Thus far,
various experiments have been conducted to classify markers
for diseases with a number of biological sources such as
pathway databases for genetic expression profiles [21]. In the
last few years, computational methods have been increas-
ingly used for the prediction of possible disease–pathway
associations based on their hidden relationships, guidance, or
effectiveness.
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The present work adopted three biological networks that
contain pathway–pathway similarity networks and measured
and applied the RWR algorithm. In this study, a DD network
was constructed, and the RWR algorithm was implemented
to calculate the RWR score vector with respect to (w.r.t.)
disease seed node. A bipartite RWR heterogenous network
for disease–pathway association (RWRHPDA) was devel-
oped for inferring potential disease–pathway interactions.
The review of the literature shows that biological networks
play a crucial role in finding genes and genomic modules
that lead to diseases. The database provides manually curated
data that were extracted from scientific literature. The present
study proposed a novel approach for disease–pathway asso-
ciation prediction that is based on RWR (RWRHPDA) and
PageRank. This work helps in understanding the design of
experiments and the utilization of human disease and human
pathway data. In this study, we analyzed and used data in
different ways to establish a novel approach for disease–
pathway association prediction.

Additionally, this study reviewed critical challenges related
to the RWR and the usage of RandomWalk on heterogeneous
networks in bioinformatics. The present study aimed to clar-
ify the relationship among human diseases from a pathway
perspective.Moreover, this study attempted to predict anoma-
lous pathways. Empirical evidence confirms the notion that
genes in cells cannot function alone. Inspired by currently
famous the particular nature of network-based approach in
biology. A novel method for identifying potential disease-
pathway association via heterogeneous network. The analysis
was based on RWR algorithm, which is very famous for the
links analysis. This Random Walk with Restart on Hetero-
geneous network (RWRHPDA) algorithm ranks the disease
and pathways simultaneously. The analysis was based on
RWR algorithm, which is very famous for the links analysis.
RWRHPDA algorithm prioritizes the disease and pathways
instantaneously. The RWRHPDA model is a novel compu-
tational model, and it can help predict the potential disease-
pathway association. Our technique achieves a zone under the
receiver operating characteristic curve (AUC) of 0.82, which
is roughly higher than that of the state-of - the-art methods.
Finally, we use various data sets for our algorithm to further
prove the validity.

II. MATERIALS AND METHODS
A. DATA SOURCE
The subjects of this study consisted of pathway datasets
that are included in the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database and the Reactome path-
way database. These databases are open-source and pro-
vide a platform for computation across biological responses
in networks selected to obtain predefined human biologi-
cal pathways [22]. The data collected for the present study
included 25,399 pathways. Moreover, the present study
involved 25,392 unknown association datasets, which con-
tained pathways, diseases, and related genes. The datasets

TABLE 1. Data source.

TABLE 2. Types of download datasets.

were then normalized, and 1855 pathways and 210 diseases
were determined. The data collected were mostly qualita-
tive/quantitative in nature, and their detailed information is
given in Table 1. The disease datasets were obtained from
the Online Mendelian Inheritance in Man (OMIM) database
and measured on the basis of disease similarity [23] and CTD
[24] (Table 2). Additional data were gathered from manually
curated databases of disease-related genes, and disease asso-
ciation among pathways was mapped in terms of pathways
and genes.

B. METHOD
Figure 1 shows the flowchart of our framework, which
is based on different phases and contains disease–pathway
associations. The datasets were first selected. Subsequently,
the data were preprocessed and standardized for the exper-
iments. The collected datasets contained pathways related
to diseases and 25,399 human gene disease and pathway
aliases. Additionally, we collected 185 mesh samples and
human disease related to 25 OMIM sample terms. The link
prediction problem was prioritized in the disease–pathway
association. In this study, heterogeneous networks were uti-
lized; these networks consisted of three main parts: pathway–
pathway interaction network [25], DD similarity. network,
and disease–pathway association network. The potential
disease pathway association can be regarded as the missing
link in the disease pathway association network. Therefore,
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FIGURE 1. Flowchart of framework model.A(1) Creation of the
pathway–pathway adjacency matrix, which contains the information on
a given network with n nodes denoted by Pi(n∗n) [26]. A(2) Construction
of the pathway–pathway similarity network. Pathway–pathway
functional similarity scores were calculated on the basis of asymmetric
matrix similarity scores. A(3) Specified edge connections and detected
seed pathway nodes. The single seed in RWR vector scores was
computed, and the weight of each node was measured. The top 10 seed
pathways with adjacent neighbor pathway nodes were detected. A(4)
Top 5 RWR vector score probabilities. A(5) Personalized PageRank
(PPR) vector scores of the top 10 seed pathways. A(6) Global PageRank
(GPR) vector scores of the top 10 pathway nodes. A(7) Top 10 pathway
nodes with high PageRank scores. B(1) Creation of the DD adjacency
matrix, which contains the information of a given network with n
nodes denoted by di (n∗n) [26]. B(2) DD similarity network. DD
functional similarity scores were calculated by using the asymmetric
matrix similarity score. B(3) Specified edge connections and detected
seed disease nodes. The single seed in RWR vector was computed, and
the weight of each node was measured. The top 10 seed diseases with
adjacent neighbor disease nodes were also identified. B(4) Top 5 RWR
vector score probabilities. B(5) Top 10 disease nodes and PPR vector
scores. B(6) GPR vector scores of the top 10 disease nodes. B (7) Top
10 disease nodes with high PageRank.

the present study aimed to predict such links and provide
other raw representations of heterogeneous networks and
nodes (diseases and pathways). The theories proposed in the
present study considered disease and pathway relationships
on the basis of shared genes and pathway–pathway inter-
actions. Moreover, this study attempted to investigate the
authentic datasets for the disease–pathway network because
according to the existing research, pathway–pathway net-
works are constructed by utilizing GO datasets. This work
aimed to create a disease pathway network that relies on
diseases and pathway datasets only. The review of the litera-
ture shows that each disease has one pathway or occasionally

more than one pathway. Here, d denotes disease, d= {p1, p2,
p3, . . . . . . . . . pn}; p1, p2 denotes pathways; pn represents the
total number of pathway sets.

1) IMPLEMENTATION OF THE RWR ALGORITHM
The present study utilized the RWR algorithm, which is
widely used for link investigation and offers node-to-node
proximities in arbitrary types of graphs (networks). The
typical applications of the RWR algorithm include various
real-world graph mining tasks, such as personalized node
ranking, recommendations in graphs (e.g., ‘‘whom you may
know’’), and anomaly detection. Pyrwr aims to implement
algorithms for computing RWR scores that are based on
power iteration, which is achieved by using numpy and
scipy in Python. Pyrwr focuses on computing a single-source
RWR score vector w.r.t. a given query (seed) node, which is
used for personalized node ranking w.r.t. the querying node.
In addition to RWR, Pyrwr supports that computation of PPR
and PageRank, which are well-known variants of RWR.

The features of Pyrwr are given as follows:
Query-type features
• RWR: Personalized ranking; only a single seed is
allowed

• PPR: Personalized ranking; multiple seeds are allowed
• PageRank: Global ranking; all nodes are used as seeds

Graph-type features
• Unweighted/weighted graphs
• Directed graphs

In this study, we have implemented Random Walk-based
rankingmodels, such as PageRank andRWR, and attempted
to investigate real-world networks using these ranking mod-
els. The installation of Python modules required by this pack-
age is named as Pyrwr.

2) QUERY-TYPE FEATURE PARAMETERS OF RWR
The description of the query-type features of a RWR is
used for a single seed. This description computes a RWR
score vector w.r.t. the seed node given by seeds in the given
graph that is specified by the input-path and written as the
vector into the target file in the output-path. The query-
type specifies the type of query, i.e., a RWR query. The
seed should be int. Furthermore, the format of the file at the
input-graph should follow one of the input formats described
above, whereas r is a column vector (ndarray) with the RWR
score vector w.r.t. seed node. The shape of r is (n, 1), where
n denotes the number of nodes. The subjects of the present
study are based on the following formula, which contains the
input graph for the RWR score vector:

X = (1− C)∗ (A.dot (oldx))+
(
c∗q

)
(1)

This can be written as follows:

Xi+1 = (1− c)∗ A∗Xi +
(
c∗q

)
(2)

Equations 1 and 2 measure the RWR score vector w.r.t. the
seed node. This study computed the RWR score vector w.r.t.
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the seed node; input seed as int. c= 0.15 was denoted as the
float value for restart probability; epsilon= 1e-6was used for
error tolerance for power iteration. Then, max_iters = 100
was used as int type for the maximum number of iterations
for power iteration, that is, r ndarray RWR score vector.
We performed the row-normalization of the given matrix and
computed the row-normalized adjacency matrix by nA =
invD ∗ A. An adjacency matrix was used as an input matrix
(it should be row-normalized for RWR and its variants), with
q as node array shape into n∗n and X as the input graph.

3) QUERY-TYPE FEATURE PARAMETERS OF PPR
In this case, seeds are the list of seeds, and r is the PPR
score vector w.r.t. seeds. Notably, the PPR vector r is used to
obtain the personalized node ranking list, which is related to
all seeds in the seed list. In this study, PPR was divided into
personalized rankings, and multiple seeds were allowed. The
PPR was considered the personalized node ranking given as
follows:

r = ppr .compute (seeds, c, epsilon,max_iters) (3)

The PPR score vector w.r.t. the seed node was computed by
using the above equation.We identified key seeds as the (ppr)
file path of seeds(str) or list of seeds(list), where c is used as
a common query type of restart probability (rwr) or jumping
probability (otherwise). We computed epsilon, which is also
used as common query type as counted error tolerance for
power iteration. max-iters is the common query type used
for the maximum number of iterations for power iteration.

