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ABSTRACT Cloud Computing (CC) has become increasingly popular since it provides a wide variety
of customized and reliable computational services. With the rapid growth of this technology, more and
more IT services providers compete to offer high-quality and cost-effective cloud services that best fulfill
their customers’ needs. Given the vast diversity of these offers, the choice of the most appropriate Cloud
Service Provider (CSP) became a dilemma that confuses most cloud customers. Many diverged criteria have
to be considered to precisely evaluate services offered by several CSPs, some of these criteria cannot be
quantified easily such as usability and security. The selection of the best CSP is thus a complex Multi-
Criteria Decision Making (MCDM) problem that needs to be addressed efficiently. Previous studies of
this problem employed MCDM methods that are either unfeasible when it is difficult or meaningless to
quantify alternatives over criteria or computationally expensive and inconsistent when relative preferences of
alternatives and criteria are used instead. In this paper, we propose a novel MCDM approach that is feasible,
efficient and consistent using relative preferences of criteria and alternatives. The proposed approach
incorporates Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and the Best
Worst Method (BWM) to rank CSPs using evaluation criteria characterizing their services. The integrated
approach has been tested and validated through a use-case scenario which demonstrates its effectiveness and
correctness. We have also compared the proposed approach to the most commonly used MCDM approach,
Analytical Hierarchical Process (AHP). The results clearly show that the proposed approach outperforms
AHP in terms of computational complexity and consistency; hence, it is more efficient and reliable than AHP.

INDEX TERMS Cloud computing (CC), cloud service providers (CSPs), multiple-criteria decision-making
(MCDM), best worst method (BWM), technique for order of preference by similarity to ideal solution
(TOPSIS), analytical hierarchical process (AHP).

I. INTRODUCTION
Cloud Computing (CC) has become a promising choice for
businesses to replace the on-premise IT infrastructure. It has
changed our understanding of how to procure computing
resources with high versatility, availability and minimum
management effort [1]. As a result, companies can now
concentrate on their core functions leaving Cloud Service
Providers (CSPs) to handle their computing assets. CSPs
are vendors who lease to their customers different types of
services (e.g., IaaS, PaaS, SaaS) that are dynamically pro-
visioned based on customer’s demand in a pay-as-you-go
basis. The relationship between the customers and CSPs is
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organized according to a certain contract called Service Level
Agreement (SLA) [2], [3].

Due to the significant benefits offered by CC to businesses
including economy of scale, investments in this technology
are tremendously increasing. As a result, the number of
both cloud services and CSPs who offer these services has
increasingly grown [4]. Large IT companies such as Google,
Microsoft, and Amazon are now competing to offer their
customers reliable and cost-effective services that best ful-
fill their requirements. This healthy competition results in
the flourishment of CC technology and prompts many IT
companies to improve their Quality of Service (QoS). Each
CSP offers similar services at different prices and quality
levels with different set of features. While one provider
might be cheap for storage services, it may be expensive
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for computation. Given this diversity of cloud services offer-
ings, an important challenge for customers is how to select
the CSP that best satisfies their requirements. This is essential
to ensure future performance and maintain compliance with
laws, policies, and rules [5], [6]. On the other hand, choosing
the wrong CSP may lead to failure in future services deliv-
ery, compromised data confidentiality or integrity, and non-
compliance for use of clouds for data storage.

Cloud service selection is typically the process of finding
the most appropriate CSP by matching user requirements
with the features of the available cloud services provided
by the various CSPs [7]. The increasing number of CSPs
together with the diverse types of service they offer on a
widely varying pricing and quality schemes have led to
complexities in comparing different CSPs and selecting the
most appropriate one given the user preferences [8]. One
example that illustrates this problem is Equinix [9], a cloud
broker architecture with over 500 registered CSPs, each offer-
ing various types of cloud services, Amazon alone provides
over 70 [7]. In addition, consideration must be given to a
broad variety of selection criteria in order to choose the
most appropriate CSP. For example, QoS criteria such as
performance or reliability are essential to specify CSP char-
acteristics. Security and privacy attributes of the services are
of utmost importance for cloud customers as well. Some
selection criteria are not clear to the customer, for example,
CSPs show little or no transparency on how cloud resources
are accessed and who access them. Others are not easy to
quantify due to the nature of the cloud such as usability and
security [5]. In addition, there may be trade-offs between
many of these criteria such as performance and price. In order
to select the CSP that best fit user preferences, a wide variety
of divergent evaluation criteria that characterize several cloud
services offered by many CSPs must be considered. There-
fore, the selection of the right CSP is a complexMulti-Criteria
Decision Making (MCDM) problem where several alterna-
tives have to be evaluated and ranked via multiple criteria
given particular user preferences (i.e., relative importance of
criteria) [5], [6], [10].