4) QUERY-TYPE FEATURE PARAMETERS OF pAGERANK
Notably, specification of seeds for PageRank was unneces-
sary because it is a global-ranking algorithm. Therefore, this
algorithm automatically sets the required seeds (i.e., all nodes
are used as seeds).

r = pagerank.compute (c, epsilon,max_iters) (4)

The above equation helps in the computation of the PageRank
score vector (global ranking). The present study used data,
which included several variables, to compute the pathway
rank or disease PageRank query. Hence, the specification of
seeds was not required. Dead-end nodes with an out-degree of
zero might exist in directed graphs. In this case, the original
power iteration, would incur leaked out scores. Thus, handle
dead-end exists for such an issue to handle dead-end nodes.
Handle dead-end can ensure that the sum of score vectors is
1.Otherwise, the sumwould be less than 1 in directed graphs.
The strategy exploited by Pyrwr is that whenever a random
surfer visits a dead-end node, it returns to a seed node (or one
of the seed nodes) and restarts.

C. LINK ANALYSIS AND PAGERANK METHOD
This study used the most common methods to analyze quali-
tative data and several techniques for graph link analysis. All
analyses were conducted by utilizing several link analyses

( or ranking) models, such as PageRank, topic-specific
PageRank, and hyperlink-induced topic search (HITS). The
present study mainly focused on the implementation of the
algorithms of these ranking models and the ranking of nodes
in real-world graphs using these models. In this section, dif-
ferent techniques for graph link analysis are presented. This
section contains different subsections, with each providing
a brief discussion of PageRank and HITS. The primary
purpose is to briefly explain the implementation of PageRank
based on the dense matrices obtained by using numpy in
Python. Then, PageRank implementation is verified.

1) REVIEW OF PAGERANK
The current section provides information on the present
hypothesis of PageRank and its equation, which is required
for the implementation of PageRank in Python. The mathe-
matical notations used for PageRank are given as follows:
Scalar: lower care and regular face (α, β and γ ) Set: upper

case and regular face (A,B and C) and Vector and matrix:
smaller case for vectors and upper case for matrices and bold
face (χ,A and γ ).
Aij(i, j)- th element of matrix A; Number domain: black-

board bold; R: the set of real numbers, Rn; n-dimensional
space in real numbers: set of n-dimensional vectors, i.e., χ ∈
Rn; Rn×m: n×m-dimensional space in real numbers; set of
n×m- dimensional vectors, i.e., A ∈ Rn×m, after presenting
the problem definition of PageRank.

2) MATHEMATICAL DEFINITION OF PAGERANK
Problem definition of PageRank:

Input: Adjacency matrix A = Rn×m of a graph, G= (V,
E) and teleport probability β.

V is the set of nodes.
E is the set of edges.
n is the number of nodes in the graph G, i.e., n = |V|.
m is the number of edges in the graph G, i.e., n = |E|.
Output: The PageRank score vector p ∈ Rn such that: The

Problem of PageRank is explored extensively in the literature.

P = (1 − β) A∼ P + βq (5)

The above equation is called the PageRank equation, and the
notations used in the PageRank equation are described below:
• A∼ is the matrix row-normalization adjacency matrix of
the graphG, i.e., the sum of each row ofA∼ should be 1.

q =
[
1
n

]
n

• n-dimensional vector whose entry is 1/n. This vector
is usually called as the query vector.....The PageRank
score of nodes u is denoted by Pu, which indicates the
importance of node u in graph G. The definitions of
the adjacency matrix A and row-normalized adjacency
matrix A∼ are given as follows:

• Definition of the adjacency matrix A for each edge
u−→v in E, Auv= 1. Otherwise, Auv= 0 (i.e., if no
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TABLE 3. Pseuudo-code of pagerank algorithm.

edge exists between two nodes, then, the value of the
adjacency matrix will be zero).

• Definition of the row-normalized adjacency matrix A∼.
For each edge:

u −→ vinE,Auv = Auv =
1
|ou|

, where,Auv = ou

is the set of out-neighbor of node u. Let D be a diago-
nal matrix where the uth diagonal entry is |Ou| (i.e., the
out-degree of node u). Then, the row-normalized adjacency
matrix A∼ can be obtained by using the following equation,
where D−1 is the inverse of D (i.e., the uth diagonal entry of
D−1 is |Ou|).

A∼D−1A (6)

3) ITERATIVE ALGORITHM FOR PAGERANK
The PageRank score vector P is obtained by iteratively
computing the PageRank equation. The pseudocode shown
in Table 3 represents the iterative algorithm for PageRank.

D. PATHWAY-PATHWAY NETWORK CONSTRUCTION
The correlation between two pathways was calculated to
evaluate shared genes [27]. We reviewed findings from recent
studies that included pathway data and the pathways associ-
ated with genes. Then, as shown in Figure 2 (Supplemen-
tary Note 4), we constructed a pathway–pathway network.
In the present study, each node of the constructed path-
way network represents a pathway, whereas edges represent
the genes. A positive correlation was obtained between the
pathway and genes. Two pathways are connected if they
involve the same genes. Figure 2 shows a part of the known
pathway–pathway association network (Supplementary Note
4). The blue rectangular nodes represent a pathway, whereas
black lines represent edges that are connected to pathway-to-
pathway nodes. We have used the input data in CSV format.
Then, we calculated the similarity from the pathway–pathway
network in accordance with the RWR score vector w.r.t the
pathway node relationship. The input path specifies the given

input graph, and the seed node or seed path node (specified
by the seeds) is used to write the vector in the target file in
the output path. The query type specifies the type of query,
for example, a RWR query. The specific formats of the input
and output files were further explained. In accordance with
the RWR method, the calculation started from the 0-initial
node. The pathway node sequence was then obtained through
the iterative calculation of the transfer matrix. The similarity
among node-to-node pathways was examined using mutual
information with the significant pair in the pathway–pathway
network. In the present study, the input was the similarity
matrix of nodes (between two networks). This technique
considers the pathway and disease data and the semantic
similarity between pathways. Thus, strategic avoidance from
the node was well maintained. We set P= {p1, p2, . . . .,
pn}, where the n node represents the pathway network.
N∗N represents the rows and column at the same dimension.
As per the similarity relationship between two pathways
nodes, the adjacency matrix A (i, j) can be defined as similar
matrix simpi,pj corresponding to a threshold θ , which is given
as follows:

A (i, j) =
{
1
0
ifsim (pi, pj) ≥θothers (7)

The analysis was based on the pathway set P,which indicates
the mutual information of pathways and diseases. The row
rank of pwas used as the starting point. The description states
that A is a symmetric matrix, and graph theory states that the
degree of the ith node is equal to the sum of the elements of
row i of the matrix:

Ai,j = a(i,j) = a(j,i) = Ai,j (8)

The pathway–pathway network information comprises nodes
and edges, which are utilized to deal with data analysis effec-
tively.

E. DD NETWORK CONSTRUCTION
The present study attempted to examine the relationship
between diseases and their associated genes, which were
obtained from CTD database benchmark datasets. A DD sim-
ilarity network based on shared genes was developed to iden-
tify every pair of diseases (Figure 3; Supplementary Note 4).
The similarity valuewas computed in accordancewith the rel-
evance of the shared gene. Then, we implemented the RWR
algorithm, calculated the disease seed node, and counted the
other approaches mentioned in the Results section. We used a
combination of qualitative and quantitative analysis tools for
graph network. Additionally, we used a new strategy with a
low calculation of association complexity. Hence, consider-
able time and vitality are required to manage the large-scale
real-world application of the proposed method. We investi-
gated the accessibility of this approach. We calculated the
features of known disease nodes and measured the shortest
path between two nodes.

We conducted an in-depth network graph-related litera-
ture review. Furthermore, we analyzed the disease network
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FIGURE 2. Disease-pathway association network model.

FIGURE 3. Disease-pathway heterogeneous network.

relationship and the connection between disease nodes and
edges in a DD network [28]. The undirected graph, where
G = (d, d), was considered. Here, d denotes the sets of
disease (nodes), and their connections or edges are based
on their similarity. The importance of closeness varies in
accordance with the information used to build the network,
which contains shared genes. The networks may be organic
(gene and proteins), phenotypic, or have similar symptoms.
Figure 3 shows a part of the known DD association network
(Supplementary Note 4). The red triangular nodes represent
diseases, whereas black lines represent the edges, which are
connected to the disease-to-disease nodes.

The DD similarity network contained 210 nodes repre-
senting diseases. The value of the edge between two nodes
indicates the similarity of two diseases. By performing the
‘‘group projection’’ of the DG association of the disease
pathway adjacency matrix, we obtained the DD similarity
network in the form of a DD graph. The equation behind the
group projection is shown below. The DD adjacency matrix
entries in the di (i, k) represent two kinds of disease and the
number of total gene between dk. If two diseases di and dk
share at least one gene, then we linked them to the DD graph.
The edge of the weight is the total number of genes.

DDik =
|g|∑
j=1

DGij DGkj => DDik (9)

F. DISEASE-PATHWAY ASSOCIATION NETWORK MODEL
A general consensus in the literature [20] supports the true
association scores for disease–pathways, as defined in their
proposed methods. Thomas Gaudelet at el. (2019) revealed
literature support for 7 out of the top 10 expected disease–
pathway associations. This research-intensive disease–
pathway association network, which is based on the RWRH
network, has led to renewed interest in RWRHPDA-
based heterogeneous networks. The RWRHPDA network is
developed with the help of a pathway–pathway similarity
network and DD similarity network by utilizing the disease–
pathway relationship and constructing a heterogeneous
network (Figure 4). The heterogeneous network is consid-
ered the depth of the disease–pathway association network.
In addition, the RWRHPDA simultaneously prioritizes the
pathway and disease candidates; this approach is highly
encouraged by the high PageRank model. The seed needs
(disease and pathway) are associated with the disease given a
query disease.Moreover, the top-ranked disease is considered
the most likely query disease. Figure 4 shows the disease–
pathway association network.

Random Walk clarifies the role of the transition of an
iterative walker from its present node to a randomly selected
neighbor. This transition starts at a given source node in the
network. The RWRH, on the other hand, allows the restart of
the walk at each time step at node vwith likelihood r. P0 is the
likelihood vector at step 0, demonstrating that it is the initial
likelihood vector with the sum of probabilities equivalent to 1.
P is the likelihood vector at step s, in which the ith component
holds the likelihood of finding the randomwalker of node i at
step s. The likelihood vector at step s+1 is given as follows:

ps+1 = (1− γ )MT ps + γ p0 (10)

where M is the transformation matrix of the heterogeneous
network, Mijis the transformation likelihood from node i to
node j, and γ ∈(0,1) is the restart likelihood in each time
step. After several iterations, P∞ reaches a steady-state that
is obtained by performing the emphasis until the change
between Ps and Ps+1 falls beneath 10−10. Here, P∞ is the
measure of seed node closure. In vector, the node is more
likely to be a seed node rather than the j node when (i)>
P∞ (j). Here, M is the transition matrix of the heterogeneous
system, and it comprises four subnetworks, as shown below:

M =
[
MP MPd
MDp MD

]
(11)

where Mp is the transition matrix of the pathway–pathway
interaction network. This matrix determines the effect of
the subnetwork of the heterogeneous network. The transition
matrix of the DD interaction network is denoted by Md,
which determines the effect of the subnetworks of the het-
erogeneous network. MDp and MPd, on the other hand,
denote the transition matrixes’ subnetworks. The inverse
remains the same when γ is assumed as the likelihood
of jumping from the pathway–pathway network to the DD
network.
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FIGURE 4. ROC–AUC score and PR curve. (a) AUC score of RWRHPDA and
PR checking performance metric with computational methods for DPAN
as shown in (b).

In the pathway–pathway network, γ= 0 if a node is not
associated with the disease. Moreover, a node will jump to
the disease network with the RWR vector score probability γ
when a node is directly connected to the disease phenotype
network. The node will jump to the other nodes present in the
disease–pathway association network with 1−γ as the vector
score probability. Therefore, the likelihood of transition from
di to pj can be denoted as follows:

(MDP) ij

= p
(
Pj|Di

)
D =

{
λβij∑
j
Bji0

if
∑
j

Bij 6= 0, otherwise

(12)

In the same manner, the probability of transition from Di to
gi can be denoted as follows:

(MPD) i, j

= p
(
Dj|Pi

)
D =

{
λβji∑
j Bji0

if
∑
j

Bji 6= 0, otherwise

(13)

whereM is the transition matrix of the heterogeneous system.
A part of the known disease–pathway association network
is shown in Figure 5, where red and blue nodes represent
diseases and pathways, respectively.

FIGURE 5. (a) Our proposed model RWRHPDA prediction score (ROC–AUC
= 0.82) and checking of performance metric compared with other
computational methods (b), including MERWPDA, GRMF, and RWRHPDA.

FIGURE 6. ROC–AUC score and PR curve. (a) AUC score of RWRHPDA and
PR checking performance metric with computational methods for DPAN
as shown in (b).

III. RESULTS
A. PERFORMANCE EVALUATION OF RWRHPDA
The predictions, execution, and evaluation of the algorithm
are discussed in this section. As mentioned, similar to the
estimation of the performance of other computational vali-
dation models, we estimated the performance of our strategy
by using a receiver operating characteristic (ROC) and area
under curve (AUC). ROC–AUC scores and precision–recall
(PR) curves are shown in Figures 6(a) and 6(b), respectively.

Our results might suggest a connection between cancer
pathway and disease cancer pathway. The article demon-
strates potential disease-pathways association predictions.
Our research uses quantitative techniques to analyze under-
standing of disease associations.We conducted all analyses of
our proposedmethod on threemajor works, RWR and PageR-
ank and RWRH to predict the disease pathways and identify
potentially new disease-pathway associations. We have pre-
dicted 13,838 know disease–pathway associations.

The estimation algorithm is described as follows. First,
we measured the association between disease and path-
way (N ) pairs from the bipartite network. Subsequently,
these sets were predicted by the algorithm in the score
matrix. We conducted all analyses using leave-one-out cross-
validation (LOOCV) by selecting one sample as test data
and other remaining data as training data. The number of
data points included 1855 pathways associated with 211 dis-
eases and 13,838 disease–pathway known associations. Then,
we ran the LOOCV experiment 13,838 times. In every round,
we defined disease/pathway in accordancewith known exper-
imentally verified disease–pathway associations. Unknown
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association data were used as the test sample. However,
the association of the remaining known diseases with a
pathway should be used as a training sample. Predictions
could be obtained when executing RWR with LOOCV. Con-
tent analysis was performed to determine when a LOOCV
experiment was implemented. Each experimentally verified
disease–pathway association was removed from our gold
standard dataset. In the ROC curves, also known as sensi-
tivity curves, false and actual positive rates are used as the
horizontal and vertical axes, respectively. The predicted data,
which were based on several variables, were used in the ROC
metric to assess the AUC score. The ROC curve has the actual
true positive rate (TPR) on the Y-axis and the false-positive
rate (FPR) on the X-axis. This study used true data, which
were predicted by using all of the data points of these curves.
We implemented the sklearn package to measure the average
precision score. Finally, the actual TPR and FPR of each
threshold can be calculated as follows:

TPR =
TP

TP+ FN
(14)

FPR =
FP

FP+ TN
(15)

where TP and TN demonstrate the numbers of true positive
case and negative samples that can be correctly recognized,
respectively. FP and FN represent the numbers of positive
and negative samples that cannot be correctly identified,
respectively. Perfect performance occurs atAUC= 1 and ran-
dom performance at AUC = 0.5. Additional variables were
derived through another increasingly popular method, the PR
curve PR. The data provided convincing evidence, which
was also considered a broad conceptual basis for evaluating
classification performance. The PR curve relates the positive
predicted cases of the classifier to the true positive ratio and is
particularly useful in applications with a small total number
of positive cases. Different PR pairs can be found by setting
different thresholds. The following pipelines can be used to
calculate precision and recall rate:

Precision =
TP

TP+ FP
(16)

Recall =
TP

TP+ FN
(17)

where TP represents the number of true positive samples
identified. FP and FN demonstrate the number of negative
samples that were incorrectly labeled as negative samples.
According to our prediction results, the ROC (AUC= 0.818)
confirmed the superior performance of our method shown
in Figure 7(a). Our findings suggest the need for a perfor-
mance that is better than that of other methods, such as maxi-
mum entropy random walk on the heterogeneous network for
the prediction of disease–pathway association (MERWPDA).
The maximum entropy theory was applied to a random walk,
and the potential disease–pathway association on the het-
erogeneous network was revealed. Graph-regularized matrix
factorization (GRMF) for disease–pathway association pre-
diction and MERWPDA were used as comparison methods

FIGURE 7. (a) Our proposed model RWRHPDA prediction score
(ROC−AUC=0.82) and checking of performance metric compared with
other computational methods (b), including MERWPDA, GRMF, and
RWRHPDA.

TABLE 4. Calculation of metrics R2.

to verify the effectiveness of our approach. Figure 7(b) shows
the comparison results of RWRHPDA, MERWMDA [29],
and GRMF [30] in terms of ROC (AUC). ROC and PR curves
were drawn to evaluate the effectiveness of our approach.

B. CROSS-VALIDATION CALCULATION R2 FOR (LOOCV)
We conducted all analyses using true and predicted data for
the calculation of metrics (R2 in particular). LOOCV was
performed on the basis of the sklearn model selection cross-
validation score (model, X, y, scoring= ’r2’). This approach
aims to utilize cross-validation to obtain the generalized score
of the model to improve its effective prediction from future
data inputs. The percentages of cross-validation accessed new
data, and a part of them can be used for testing on ‘‘test’’ data
while utilizing the remaining data to assemble the model’s
‘‘training’’ data. The R2, mean square error (MSE), accuracy
score, and other metrics of the model can be calculated as
shown in Table 4.

C. PERFORMANCE EVALUATION OF RWR, PPR, PGR AND
PAGE RANK
Result analysis was based on three stages. The data were ana-
lyzed using RWR method on the pathway–pathway network.
The RWR score vector w.r.t. pathway seed node, top 10 seed
pathway nodes, and the list of near-neighbor pathway nodes
were calculated. As shown in Figure 8 (Supplementary Note
5), the data were analyzed using different approaches, such as
RWR, PPR,GPR, and PageRank. Figure 8(a) (Supplementary
Note 5) shows a graphic summary of the pathway RWR vec-
tor score. The horizontal axis describes the pathway number
nodes, whereas the vertical axis highlights the RWR vector
score probability (0.150100461). Figure 8(b) (Supplementary
Note S5) presents the description of pathway PPR vector
score. The horizontal axis describes the pathway number
nodes, whereas the vertical axis highlights the pathway, with
the PPR vector score probability of 0.150100461. Figure 8(c)
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(Supplementary Note 5) shows the description of pathway
GPR vector score. The horizontal axis describes the pathway
number nodes, whereas the vertical axis highlights the path-
way with the GPR vector score probability of 0.002994948.
Figure 8(d) (Supplementary Note 5) presents the graphic
summary of pathway change in residuals from PageRank.
The horizontal axis describes the iterations, whereas the
vertical axis highlights the residual ratio. We stored iter-
ate_PageRank, which indicates the difference between the
current PageRank score vector, in residuals. We plotted the
residuals and checked the tendency of the residuals over the
iterations.