Previous studies on this problem have employed MCDM
methods that are either unfeasible when it is difficult or mean-
ingless to quantify alternatives with respect to criteria
(i.e., criteria cannot be quantified easily) or computation-
ally expensive and inconsistent if relative preferences of
alternatives and criteria are used instead. Thus, creating a
new approach that can solve this problem more efficiently
and overcome the inconsistency that characterizes other
approaches became crucial. In this paper, we propose a novel
MCDM approach that is feasible when scores of alternatives
over criteria are not available, computationally efficient, and
consistent using relative preferences of criteria and alterna-
tives. The proposed approach integrates Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) and
the Best Worst Method (BWM) to rank available CSPs using
evaluation criteria that characterize the services they offer.
Hence, it enables customers to select the CSP that best fits

their requirements. The integrated approach has been vali-
dated through a use-case scenario and compared to the most
popular MCDM approach (i.e., AHP). The results clearly
showed that the proposed approach outperforms AHP in
terms of computational complexity and consistency; there-
fore, it is more efficient and more reliable than AHP.

The rest of this paper is organized as follows: in section 2,
we give essential background on CC service models and
MCDM methods; and in section 3, we review related work.
In section 4, we describe TOPSIS method; and in section 5,
we present the BWM. Section 6 describes our proposed
integrated MCDM approach. In section 7, we validate our
approach through a use-case scenario. In section 8, we empir-
ically evaluate our proposed approach and compare it to AHP
and discuss the results. Finally, in section 9, we give our
conclusions and future work.

II. BACKGROUND
A. CLOUD SERVICES DELVERY MODELS
CSPs deliver mainly three types of service to their cus-
tomers, Infrastructure-as-a-Service (IaaS), Platform-as-a-
Service (PaaS), and Software-as-a-Service (SaaS) [2]–[4],
[10]–[12]. Still many service models are available as per their
functionality and service providing capabilities, which have
led to the creation of Anything-as-a–Service (XaaS) delivery
models. In this section, we discuss the different types of
service models shown Fig. 1.

FIGURE 1. Cloud service stack.

1) INFRASTRUCTURE-AS-A-SERVICE (IaaS)
In IaaS, sometimes called Hardware-as-a-Service, a CSP
supplies hardware or physical resources such as servers,
storage, and network as demanded by the customers. IaaS
utilizes virtualization technology to create virtual instance of
physical resources such as virtual machines, storage capac-
ity, and network bandwidth. Virtualization allows physical
resources to be shared by multiple consumers (i.e., multi-
tenant); however, consumers cannot see or share each other’s
data. Multi-tenancy results in optimal utilization of hard-
ware and data storage mechanism. Virtual resources are
location-independent in the sense that the user usually doesn’t
monitor or know their location. Users can access whatever
resources they need without thinking about physical details.
The benefit of this model include pay-per-use and resource
elasticity to match computing demands. Resources can be
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rapidly and elastically provisioned, in some cases automat-
ically, to quickly scale out, and rapidly released to quickly
scale in. To the consumer, resources available for provi-
sioning often appear to be unlimited and can be purchased
in any quantity at any time. In IaaS, the customer does
not manage or control the underlying cloud infrastructure;
however, operating systems, data and applications which are
run and stored on the virtual infrastructure are managed by
the customer. Examples of IaaS providers include Amazon
Elastic Compute Cloud (EC2), Amazon Simple Storage Ser-
vice (S3), and GoGrid.