D. RESULT ANALYSIS BASED ON RWR, PPR, PGR AND
PAGERANK
The analysis was conducted based on RWR, PPR, and PageR-
ank. The RWR method outperformed the score vector on the
basis of the power iteration of the walker transition from
a given source node input graph. The results were used to
calculate the query (seed) pathway nodes provided by the
single-source RWR score vector.We first calculated the RWR
seed pathway nodes, which had additional connections. The
input similarity network was constructed using the RWR
score vector, similar to the variance used in the pathway–
pathway network. Table S1 shows the results of the seed
pathway node, that is, the pathway seed node. Then, we set
up the neighborhood node representing the pathway closest to
the seed pathway. Table S2 lists the nearest neighbors of the
seed pathway nodes. Table S3 provides the list of top 10 seed
pathway nodes. Additional results on the pathway of the top
10 nodes showed high-probability pathway node RWR score
vector toward the scale (Table S4; Supplementary Note 1).
Next, we calculated the PPR seed vector fractionw.r.t the seed
pathway. The results obtained by PPR were consistent with
our findings in Table S5 (Supplementary Note 1). The results
showed that personalized pathway node ranking vector score
was associated with all seeds in the pathways (Table S5)
and the top 10 seed pathway nodes (Supplementary Note 1).
Then, we calculated the rank node pathway, which is a well-
known variation of RWR. We ranked candidate pathways
based on the near neighbor nodes. PageRank is an essential
mathematical formulation algorithm for biological networks
and applied to random walk formula. We used PageRank in
the graph of the pathway–pathway network. We analyzed
the relationship between the pathway nodes and edges of
the graph. As shown in Table S6, a considerable diversity
was present in the pathway–pathway network nodes with
significant variation. The result of the global rank score vector
presented the top 10 pathway nodes (Supplementary Note 1).

The data were analyzed using different methods of the
link analysis (or ranking) model, such as PageRank, subject-
specific PageRank, and HITS. Given that PageRank is a
global ranking, seed specification is unnecessary. PageR-
ank automatically sets the desired seed pathway (that is,
all nodes will be used as seeds). GPR vector r was used
to obtain personalized pathway node ranking. As shown

in Table S6, PageRank was used to obtain the results of
the top 10 nodes and labels from the graph, whereas other
variables were obtained from the numbers of nodes (n: 1
855) and edges (m: 20 527). Then, the pathway–pathway
network of the row-normalized pathway PageRank of the
given adjacency matrix was obtained (Table S7). PageRank
score vector P was obtained by calculating the PageRank
algorithm. Table S8 shows the top 10 PageRank scores from
each node of the pathway–pathway network. The graphs sug-
gest that the PageRank score was calculated directly without
iteration. We inversed the matrix to obtain the exact solution.
Table S9 shows the PageRank scores of the precise and itera-
tive operations of the pathway–pathway network. In contrast
to our expectations, PageRank scored the ranking results.
We implemented the function rank node to rank the nodes
in the order of a given rank score. Table S10 shows the top
10 highest PageRank pathway node scores (Supplementary
Note 1).

Considerable research attention has been directed toward
the prediction of novel disease-associated genes by the fol-
lowing main directions: (1) according to biological network,
(2) functional annotation, and (3) machine learning. A com-
putational method has been proposed to predict such associa-
tions by ranking candidate diseases based on their association
with diseases. Network-based approaches are dominating
because they use ‘‘disease module’’ principle in DD similar-
ity networks. Results were obtained using RWR, PPR, and
PageRank implemented in the DD network. The application
of the PageRank model to DD networks was consistent with
our findings. Table S11 shows the results of the DD networks
used to compute the variance of a single-source RWR score
vector w.r.t. with a given query (seed) disease node (Supple-
mentary Note 2). Second, we set up near neighbor nodes to
indicate the disease closest to seed disease (Table S12). Then,
we calculated the top 10 seed disease nodes (Table S13).
Table S14 presents the RWR vector scores for the DD net-
work for the top 10 disease nodes (Supplementary Note 2).

Meanwhile, our PPR score was reasonable in terms of sta-
tistical and probabilistic measures on the basis of technology
that prioritized related diseases in the network (Table S15).
Additional findings support these conclusions (personalized
ranking). Multiple seed disease was allowed. Therefore,
we used other network-based ranking technologies, such as
global ranking, to calculate the scores rather than GPR.
PageRank is a global ranking. Thus, this algorithm automat-
ically sets the desired seed (that is, all nodes were used as
seeds), as shown in Table S16 (Supplementary Note 2). The
global ranking methods that model information flow to assess
the proximity and connectivity between disease nodes, e.g.,
with a priori PageRank, were used in our calculations. Our
method with these ranking approaches performed better than
the approach based on localized methods. We implemented
the dense matrix version of PageRank, with the input graph
network number (n) of nodes set to 210 and the number (m)
of edges equal to 4398. Table S17 shows the number of the
listed disease nodes and edges of the DD network. Then,
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we normalized the given adjacencymatrix fromDD networks
(Table S18). A further complication for the presented result
was that it implemented the iterative algorithm for PageRank
(Table S19). The analysis of results consisted of the exact
PageRank score vector and its stages. We implemented a
function for ranking nodes in the order of PageRank scores
and results of exact and iterative disease PageRank score
vector (Table S20; Supplementary Note 2). Table S21 shows
the presented results of disease rank node which were used
to rank nodes in the order of given ranking scores and top
10 disease ranking score in the order of PageRank scores
(Supplementary Note 2).

We mainly focused on the algorithms of the models and
how they are used to rank nodes in real-world graphs.
We implemented PageRank in Python. First, we calculated
PageRank through a dense matrix. In this study, input graph
adjacency matrix was adopted, and data rows were normal-
ized by row normalization adjacencymatrixA. Table S22 lists
the normalized data used in the formula for the row-
normalized matrix A (Supplementary Note 3). We obtained
the out-degree vector d by row-wise summation and obtained
the inverse of the out-degree matrix score (Table S23). The
results were considered iterative algorithm on the basis of
PageRank. We used the function iterative PageRank and
obtained the PageRank score vectors of the top 20 dis-
ease pathways (Table S24; Supplementary Note 3). The
results of computed PageRank on the basis of the itera-
tive solution were equal to the exact solution of PageRank
(Table S25). Table S25 shows the top 20 disease pathway
exact scores and iterative score vector (Supplementary Note
3). Finally, we achieved the PageRank scores from the func-
tion. Table S26 presents the top 10 disease pathways and
top 10 highest page rank scores in the graph (Supplementary
Note 3).

IV. CASE STUDIES
The KEGG [31] and Reactome [32], [33] pathway data were
used to explain the known molecules associated with the
network. These data, combined with the diseases, pathways,
chemicals, and genes in the CTD database [34], provide
insights into the molecular systems that may be affected by
the underlying mechanisms of chemical and environmental
diseases. CTD database and associated gene can be used to
cure the disease, in accordance with the KEGG and Reactome
pathways, on the basis of the total shared genes. The reports
described the diseases that are associated with the human
pathway theme and genes that are related to these pathways.

Human pathways are located in cancer-related regions
of the genome, many of which are involved in the devel-
opment of various human malignancies [35]. For example,
MESH:C535334 is associated with ABCD syndrome gene
and causes diseases, including albinism, black locks, cell
migration disorders of the gut nerve cells, and deafness.
KEGG:hsa05219 pathway is a genetic signature with dis-
ease prediction in bladder cancer and other cancer pathways
observed in KEGG:hsa05200 [36]. Signaling pathways asso-

TABLE 5. 25 Potential disease-pathway association predicted result and
their evidence.

ciated with hepatocellular carcinoma cancer disease pathway
KEGG:hsa05225 are a central carbon metabolism in hepato-
cellular carcinoma and human hepatoma HepG2 cells, which
are depleted in macroH2A1. KEGG pathway:hsa05210 (i.e.,
colorectal cancer (CRC)). In the present study, the pathway
involved in bladder cancer hsa05219 [37] from the KEGG
pathway database was selected. To evaluate the efficacy of
RWRMDA on independent datasets, we conducted a case
study of three cancers, that is, bladder cancer, CRC, and lung
cancer. Various databases and literature verified the predicted
results.

Cancer pathway is one of the most common cancers in
humans, accounting for 22% of all cancers in women. In this
study, which used benchmark datasets, 98 pathways were
associated with human disease. The priority of candidate
pathways on the basis of RWRHPDA was determined. Data
points were used in 386 KEGG pathways, 1469 Reactome
pathways, and 210 diseases. A total of 389550 confirmed
predictions were obtained using MeSH or OMIM, whereas
CTD has been updated several times since the link between
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disease and pathway was downloaded in December 2019.
Table 5 lists the evidence for 25 diseases and their associa-
tions with human pathways in cancer. In total, 98% of those
predictions were correct. As shown in Table 5, we imple-
mented RWRPDA for disease–pathway cancers containing a
specific human pathway. RWRHPDA method can be utilized
to predict dysregulated interactions and disease-associated
pathways. Our method was used to inspect the variables
associated with various diseases and predict the potential
related pathways. We also conducted a case study of the
first pattern, with cancer and reaction pathways related to a
specific type of pathways used as the training sample. Then,
unknown associations between cancer were observed as a test
sample. For RWRHPDAprediction, records in theKEGG and
CTD databases confirmed and identified potentially specific
types of pathways in 24 cancer-related human pathways.
Table 5 shows the pathway–pathway network analysis results
of 24 human disease pathways, which are primary cancers
pathways. Considering space limitations, we focused on the
results of specific cancer types. The cancer enrichment path-
way aims to investigate the function of particular types of
known cancer-related pathways in cancer. The prediction of
potential pathways confirmed the rationality of RWRHPDA
because the functions of the possible cancer-related path-
ways are related to cancer development. We used quantita-
tive techniques to analyze the disease associations. We also
analyzed the relationship between diseases and pathways, and
the results can be used to distinguish the dysregulated connec-
tions and disease-related pathways. We prioritized candidate
disease genes and categorized pathways.

A new bidirectional network of diseases, pathways, and
genetic associations was revealed. Our results provide strong
evidence for the association of these variables in a number of
ways using RWR and RWRH calculations (see Methods for
additional information).

Computational methods have been used to examine the
mechanisms of dysregulation in complex pathways, iden-
tify disease associations, and improve treatment. However,
given the heterogeneity of the samples and patients, obtain-
ing biological insights from conventional, single-gene-based
analyses of the ‘‘omics’’ data from high-throughput trials
is challenging. Overall, these studies support the effective-
ness of the challenges and have developed new ways and
network-based approaches to analyze the comprehensive
data ‘‘based on the biological pathways,’’ such as KEGG
human pathways, Reactome human pathways, WikiPath-
ways, classification of diseases, gene expression, pathway
enrichment analysis of GWAS, and biological networks.
Our findings were based on the development of pathway-
based methodologies for the prediction of novel interactions
and heterogeneous networks of disease-related pathways.
We encourage further research to examine whether these
models can provide reasonable predictions for the majority of
patients. We predicted novel associations, verified the com-
parison of the pathway–pathway, DD, disease–pathway, and
known interactions and proposed explanations for the novel

predictions from our study. We have described the disease–
pathway association score in accordance with our method and
tested the validity of our prediction by comparing the result
with the CTD database. The first association and pathway
in cancer, that is, in Homo sapiens, may also be correct.
Lactose synthesis pathway (hsa05200) contains the follow-
ing genes: BAX, BDKRB2, EGFR, GSK3B, GSTP1, IGF1,
IL6, NFKB1, NOS2, PPARG, TGFB1, TP53, and VEGFA.
All these genes may be involved in cancer disease-related
pathway.

Cancer pathways include genes, proteins, and their com-
plex interactions. The findings suggest that cancer drugswork
on only a part of a particular pathway, and the direction where
the entire pathway will evolve, or whether the treatment will
be beneficial is unknown. The possible reason for this dis-
crepancy may explain why cancer pathways have not met our
expectations. The possible explanation for this finding was
the effectivity of anticancer therapy. Thus, the effect of drugs
on the entire cancer pathway should be considered. Over the
past decade, imperative genes responsible for the develop-
ment of various cancers have been revealed, their mutations
have been accurately identified, and their pathways have been
described. To test our hypothesis, we built a computational
model of the cancer pathway and ran it on a supercomputer.
RWRHPDA transformed the predictive association scores of
the mammalian target of rapamycin signaling pathway, Notch
signaling pathway, peroxisome proliferator-activated recep-
tor signaling pathway, focal adhesion, and cAMP signaling
pathway, which have been confirmed by KEGG. Finally,
we compared the calculated results with the experimental
findings of the existing and proposedmethods. The calculated
efficacy of the cancer disease-related pathway was 82.18%.

The results analysis was based on three stages. The data
were analyzed using the RWR method used on the pathway–
pathway network, and the RWR score vector w.r.t. pathway
seed node, top 10 seed pathway nodes, and the list of near
neighbors (181 mm/43 picas). The maximum depth can reach
8.5 in (216 mm/54 picas). In the depth selection for a graphic,
a space for a caption should be allowed. Figure size can be
between column and page widths if the author intends to.
However, as recommended, the figures should not be less
than column width unless necessary. Cancer pathway was
used in the first case study with a similar pipeline to CRC.
For the first 20 different types of cancer, that is, cancer-
related disease pathways for specific pathways predicted by
RWRHPDA, the evidence recorded in the KEGG pathway
database also confirmed the 20 different types of pathways
(Table 6). Research on the pathway (KEGG:hsa05210) is
limited. The majority of work in this field focused on the
mechanism of genomic instability, which has been identified
in sporadic CRC advances. CRC is the third most com-
mon cancer worldwide, and more than half of CRC deaths
occur in developed countries. Studies showing that epithelial
cells in the large intestine result from the accumulation of
genetic changes in specific oncogenes and the information
on tumor suppressor genes are limited. Limited studies have
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TABLE 6. 20-Pathway and their evidence from KEGG database.

also been conducted on (KEGG: hsa_M00001) glycolysis–
Embden/Meyerhof/Parnas pathways. Previous studies pri-
marily overlooked glycolysis as a metabolic pathway that is
commonly found in biological systems. Most studies focused
on glucose metabolic energy from the entry of pyruvate
into the citric acid cycle and oxidative phosphorylation. The
research on glycolysis is limited. Core module is involved in
three-carbon compounds. In the present study, we attempted
to establish a link between Embden–Meyerhof pathway and
KEGG module:hsa_M00002.

This paper provides the key factors that influence gly-
colysis and a metabolic pathway that is generally present
in biological networks. Many researchers converted glucose
into two pyruvate molecules in a series of reactions. These
pathways occur under aerobic conditions. Under anaero-
bic conditions, pyruvate can be converted to lactic acid in
muscles or ethanol in yeast. Empirical evidence appeared
to support the following view: (REACT: R-HSA-1059683)
IL-6 signaling is a pleiotropic cytokine that plays a role
in immune regulation, hematopoiesis, inflammation, tumori-
genesis, metabolic control, and sleep. Trans-signaling path-
way is responsible for the proinflammatory activity of Il-6,
whereas membrane-bound receptors control the regeneration
and anti-inflammatory activity of IL-6, and IL-6R signal
transduction is mediated by the Janus family tyrosine kinase

TABLE 7. 12- Pathways and their evidence from the reactome database.

signaling and transcription-activated pathway of transcription
and Ras-mitogen-activated protein kinase (MAPK) pathway.
In the present study, we checked whether Reactome has a
human pathway and conducted two experiments, namely,
RWR and RWRHPDA.

These pathways have been established through decades
of molecular biology research and have been validated
in the following URL in various regular pathway repos-
itories (KEGG and REACTIOME pathway repositories):
https://reactome.org/download/current/ReactomePathways.
txt. These pathways have been also been established from
ctdbase.org (Table 7).

Many scholars provided empirical evidence to support
(R-HSA-109581) the claim of apoptotic Homo sapiens.
Apoptosis is a unique form of cell death that differs from
necrosis in terms of function and morphology. Apoptosis is
commonly characterized by nuclear chromatin concentration,
cytoplasmic contraction, endoplasmic reticulum, and mem-
brane blebbing. In various nonimmune cells, death signals
initiated by extrinsic pathways are amplified by connec-
tions to internal pathways. The widely accepted hypothe-
sis (R-HSA-109582) is that hemostasis is a physiological
response that eventually stops the bleeding of injured vessels.
Under normal circumstances, the vascular endothelium sup-
ports vasodilation, inhibits platelet adhesion and activation,
inhibits coagulation, enhances fibrin lysis, and performs anti-
inflammatory action. In the present study, we used qualita-
tive/quantitative techniques to analyze the disease dataset,
which was validated through the Mesh and OMIM websites
(Table 8).

The similarity between two disease-paired entities was
calculated based on the DD similarity network. Thus, dis-
ease association analysis is essential for our understanding
of the human disease pathways. We constructed a cellular
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TABLE 8. 20- Disease datasets confirm verified from MESH & OMIM.

network on the basis of genetics, using common physiology
and pathophysiology to analyze the relationship between the
disease and pathway. Infections are often linked to the web
search for common causes common to similar diseases. Sev-
eral disease nodes join diseases together on the basis of their
genetic overlap. Meanwhile, DD similarities that are easily
detected at the molecular level rather than at the phenotypic
level will be missed. Other researchers have attempted to find
genetic overlap between diseases. If the disease overlaps with
disease genes, then they will link together [38] or link with
metabolites or biological pathways [39].

After verifying the accuracy of RWRHPDA with ROC-
AUC and case studies on specific types of human cancer
pathways, we further predicted novel diseases associatedwith
multiple pathways.

Here, all known disease-related pathways in the baseline
data were used as seed pathways. For all 210 diseases, the top
20 potential pathways were published to facilitate the dis-
covery of human disease and pathway associations. This
article outlined the first 24 major pathways that are associated
with cancer, as described above. The potential diseases pre-
dicted by RWRHPDA concerning other pathways will also
be confirmed through further experiments and attention to the
disease.

This study combined computational and quantitative tools.
We checked the limitations to RWRHPDA. First, although
RWRHPDA can predict the data at hand in seconds, the size
of the heterogeneous network can affect the model speed.
Therefore, if the number of diseases and pathways inves-

TABLE 9. Disease associated with a large number of pathways.

tigated is large, then the efficiency of the model will be
affected to an extent. Second, RWRHPDA cannot be con-
ducted on a weighted biological network. This shortage is
due to the original construction of RWRH. Third, although
nodes are assigned to different markers as diseases or path-
ways in the constructed heterogeneous network, edges cor-
responding to varying relationships between nodes are not
distinguished. Therefore, further research should focus on
how to apply RWRH to multisource biological datasets in
a feasible pipeline, regardless of the use of edge-coloring
methods.