2) PLATFORM-AS-A-SERVICE (PaaS)
In PaaS, a CSP delivers services in the form of Software
Development Kit (SDK), programming languages, operating
systems, and Integrated Development Environments (IDE)
that can be utilized by customers to develop their own appli-
cations onto the cloud infrastructure. Customers can monitor
the applications; but have no means to manage the infrastruc-
ture or operating systems that underlie them. It is helpful in
circumstances where multiple developers located in different
physical locations need to work together as it provides them
with an integrated stack for creating and deploying appli-
cations from the cloud. A popular PaaS provider is Google
App Engine. It is an SDKwhich provides an environment that
supports Python, Java, and ‘‘Go’’ programming languages.
Other providers for PaaS include Salesforce and Microsoft
Azure.

3) SOFTWARE-AS-A-SERVICE (SaaS)
A CSP offers ready to use applications centrally hosted in
the cloud to replace applications running on local machines.
Customers may access these applications simply through
web browsers running on different client devices such as
mobile phones. The benefits of this model include centralized
configuration and hosting, software release updates with-
out requiring reinstallation, and accelerated feature delivery.
In SaaS, customers cannot manage or control the underlying
cloud infrastructure, operating systems or even core function-
ality of applications; however, they have access to limited
user-specific application configuration settings. Popular SaaS
providers are Google apps andAmazonWeb Services (AWS).

4) ANYTHING-AS-A-SERVICE (XaaS)
Apart from the three main services, a CSP also provides
service under the term ‘‘XaaS’’, where ‘X’ is a variable and
various entities can be associated with it, for example Data
as a Service (DaaS), Monitor as a Services (MaaS), Routing
as a Service (RaaS), Security as a Service (SecaaS), and
Communication as a Service (CaaS)

B. MULTI-CRITERIA DECISION MAKING (MCDM)
InMCDMproblems, a variety of alternatives are evaluated on
the basis of different criteria characterizing these alternatives
to select the best alternative(s) [13]–[16]. Different decision-
makers value (weigh) criteria differently; hence, the selection

of the best alternative is subject to the preferences of decision
maker(s) [15]. MCDM problems are usually divided into
two groups concerning problem space solution [13], [15]:
continuous MCDM, also known as Multiple Objective Deci-
sion Making (MODM), and discrete MCDM, also named
as Multiple Attribute Decision Making (MADM). The main
difference between MODM and MADM is the number of
alternatives under assessment; MODM problems have an
indefinite number of alternatives; however, alternatives are
confined by a set of optimal objective constraints; while in
MADM problems, the number of alternatives is predeter-
mined and limited. In existing literature; however, the term
‘‘MCDM’’ is commonly used to describe MADM [13]. Thus,
we use ‘‘MCDM’’ to represent discrete MCDM or MADM.

Decision makers have suggested different ways for
defining evaluation criteria, weighing them, and rating alter-
natives with respect to (w.r.t.) these criteria; as a result, sev-
eral MCDM approaches have been introduced in literature
[13], [14]. MCDM approaches can be classified into two
groups: Multi-attribute Utility Theory (MAUT) methods and
Outranking methods [15]. In MAUT methods, experts score
(rate) alternatives over criteria to construct a decision matrix.
Some aggregation functions may then be used to combine the
scores of each alternative on all criteria with the weights of
criteria to obtain the overall ranking of the alternatives. The
typical techniques in this group include TOPSIS (Technique
for Order of Preference by Similarity to Ideal Solution) [17],
UTA (UTilites Additives) [18], VIKOR (VIse Kriterijum-
ska Optimizacija kompromisno Resenje in Serbian, multi-
ple criteria optimization compromise solution) [19], [20],
MULTIMOORA (MULTIplicative Multi-Objective Opti-
mization by Ratio Analysis) [21], [22], and MACBETH
(Measuring Attractiveness by a Categorical Based Evalua-
tion TecHnique) [23]. While these approaches are generally
simple, they are difficult to apply when decision makers
cannot estimate absolute scores for alternatives w.r.t. criteria
(i.e., criteria cannot be quantified).