After confirming the efficacy of RWRHPDA against
LOOCV validation, to further validate our method’s ability to
predict new disease-pathway indications, all known disease-
pathway pairs in the standard gold data set were used as
training sets, and the remaining unknown disease-pathway
pairs were considered candidate associations. By applying
RWRHPDA, we were able to obtain predictive scores for all
pathway candidate - disease associations. For specific path-
ways, all candidate diseases were ranked according to their
predicted scores, and we collected the association between
the predicted disease and pathway in the top 24 pathways as
the predicted results. For all approaches, the predicted results
are listed in (see Supplementary Note 1).

We conducted case studies on the highest-ranking pre-
dicted diseases on the basis of the KEGG pathway database
of public biological [40] and current methods to verify
the correctness of predicted results. In the KEGG pathway
database, several newly validated diseases–pathway pairs
provided basis for our validation. For example, we selected
several pathways and the corresponding first five can-
didate diseases (Supplementary Note 1). Several novel
disease–pathway pairs were identified in the KEGG pathway
database. RWR method has been predicted as potential dis-
ease path-associated cancer. This method has been verified
in RWR or the KEGG pathway database. These successful
case studies showed that our proposed approach can predict
new disease–pathway associations. A possible interpretation
of this finding was that the types of diseases are associated
with a large number of pathways (Table 9).
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V. FUTURE DIRECTION
We also explored the limitations of these models and dis-
cussed how computer models for human pathway research
may be established in the future. However, we cannot per-
form wet experiments to validate the forecasts due to the
limitations of laboratory conditions. Hence, the tests must
be followed up in the future under laboratory conditions.
In additional notes, we present the prediction results. The
mechanisms of cancers are one of the most widely rec-
ognized organizational concepts for cancer research. miR-
NAs and illnesses have certain associations [41]. Several
researchers have studied the nature of biological experiments,
which are effectively complemented by computational meth-
ods in predicting the possible relationship between miRNA
and diseases. Xing Chen Chen et al. established a novel
inductive matrix completion model (miRNA-disease associ-
ation prediction [IMCMDA]) [41]. Two databases have been
reviewed for the miRNA forecast for certain diseases. The
study of possible miRNA disease prediction will help in
identifying disease pathogenesis and facilitate clinical treat-
ment. Researchers also developed an inductive matrix com-
pletion model for IMCMDA [41]. Drug-target association
recognition is an important research process. Although high-
performance testing and other biomedical tests are possi-
ble, experimental methods for the detection of drug/target
interactions are still extremely expensive and challenging
at present. Therefore, various models for the calculation
of potential drug–target associations have been developed
on a large scale. Researchers implemented several modern
computational models, including a network-based approach
and machine-based learning system, to predict drug–target
interactions. In the machine-based learning process, special
attention was paid to supervised and semi-supervised mod-
els with significant differences in the acceptance of nega-
tive samples. Although significant improvements have been
reached in the study of drug–target interactions with effec-
tive computational models, network- and machine-learning
methods have their own limitations. Network is an important
way to predict underlying drug interactions [42]. We are also
investigating the future directions of a network-based path-
way and network strategy for custom pathways on the basis of
personalized medicine, genome sequence, clone tumor, and
cancermarkings. Drug combinations are effective approaches
to resolve the resistance to fungal drugs and fight against
complex diseases. The NLLSS project was developed to
predict the possible combinations of synergistic drugs by
incorporating well-known combinations of synergistic drugs,
unknown pharmaceutical combinations, pharmaceutical tar-
get interactions, and large-scale chemical structures. This
project promoted NLLSS, which often appears identical to
adjoining medicines and vice versa, as a key medication with
a synergistic effect. In the identification of potential synergis-
tic combinations of drugs, NLLSS proved to be outstanding
through cross-validations and experimental validations. Out
of the 13 predicted antipilling synergistic drug combinations,

7 candidates were experimentally tested. NLLSS can develop
a new method to identify potential synergistic drug com-
binations, discover new indices for existing medicines, and
provide insights into the synergistic mechanisms of drug syn-
ergies underlying molecular mechanisms. Previous studies
on synergistic drug combinations can be categorized into
three categories. When describing synergy to decide whether
the combined drug is synergistic, only synergistic combi-
nation experiments are performed, whereas only statistical
estimates are conducted to provide synergistic combinations.
For example, methods, such as combined index equations,
Loewe additive model, HAS models, and a general approach
to the universal reaction surface [43], define only the concept
of synergy. In recent decades, lncRNAs have attracted the
attention of researchers worldwide. In the last couple of years,
thousands of lncRNAs over eukaryotic organisms lain out
from humans were identified with the speedy development
in experimental technology and computational algorithms.
Research indicated that lncRNAs also play a significant role
in several essential biological processes in nearly the entire
cell cycle through various mechanisms. Therefore, lncRNAs
are mutated and dysregulated to develop different complex
human diseases.

In the present study, several lncRNAs that are related to
human diseases have been experimentally identified. Thus,
the study and prediction of the potential human interac-
tions of lncRNA–disease and prediction of human lncRNA–
diseases have become significant bioinformatic tasks that
would support the mechanism for understanding complex
human disease systems at the lncRNA level, biomarker–
disease identification, and disease detection, treatment, prog-
nosis, and prevention [44]. New methods and strategies have
been developed to combine different data from ‘‘omics,’’ such
as gene expression, alteration of number replication, GWAS,
and interaction data, to address these challenges. Recent
methodological advances will be discussed in this analysis for
pathways to identify dysregulated interactions, correlate sub-
networks with diseases, prioritize candidate genes, and clas-
sify illnesses. We will also address the related problems and
possible future directions for each program. Challenges in
determining disease-related pathways are the absence of com-
plete and precise human interactions, inadequate understand-
ing of biological processes and the role of human genome
intergenic regions, and lack of complete set of epigenetic
data.

VI. DISCUSSION
RWR: To achieve the transition matrix, we used two tech-
niques, namely, the traditional method and transition matrix
estimation via the Laplacian concept of normalization. RWR
is an algorithm of ranking [15] used for the prioritization of
candidate genes in a previous work [45]. RWR assumes a
random walker that starts at a seed node or at a setting of
seed nodes and jumps to their near neighbors or reverts to
the seed nodes at every stage randomly. The probability of
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the random walker that reaches the corresponding node can
be calculated for all nodes in the graph. RWR gives a good
significance score in weighted graphs between two nodes
and has been used successfully in configurations, including
automated image subtitling, ‘‘connection subgraph’’ general-
izations, and PPR. At present, several quantitative biological
methods provide new and efficient resources to recognize
the associations between miRNA and disease, lncRNA and
disease, disease and pathways, and microbes and diseases.
Extensive RWR approach was used to obtain the potential
relationship between microbes and disease. In this research,
we proposed the heterogeneous linked network of the human
microbe–disease associations as the latest calculation model
of expanded random walking with restarting optimized by
particle swarm optimization [38]. Different random walking
approaches have been used to determine the likelihood of
the interaction between the predicted microbes and diseases.
On the basis of a classic random walk with heterogeneous
Spearman correlation parameters, Shen et al. [46] derived
a priority method for the prediction of disease–microbe asso-
ciations for candidate microbes. Zou et al. [47] developed a
calculation model to predict a birandom walk on a hetero-
geneous network. Different predictive models are expected
to enhance the identification of novel associations between
microbes and diseases.

VII. CONCLUSION
We proposed a novel method that can be used to deter-
mine whether targeted disease–pathway associations can
be determined through gene-related pathways, integrating
genetic and natural relationships to characterize disease-
related goals. The effective screening of environmental
factors was also considered because screening can help in set-
ting important pathways, which will further provide research
guidance on human diseases and health issues. Several find-
ings of this study warrant further discussion on several areas,
such as diseases, pathways, genes, and chemical associa-
tions within graph networks. Overall, the findings of this
study will support the validity of disease–pathway associ-
ations. Disease–pathway association network is an impor-
tant area of biomedical research. However, the information
about pathways is relatively limited. In bioinformatics, cru-
cial questions remain unanswered for human disease path-
way associations. In this study, a positive association was
obtained between human disease pathways by the algorithm
of our proposed method (RWRHPDA) to determine the
relationship between cancers and pathways. We connected
the pathway–pathway and DD networks by disease–pathway
association and constructed a heterogeneous network. This
method has limitations that should be improved in future
research. We conducted all analyses of our proposed method
using three major networks, namely, RWR, PageRank, and
RWRH, to predict disease pathways and identify potentially
new disease–pathway associations. The algorithms included
RWR algorithm which works on pathway–pathway network,
RWR which was applied on DD network, and heterogeneous

network for disease–pathway association network. A number
of studies have focused on the interactions between disease–
pathway and DG associations to modify diagnosis. Several
findings of the present study, such as the data of KEGG and
Reactome pathways describing knownmolecular interactions
and reactions, warrant further discussion. These data were
integrated into CTD database of chemicals, genes, and dis-
eases to provide visibility into biological networks that may
be influenced by chemicals and potential processes influ-
encing environmental diseases. These links were determined
with the notion that despite the independent relationships of
pathways and diseases with the same gene or genetic groups,
they were concluded by the study of research publications,
the development of networks, and analysis of statistics. How-
ever, out of all diseases with at least one pathway, 82% of the
total set of the possible pairs are extremely high in pair shar-
ing with at least one pathway. All these diseases were unlikely
to have a connection. Hence, the more pathways the diseases
share, the more likely for them to interact with each other.
Although the current knowledge of these diseases is strongly
supportive of our molecular mechanisms, a further move is
to identify appropriate biomarkers and drug targets among
the expected genes and pathways that can be used to enhance
diagnosis, prognosis, and care. In our future works, we will
focus on integrating additional human disease–pathway data
in various dimensions to expand drug chemical pathway asso-
ciations and achieve significant results.