Alternatively, outranking methods estimate the rela-
tive preferences of alternatives w.r.t. each criterion based
on pairwise comparisons among alternatives. The relative
preferences are then aggregated to acquire the outrank-
ing relations which represent the dominance degree of one
alternative over others. The widely-used outranking meth-
ods are ELECTRE (ELimination Et Choix Traduisant la
REalité in French, ELimination and Choice Expressing the
Reality) [24], PROMETHEE (Preference Ranking Organiza-
tion METHod for Enrichment Evaluations) [25], [26], GLDS
(Gained and Lost Dominance Score) method [27], [28], AHP
(Analytical Hierarchy Process) [29], [30] and ANP (Ana-
lytical Network Process) [31], Superiority and Inferiority
Ranking (SIR) method [32], Step-Wise Weight Assessment
Ratio Analysis (SWARA) [33], subjective weighting method
using continuous interval scale [34], multi-attribute evalua-
tion using Imprecise Weight Estimates (IMP) [35] and, more
recently, the Best-Worst Method [13]–[15], [36]–[40]. Such
approaches are effective in circumstances where it is difficult
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or meaningless to include the measured scores for candidate
alternatives w.r.t. criteria (e.g., qualitative criteria), but it is
possible to express the relative preferences of the alternatives
and criteria. However, the numerous workloads of pairwise
comparisons would increase the computational complexity
(i.e., reduce efficiency) of these methods if there are a large
number of criteria or alternatives. Moreover, the lack of
consistency of the pairwise comparison matrices is a very
significant challenge to the pairwise comparison methods
which typical occurs in practice [13].

III. LITERATURE REVIEW
In recent years, many research efforts have been conducted
to solve the problem of cloud service selection, some of
them use the MAUT techniques and others use the pairwise
comparison methods. Nevertheless, more hybrid approaches
are being introduced using many simple MCDM techniques.
Hybrid approaches improve consumer trust and help make
more accurate final decisions. In this section, we review the
existing approaches for cloud service selection.

Godse and Mulik [41] proposed an approach to use the
AHP technique to prioritize the selection criteria for cloud
services and to rank three CSPs. The study suggested the fol-
lowing criteria for SaaS selection based on the experience and
expert opinion: functionality, architecture, usability, vendor
reputation, and cost. Garg et al. [5], [6] proposed SMICloud
framework based on the Service Measurement Index (SMI)
developed by Cloud Service Measurement Initiative Con-
sortium (CSMIC) [42]. The proposed framework measures
QoS attributes in SMI and uses Key Performance Indicators
(KPIs) to compare the cloud services. They ranked the cloud
services via AHP method; nevertheless, they considered only
CSMIC’s quantifiable criteria and did not recognize the non-
quantifiable QoS trustworthiness criteria for selecting CSPs.

Nie et al. [43] implemented a cloud service quality evalu-
ation method based on AHP, which computes the weights of
evaluation criteria. They also presented a number of qualita-
tive models for decision making in cloud service selection.
In [44] the author used the MACBETH approach to simplify
the decision-making process in Cloud-based organizations.
The proposedmodel is based on 19 criteria chosen to promote
decision making among two SaaS Cloud services: Google
Apps and Microsoft Office 365.

Park et al. [45] proposed a MCDM model the uses QoS
attributes for CC service selection. The model consists of six
criteria: functionality, reliability, usability, efficiency, main-
tainability and portability, and 25 sub-criteria. The proposed
model was developed to identify the best SaaS ERP (Enter-
prise Resource Planning) in CC environment and provide rec-
ommendations to customers in a given priority order. In [46],
Boussoualim et al. developed a tool to help users select the
best SaaS products that meet most of their requirements based
on AHP method.

Rehman et al. [47] proposed a parallel MCDM approach
for selecting cloud services. The proposed method conducts
parallel multi-criteria decision analysis to rank all cloud

services in accordance with user requirements. The results
are then aggregated to determine the overall rank of all
available cloud services. Lee [48] described decision-making
of Small and Medium Enterprises (SME) about the choice
of cloud services, as well as their evaluation criteria. They
proposed an AHP-based model which offers four criteria
(i.e., financial, marketing,management and environment) and
14 sub-criteria. The method added values (weights) for every
criterion and ranked sub-criteria by order of importance.