SUPPORTING INFORMATION
S1. Supplementary Information

S2 File. The data file of disease-pathway associations.
S3. File. Predicted results of potential pathway-disease

associations in descending order

LIST OF ABBERIVATIONS
CTD: Comparative toxicogenomics database
NCI: National cancer institute
GWAS: Genome-wide association study
RWR: Random Walk with Restart
PPR: Personalized PageRank
GPR: PageRank: global ranking

AUTHOR CONTRIBUTIONS
Xiujuan Lei, Ali Ghulam, and Chen Bian jointly contributed
to the design of the study. Xiujuan Lei conceptualized the
review and finalized the manuscript. Ali Ghulam wrote the
initial manuscript. Min Guo helped to draft the manuscript.
ChenBian revised themanuscript and polished the expression
of English. All of the authors have read and approved the final
manuscript.

REFERENCES
[1] A. P. Davis, C. J. Grondin, K. Lennon-Hopkins, C. Saraceni-Richards,

D. Sciaky, B. L. King, T. C. Wiegers, and C. J. Mattingly, ‘‘The com-
parative toxicogenomics Database’s 10th year anniversary: Update 2015,’’
Nucleic Acids Res., vol. 43, no. D1, pp. D914–D920, Jan. 2015,
doi: 10.1093/nar/gku935.

72036 VOLUME 8, 2020

http://dx.doi.org/10.1093/nar/gku935


A. Ghulam et al.: Disease-Pathway Association Prediction Based on RWR and PageRank

[2] M. Agrawal, M. Zitnik, and J. Leskovec, ‘‘Large-scale analysis of disease
pathways in the human interactome,’’ in Proc. Biocomputing, Jan. 2018,
pp. 111–122, doi: 10.1142/9789813235533_0011.

[3] L. Yu and L. Gao, ‘‘Human pathway-based disease network,’’ IEEE/ACM
Trans. Comput. Biol. Bioinf., vol. 16, no. 4, pp. 1240–1249, Jul. 2019,
doi: 10.1109/TCBB.2017.2774802.

[4] L. Li, Y. Wang, L. An, X. Kong, and T. Huang, ‘‘A network-based method
using a random walk with restart algorithm and screening tests to identify
novel genes associated with Meniáre’s disease,’’ PLoS ONE, vol. 12, no. 8,
Aug. 2017, Art. no. e0182592, doi: 10.1371/journal.pone.0182592.

[5] Y. Liu and M. R. Chance, ‘‘Pathway analyses and understanding disease
associations,’’ Current Genetic Med. Rep., vol. 1, no. 4, pp. 230–238,
Dec. 2013, doi: 10.1007/s40142-013-0025-3.

[6] R. M. Cantor, K. Lange, and J. S. Sinsheimer, ‘‘Prioritizing GWAS
results: A review of statistical methods and recommendations for their
application,’’ Amer. J. Hum. Genet., vol. 86, no. 1, pp. 6–22, Jan. 2010,
doi: 10.1016/j.ajhg.2009.11.017.

[7] B. Bakir-Gungor and O. U. Sezerman, ‘‘A new methodology to associate
SNPs with human diseases according to their pathway related context,’’
PLoS ONE, vol. 6, no. 10, Oct. 2011, Art. no. e26277, doi: 10.1371/jour-
nal.pone.0026277.

[8] B. Childs and D. Valle, ‘‘Genetics, biology, and disease,’’ Annu. Rev.
Genomics Human Genet., vol. 1, no. 1, pp. 1–19, Sep. 2000, doi: 10.1146/
annurev.genom.1.1.1.

[9] D. Botstein and N. Risch, ‘‘Discovering genotypes underlying human
phenotypes: Past successes for mendelian disease, future approaches for
complex disease,’’ Nature Genet., vol. 33, no. S3, pp. 228–237, Mar. 2003,
doi: 10.1038/ng1090.

[10] J. N. Hirschhorn and M. J. Daly, ‘‘Genome-wide association studies for
common diseases and complex traits,’’ Nature Rev. Genet., vol. 6, no. 2,
pp. 95–108, Feb. 2005, doi: 10.1038/nrg1521.

[11] J. Loscalzo, I. Kohane, and A. Barabasi, ‘‘Human disease classifica-
tion in the postgenomic era: A complex systems approach to human
pathobiology,’’ Mol. Syst. Biol., vol. 3, no. 1, p. 124, Jan. 2007,
doi: 10.1038/msb4100163.

[12] A.-L. Barabási, ‘‘Network medicine—From obesity to the diseasome,’’
New England J. Med., vol. 357, no. 4, pp. 404–407, Jul. 2007,
doi: 10.1056/NEJMe078114.

[13] Y. Moreau and L.-C. Tranchevent, ‘‘Computational tools for prioritizing
candidate genes: Boosting disease gene discovery,’’ Nature Rev. Genet.,
vol. 13, no. 8, pp. 523–536, Aug. 2012, doi: 10.1038/nrg3253.

[14] Y. Li and J. Li, ‘‘Disease gene identification by random walk on multi-
graphs merging heterogeneous genomic and phenotype data,’’ BMC
Genomics, vol. 13, no. Suppl 7, p. S27, 2012, doi: 10.1186/1471-2164-
13-S7-S27.

[15] S. Köhler, S. Bauer, D. Horn, and P. N. Robinson, ‘‘Walking the interac-
tome for prioritization of candidate disease genes,’’ Amer. J. Hum. Genet.,
vol. 82, no. 4, pp. 949–958, Apr. 2008, doi: 10.1016/j.ajhg.2008.02.013.

[16] S. Navlakha and C. Kingsford, ‘‘The power of protein interaction net-
works for associating genes with diseases,’’ Bioinformatics, vol. 26, no. 8,
pp. 1057–1063, Apr. 2010, doi: 10.1093/bioinformatics/btq076.

[17] Y. Li and J. C. Patra, ‘‘Genome-wide inferring gene–phenotype relation-
ship by walking on the heterogeneous network,’’ Bioinformatics, vol. 26,
no. 9, pp. 1219–1224, May 2010, doi: 10.1093/bioinformatics/btq108.

[18] M. A. García-Campos and E.-E. Enrique, ‘‘Pathway analysis:
State of the art,’’ Frontiers Physiol. vol. 6, p. 383, Dec. 2015, doi:
10.3389/fphys.2015.00383.

[19] L. Eronen and H. Toivonen, ‘‘Biomine: Predicting links between biological
entities using network models of heterogeneous databases,’’ BMC Bioinf.,
vol. 13, no. 1, p. 119, Dec. 2012.

[20] T. Gaudelet, N. Malod-Dognin, J. Sanchez-Valle, V. Pancaldi, A. Valencia,
and N. Przulj, ‘‘Unveiling new disease, pathway, and gene associations via
multi-scale neural networks,’’ 2019, arXiv:1901.10005. [Online]. Avail-
able: http://arxiv.org/abs/1901.10005

[21] H. Lee and M. Shin, ‘‘Mining pathway associations for disease-related
pathway activity analysis based on gene expression and methylation data,’’
BioData Mining, vol. 10, no. 1, p. 3, Dec. 2017.

[22] F. Zhang and R. Drabier, ‘‘IPAD: The integrated pathway analysis database
for systematic enrichment analysis,’’ BMC Bioinf., vol. 13, no. S15,
pp. 1–21, Sep. 2012, doi: 10.1186/1471-2105-13-S15-S7.

[23] A. Hamosh, ‘‘Onlinemendelian inheritance inman (OMIM), a knowledge-
base of human genes and genetic disorders,’’ Nucleic Acids Res., vol. 33,
pp. D514–D517, Dec. 2004, doi: 10.1093/nar/gki033.

[24] C. J. Mattingly, M. C. Rosenstein, A. P. Davis, G. T. Colby, J. N. Forrest,
and J. L. Boyer, ‘‘The comparative toxicogenomics database: A cross-
species resource for building chemical-gene interaction networks,’’ Tox-
icol. Sci., vol. 92, no. 2, pp. 587–595, Aug. 2006, doi: 10.1093/
toxsci/kfl008.

[25] F. Zheng, L. Wei, L. Zhao, and F. Ni, ‘‘Pathway network analysis of
complex diseases based on multiple biological networks,’’ BioMed Res.
Int., vol. 2018, pp. 1–12, Jul. 2018, doi: 10.1155/2018/5670210.

[26] B. Dutta, ‘‘PathNet: A tool for finding pathway enrichment and path-
way cross-talk using topological information and gene expression data,’’
Ph.D. dissertation, HPC Softw. Appl. Inst. Telemedicine Adv. Technol.
Res. Center U.S. Army Med. Res. Materiel Command Ft. Detrick, MD,
USA, 2018.

[27] A. G. Cirincione, K. L. Clark, and M. G. Kann, ‘‘Pathway networks
generated from human disease phenome,’’ BMC Med. Genomics, vol. 11,
no. S3, p. 75, Sep. 2018, doi: 10.1186/s12920-018-0386-2.

[28] P. Ni, J. Wang, P. Zhong, Y. Li, F. Wu, and Y. Pan, ‘‘Construct-
ing disease similarity networks based on disease module theory,’’
IEEE/ACM Trans. Comput. Biol. Bioinf., early access, Mar. 21, 2018,
doi: 10.1109/TCBB.2018.2817624.

[29] Y.-W. Niu, H. Liu, G.-H. Wang, and G.-Y. Yan, ‘‘Maximal entropy random
walk on heterogenous network for MIRNA-disease association predic-
tion,’’Math. Biosci., vol. 306, pp. 1–9, Dec. 2018.

[30] Z. Gao, Y.-T.Wang, Q.-W.Wu, J.-C. Ni, and C.-H. Zheng, ‘‘Graph regular-
ized l2,1-nonnegative matrix factorization for miRNA-disease association
prediction,’’ BMC Bioinf., vol. 21, no. 1, pp. 10–16, Dec. 2020.

[31] D. Seo, M.-H. Lee, and S. Yu, ‘‘Development of network analysis and
visualization system for KEGG pathways,’’ Symmetry, vol. 7, no. 3,
pp. 1275–1288, 2015, doi: 10.3390/sym7031275.

[32] E. Schmidt, ‘‘Reactome—A Knowledgebase of biological pathways,’’
Nucleic Acids Res., vol. 2, pp. 428–432, Jan. 2005, doi: 10.1093/nar/
gki072.

[33] I. Vastrik, P. D’Eustachio, E. Schmidt, G. Gopinath, D. Croft, B. de Bono,
M. Gillespie, B. Jassal, S. Lewis, L. Matthews, G. Wu, E. Birney, and
L. Stein, ‘‘Reactome: A knowledge base of biologic pathways and pro-
cesses,’’ Genome Biol., vol. 10, no. 2, p. 402, 2009.

[34] A. P. Davis, C. G. Murphy, C. A. Saraceni-Richards, M. C. Rosenstein,
T. C. Wiegers, and C. J. Mattingly, ‘‘Comparative toxicogenomics
database: A knowledgebase and discovery tool for chemical-gene-disease
networks,’’ Nucleic Acids Res., vol. 37, pp. D786–D792, Jan. 2009,
doi: 10.1093/nar/gkn580.

[35] W. Ding, H. Yang, S. Gong, W. Shi, J. Xiao, J. Gu, Y. Wang, and B. He,
‘‘Candidate miRNAs and pathogenesis investigation for hepatocellular
carcinoma based on bioinformatics analysis,’’ Oncol. Lett., vol. 13, no. 5,
pp. 3409–3414, May 2017, doi: 10.3892/ol.2017.5913.

[36] G. Hernandez-Suarez,M. Sanabria,M. Serrano, J. Zabaleta, andA. Tenesa,
‘‘Abstract 4840: TGFBR1 and TP53 SNPs interactions associated with col-
orectal cancer risk: Analysis of metabolic pathways using a random forest
approach,’’ in Proc. Epidemiology, Apr. 2013, p. 840, doi: 10.1158/1538-
7445.

[37] R. Krishnappa, ‘‘Molecular expression profiling with respect to KEGG
hsa05219 pathway,’’ Ecancermedical Sci. vol. 5, no. 1, p. 189, 2011,
doi: 10.3332./ecancer.2011.189.

[38] C. Wu, R. Gao, D. Zhang, S. Han, and Y. Zhang, ‘‘PRWHMDA: Human
microbe-disease association prediction by random walk on the heteroge-
neous network with PSO,’’ Int. J. Biol. Sci., vol. 14, no. 8, pp. 849–857,
2018, doi: 10.7150/ijbs.24539.

[39] Y. Li and P. Agarwal, ‘‘A pathway-based view of human diseases and
disease relationships,’’ PLoS ONE, vol. 4, no. 2, Feb. 2009, Art. no. e4346,
doi: 10.1371/journal.pone.0004346.

[40] M. Tanabe and M. Kanehisa, ‘‘Using the KEGG database resource,’’
Current Protocols Bioinf., vol. 38, no. 1, pp. 1–5, Jun. 2012,
doi: 10.1002/0471250953.bi0112s38.

[41] X. Chen and L. Wang, ‘‘Predicting miRNA-disease association based
on inductive matrix completion,’’ Bioinformatics, vol. 34, no. 24,
pp. 4256–4265, 2018, doi: 10.1093/bioinformatics/bty503.

[42] X. Chen, C. C. Yan, X. Zhang, X. Zhang, F. Dai, J. Yin, and Y. Zhang,
‘‘Drug–target interaction prediction: Databases, Web servers and com-
putational models,’’ Briefings Bioinf., vol. 17, no. 4, pp. 696–712,
Jul. 2016.

[43] X. Chen, B. Ren, M. Chen, Q. Wang, L. Zhang, and G. Yan, ‘‘NLLSS: Pre-
dicting synergistic drug combinations based on semi-supervised learning,’’
PLOS Comput. Biol., vol. 12, no. 7, 2016, Art. no. e1004975.

VOLUME 8, 2020 72037

http://dx.doi.org/10.1142/9789813235533_0011
http://dx.doi.org/10.1109/TCBB.2017.2774802
http://dx.doi.org/10.1371/journal.pone.0182592
http://dx.doi.org/10.1007/s40142-013-0025-3
http://dx.doi.org/10.1016/j.ajhg.2009.11.017
http://dx.doi.org/10.1371/journal.pone.0026277
http://dx.doi.org/10.1371/journal.pone.0026277
http://dx.doi.org/10.1146/annurev.genom.1.1.1
http://dx.doi.org/10.1146/annurev.genom.1.1.1
http://dx.doi.org/10.1038/ng1090
http://dx.doi.org/10.1038/nrg1521
http://dx.doi.org/10.1038/msb4100163
http://dx.doi.org/10.1056/NEJMe078114
http://dx.doi.org/10.1038/nrg3253
http://dx.doi.org/10.1186/1471-2164-13-S7-S27
http://dx.doi.org/10.1186/1471-2164-13-S7-S27
http://dx.doi.org/10.1016/j.ajhg.2008.02.013
http://dx.doi.org/10.1093/bioinformatics/btq076
http://dx.doi.org/10.1093/bioinformatics/btq108
http://dx.doi.org/10.3389/fphys.2015.00383
http://dx.doi.org/10.1186/1471-2105-13-S15-S7
http://dx.doi.org/10.1093/nar/gki033
http://dx.doi.org/10.1093/toxsci/kfl008
http://dx.doi.org/10.1093/toxsci/kfl008
http://dx.doi.org/10.1155/2018/5670210
http://dx.doi.org/10.1186/s12920-018-0386-2
http://dx.doi.org/10.1109/TCBB.2018.2817624
http://dx.doi.org/10.3390/sym7031275
http://dx.doi.org/10.1093/nar/gki072
http://dx.doi.org/10.1093/nar/gki072
http://dx.doi.org/10.1093/nar/gkn580
http://dx.doi.org/10.3892/ol.2017.5913
http://dx.doi.org/10.1158/1538-7445
http://dx.doi.org/10.1158/1538-7445
http://dx.doi.org/10.3332./ecancer.2011.189
http://dx.doi.org/10.7150/ijbs.24539
http://dx.doi.org/10.1371/journal.pone.0004346
http://dx.doi.org/10.1002/0471250953.bi0112s38
http://dx.doi.org/10.1093/bioinformatics/bty503


A. Ghulam et al.: Disease-Pathway Association Prediction Based on RWR and PageRank

[44] X. Chen, C. C. Yan, X. Zhang, and Z.-H. You, ‘‘Long non-coding
RNAs and complex diseases: From experimental results to computa-
tional models,’’ Briefings Bioinf., vol. 18, no. 4, pp. 558–576, Jul. 2017,
doi: 10.1093/bib/bbw060.

[45] Y. Li and J. C. Patra, ‘‘Integration of multiple data sources to prioritize
candidate genes using discounted rating system,’’ BMC Bioinf., vol. 11,
no. S1, p. 12, Jan. 2010.

[46] X. Shen, Y. Chen, X. Jiang, X. Hu, T. He, and J. Yang, ‘‘Predicting disease-
microbe association by random walking on the heterogeneous network,’’
in Proc. IEEE Int. Conf. Bioinf. Biomed. (BIBM), Dec. 2016, pp. 4–771.

[47] S. Zou, J. Zhang, and Z. Zhang, ‘‘A novel approach for predicting microbe-
disease associations by bi-random walk on the heterogeneous network,’’
PLoS ONE, vol. 12, no. 9, 2018, Art. no. e0184394.

ALI GHULAM is currently pursuing the Ph.D.
degree with the School of Computer Science,
Shaanxi Normal University, Xian, China. His
research interests include human disease path-
way network modeling and biological pathway
databases discovery.

XIUJUAN LEI (Member, IEEE) received the Ph.D.
degree from Northwestern Polytechnical Univer-
sity, in 2005. She is currently a Professor and a
Ph.D. Supervisor with Shaanxi Normal University.
Her research interests include bioinformatics and
intelligent computing.

MIN GUO received the Ph.D. degree from
Shaanxi Normal University, Shaanxi, China,
in 2003. She is currently a Professor and a Ph.D.
supervisor with Shaanxi Normal University. Her
main research interests include image processing,
pattern recognition, and intelligent information
processing.

CHEN BIAN is currently pursuing the master’s
degree with the School of Computer Science,
Shaanxi Normal University, Xian, China. Her
major is bioinformatics.

72038 VOLUME 8, 2020

http://dx.doi.org/10.1093/bib/bbw060