Papathanasiou et al. [49] offered a concise practical
approach to choose a CSP. The authors have explored AHP
and PROMETHEE and the Goal programming techniques for
assessing the weights of the selection criteria. He has chosen
12 criteria to evaluate nine CSPs. Gavade [50] explores use-
case scenario for different multi-criteria decision-making in
CC. They analyzed various MCDM methods for different
cloud services; the analyzed methods are AHP, TOPSIS,
VIKOR, ELECTRE and PROMETHEE. The authors sug-
gested the use of TOPSIS for PaaS decision-making.

Chung and Seo [51] proposes a cloud service selection
model based on the Analytical Network Process (ANP).
According to the proposed model, the criteria and sub-criteria
for cloud service selection are identified and evaluated
by weights; authors used three criteria and eight sub-
criteria. Based on the chosen criteria and the ANP method,
the research makes a selection out of six proposed IaaS
alternatives.

Rai and Kumar [52] proposed a new decision-making
model based on two methods: TOPSIS and VIKOR for IaaS
cloud service selection with one method as the main method
and the other as an instance method. The developed decision-
making evaluation model contains three criteria; i.e., values
of RAM, Bandwidth and Storage. Evaluation results showed
that VIKOR has outperformed TOPSIS, in terms of evaluated
criteria of memory and time.

Some authors combined fuzzy idea with basic MCDM
methods to solve the uncertainty problem associated
with cloud service selection [53]–[56], [65]–[68].
Supriya et al. [53] uses MCDM methods to rank CSPs
based on their infrastructure parameters. Compared with any
analytical approach alone, a mixture of analytic and fuzzy
methods was found to be more trustworthy. CSP rankings are
based on SMI [42] which helps organizations assess cloud-
related business services on the basis of their unique business
and technology needs.

In [54], the authors proposed a decisional methodology
based on Fuzzy Analytic Hierarchy Process (FAHP) and
PROMETHEE for comparing, ranking and selecting the
most suitable CC product to accommodate and access big
data. They used three criteria and 10 sub-criteria to evalu-
ate five CC products. Wibowo et al. [55] has presented a
fuzzy multi-criteria group decision-making method for eval-
uating the performance and the choice of Cloud services.
Also, in [56], Sun et al. presented a fuzzy decision-making
framework and MCDM-based approach for cloud service
selection.
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TABLE 1. Summary of previous work.

Saroj and Dileep [57] provides an overview of different
MCDM methods and their evaluation. The MCDM meth-
ods used are: TOPSIS, PROMETHEE, Multi-Attribute Value
Theory (MAVT), Multi Attribute Utility Theory (MAUT),
ELECTRE and AHP. Liu et al. [58] structured a multi-
attribute group decision making (MAGDM) tool to help busi-
nesses decide which CSP will be more appropriate for their
needs.

Kumar et al. [59], [64] introduced a computational frame-
work for determining the most suitable candidate cloud ser-
vice by integrating AHP and TOPSIS. They specified the
architecture for the cloud services selection process and com-
puted the weights of criteria using pairwise comparisons of
AHP. Then, they obtained the final ranking of the cloud
service based on overall results using the TOPSIS system.

Araujo et al. [60] presented anMCDMapproach for select-
ing cloud computing infrastructures, in terms of dependabil-
ity and cost that best suits both company and customer needs.
Nawaz et al. [7] developed a cloud broker architecture for
cloud service selection by finding a pattern of the changing
priorities of User Preferences (UPs). In [61], Jatoth et al.
proposed a hybrid MCDM model to select cloud services
among the available alternatives using a novel extended Grey
TOPSIS integrated with AHP.

Al-Faifi et al. [62] developed a hybrid MCDM to evaluate
and rank CSPs from smart data. The hybrid method consists
of two components: (i) clustering CSPs using k-means algo-
rithm to combine them with similar features and (ii) applying
MCDMmethods using DEMATEL-ANP to rank clusters and
make a final decision. Sun et al. [63] proposed a Cloud

TABLE 1. (Continued.) Summary of previous work.

Service Selection with Criteria Interactions (CSSCI) frame-
work that applies a fuzzy measure and Choquet integral to
measure and aggregate non-linear relations between criteria.

To summarize, Table 1 shows a variety of MCDM
approaches proposed in literature for CSP selection. In the
analysis of these studies, we find that a great number of
criteria have been used to test CSPs, resulting in additive
computational complexity to the methods of pairwise com-
parison. Furthermore, many of such criteria are qualitative in
nature (i.e. how to measure scores for alternatives w.r.t. these
criteria is irrelevant or unclear), in this case, MAUT-based
approaches are difficult to implement.

This work proposes a novel MCDM approach that inte-
grates TOPSIS and BWM to evaluate available CSPs based
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on selection criteria characterizing their cloud services.
The reason for why we integrate these two methods is
that TOPSIS is a simple process, intuitive, and provides
greater agility than any other MCDM methods. It is a com-
pensatory method that allows trade-offs between criteria,
where a poor result in one criterion can be negated by a
good result in another criterion. It offers a more practi-
cal form of modelling than non-compensatory approaches,
which include or exclude alternative solutions based on hard
cut-offs. However, the construction of a decisionmatrix is dif-
ficult or meaningless for qualitative criteria where the scores
of alternatives over criteria cannot be quantified. In addition,
it is difficult to weigh criteria and keep consistency of judg-
ments, especially with additional criteria [16].

On the other hand, BWM is a recent pairwise comparison
MCDM method that is superior to other methods in that:
(1) it requires less comparison data, which means that it is
efficient with a large number of criteria; (2) it leads to more
consistent comparisons, which means that it produces more
reliable results [13]. The proposed integrated approach looks
for the best of both worlds in the sense that it is feasible
using relative preferences of criteria and alternatives, more
efficient, and produces more consistent and reliable results.

IV. TOPSIS METHOD
TOPSIS, first proposed in [69], is known as one of the most
attractive methods to deal with MCDM problem. The under-
lying principle behind TOPSIS is that the best alternative
must be at the nearest (shortest) geometric distance from the
positive ideal solution, whereas it has the farthest (longest)
geometric distance from the negative ideal solution [59].
The positive ideal (i.e., best) solution represents the solution
with the most advantages and lowest cost of all alternatives,
whereas the negative ideal (i.e., worst) solution provides the
solution with the lowest benefits and the highest cost. The
main steps of TOPSIS approach are explained below.
Step 1 (Construct the Decision Matrix): Assume that we

have a set A of m alternatives where: A = {a1, a2, . . . , am}
and m is a positive integer. These alternatives have to be eval-
uated w.r.t. a set C of n criteria, where: C = {c1, c2, . . . , cn}
and n is a positive integer. Then, the decision maker would
create a decision matrix X in which he/she quantify alterna-
tives over criteria.

X =

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn

 (1)

xij : score of alternative ai w.r.t. criterion cj
Step 2 (Compute the Normalized Decision Matrix): The

elements of the normalized decision matrix Y can be com-
puted as follows:

yij =
xij√∑m
i=1 x

2
ij

i = 1, 2, . . . ,m and j = 1, 2, . . . ,n (2)

yij : normalized score of alternative ai w.r.t. criterion cj

Step 3 (Compute the Weights of Criteria): The weight of
criterion cj is wj which represents the relative importance of
cj compared to other criteria. Weights are computed using
AHP method [29], [30]. The vector of weights is denoted as
W where:

W = [w1w2 . . .wn]

such that : 0 ≤ wj ≤ 1 and
n∑
j=1

wj = 1 (3)

Step 4 (Compute the Weighted Normalized Decision
Matrix): The elements of the weighted normalized decision
matrix Z can be computed as follows:

zij = wjyij (4)

zij : weighted score of alternative ai w.r.t. criterion cj
Step 5 (Find the Positive and Negative Ideal Solutions): For

every criterion cj, we define the positive ideal solution v
+

j and
the negative ideal solution v−j , where for beneficial criterion:

v+j = max
{
z1j, z2j, . . . , zmj

}
(5)

v−j = min
{
z1j, z2j, . . . , zmj

}
(6)

and for non-beneficial criterion:

v+j = min
{
z1j, z2j, . . . , zmj

}
(7)

v−j = max
{
z1j, z2j, . . . , zmj

}
(8)

The vector of positive ideal solutions is V+ where:

V+ =
[
v+1 v
+

2 . . . v
+
n
]

(9)

The vector of negative ideal solutions is V− where:

V− =
[
v−1 v
−

2 . . . v
−
n
]

(10)

Step 6 (Determine the Euclidean Distance for Each Alter-
native From the Positive and Negative Ideal Solution): For
each alternative ai, the Euclidian distance of ai from the
positive ideal solution V+ is d+i where:

d+i =

√√√√ n∑
j=1

(zij − v
+

j )
2

(11)

and the Euclidian distance of ai from the negative ideal
solution V− is d−i where:

d−i =

√√√√ n∑
j=1

(zij − v
−

j )
2

(12)

Step 7 (Compute the Closeness Coefficient for Each Alter-
native): The closeness coefficient for an alternative ai is ri
and it can be computed as follows.

ri =
d−i

d−i + d
+

i

(13)

The vector of all closeness coefficients is R where:

R = [r1r2 . . . rm] (14)
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Step 8 (Rank R): The best alternative is the one of the
highest closeness coefficient.

TOPSIS has some limitations in in step 1 and step 3.
In step1, the decision matrix is commonly estimated by the
decision makers. However, the construction of this matrix is
difficult or meaningless for qualitative criteria (e.g., usabil-
ity, portability, security, etc.) since the scores of alternatives
over criteria are not available or cannot be quantified easily.
In step 3, computing the weights using AHP method is
computationally expensive and inconsistent especially with
a large number of criteria or alternatives. We will overcome
these limitations in our proposed approach.

V. THE BEST-WORST METHOD
The pairwise comparison method [70] is generally any pro-
cess of comparing elements in pairs to judge which of each
element is preferred with respect to some property. Pairwise
comparisons (which are usually provided by an expert or a
team of experts) are used to show the relative preferences
of elements in situations where it is unfeasible or mean-
ingless to provide absolute scores for these elements w.r.t.
some criteria. This method has been utilized in MCDM, for
instance, AHP pairwise comparison method is used to derive
the relative weights of criteria against the main goal of the
study and the relative scores of alternatives against criteria.
The very significant challenges to AHP method stems from
the inconsistency of the pairwise comparison matrices as well
as the additive complexity associated with a large number of
criteria or alternatives [13]. We discuss this issue below.

Suppose we want to execute a pairwise comparison
between n elements w.r.t. to certain property. The pairwise
comparison matrix which shows the relative preferences of
the elements is an n× n matrix denoted as P where:

P =

 p11 · · · p1n
...

. . .
...

pn1 · · · pnn

 (15)

The matrix, P, can be estimated using a 1/9 to 9 scale where
pij shows the relative preference of element i to element j,
pij = 1 shows that element i and element j are of the same
importance, pij > 1 means that element i is more important
than element j with pij = 9 showing the extreme importance
of element i to element j and pij < 1 indicates that element i
is less important than element j with pij = 1/9 showing the
extreme less importance of element i to element j. In order for
matrix P to be reciprocal, it is required that pij = 1/pji for all
i and j and pij = 1, for i = j.

From the above description of P, we can conclude that
the number of all possible comparisons to form P is n2, out
of them, there are n comparisons for which pij = 1. The
remainder are n(n−1) comparisons, half of which are pij > 1,
the other half being the first half reciprocals. Thus, in AHP, in
order to obtain a complete matrix P for n elements, n(n−1)/2
comparisons must be made in pairs. The pairwise comparison

matrix is said to be perfectly consistent if:

pik × pkj = pij ∀i, j (16)

When estimating a pairwise comparison pij, the decision-
maker expresses both the direction (pij > 1 or pij < 1) and
the strength (a numeric value to indicate the preference of i
over j). In most cases, the decision-maker has no difficulty
with the direction being conveyed. Expressing the strength;
however, is a challenging job, almost the principal cause of
inconsistency. In fact, when a decision maker wants to assign
a number to indicate his/her decision about the comparison
of two elements i and j, he/she also takes into consideration
the relationships between these two elements and some other
elements. Rezaei [13] discussed this issue and concluded that
when considering the preference of element i over j w.r.t.
some criterion, the decision-maker also considers the Best
and the Worst elements w.r.t. the criterion in question while
other elements have no role in this comparison. Accordingly,
he divided the pairwise comparisons into two main cate-
gories: (1) reference comparisons and (2) secondary compar-
isons as defined below.
Definition 1: Comparison pij is defined as a reference

comparison if i or j is the Best (B) or the Worst (W) element.
Definition 2: Comparison pij is defined as a secondary

comparison if neither i nor j are the Best or the Worst
elements.

A significant finding for the above discussion is that the
relative significance of the elements can be obtained without
holding the secondary comparisons. Each secondary compar-
ison pij occurs in two relation chains, of which two members
are reference comparisons, they are:

pBi × pij = pBj (17)

pij × pjW = piW (18)

This is a very important result since it leads to:

1) Reduction of the required pairwise comparisons; num-
ber of required pairwise comparison = (n-2) Best-to-
Others+ (n-2) Others-to-Worst+ (1) Best-to-Worst=
2n-3 instead of n(n−1)/2. (Note that we only consider
pairwise comparisons where pij > 1).

2) More consistent comparisons; it is clear that secondary
comparisons aremore difficult, less accurate and at best
redundant; they are the main source of inconsistency.

The above conclusions motivated Rezaei [13] to introduce
the Best-Worst Method (BWM) for MCDM. The salient
features of BWM compared to other pairwise comparison
methods, are 1) it requires less computation effort since less
comparison data (only reference comparisons) should be pro-
vided and processed, which means that it is more efficient;
2) it leads to more consistent comparisons since secondary
comparisons are not included, which means that it produces
more reliable results. The following are the steps of BWM.
Step 1: Determine a set of criteria, C = {c1, c2, . . . , cn},

n is a positive integer.
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Step 2: Determine the best (e.g. most important) criterion,
cB, and the worst (e.g. least important) criterion, cW.
Step 3: Determine the preference of the Best criterion over

all criteria (Best-to-Others) using a number between 1 and 9.
The resulting preference vector would be:

Best − to− Others = [pB1 pB2 . . . pBn] (19)

where: pBj indicates the preference cB over cj. It is clear that
pBB = 1.
Step 4: Determine the preference of all criteria over the

Worst criterion (Others-to-Worst) using a number between
1 and 9. The resulting preference vector would be:

Others− to−Worst = [p1W p2W . . . pnW ] (20)

where: pjW indicates the preference of cj over cW. It is clear
that pWW = 1.
Step 5: Find the optimal weights of criteria

W∗ = [w∗1 w
∗

2 . . . w
∗
n] (21)

The optimal weight for the criterion cj is the one that satisfies
the following conditions.

wB
wj
= pBj and

wj
wW
= pjW (22)

To satisfy these conditions for all j, we should solve the
following formula for all j.

min max
j

(|
wB
wj
− pBj|, |

wj
wW
− pjW |)

such that
∑n

j=1
wj = 1, wj ≥ 0, ∀j (23)

The problem in (23) can be transferred into the following
problem:

min ξ ,

such that |
wB
wj
− pBj| ≤ ξ ∀j

|
wj
wW
− pjW|| ≤ ξ ∀j∑n

j=1
wj = 1,

wj ≥ 0, ∀j (24)

Solving (24), the optimal weights (w∗1,w
∗

2, . . . ,w
∗
n) and the

optimal value of ξ which is (ξ∗) can be obtained. The above
procedure can also be used to find the relative scores of
alternatives w.r.t. a criterion. This is a very useful property
in cases where the values of alternatives w.r.t. criteria cannot
be quantified.

VI. THE PROPOSED APPROACH
Wepropose an integratedMCDMapproach based on TOPSIS
and BWM that uses evaluation criteria to rank CSPs accord-
ing to their fulfillment of customer’s requirements. BWM is
used for acquiring the weights of criteria and relative scores
for alternatives w.r.t. criteria. These weights and relative
scores are utilized by TOPSIS to determine the ranking order

for the cloud alternatives. The following are the steps of the
proposed approach.
Step 1 (Identify CSPs): Specify S, a set of CSPs where:

S = {s1, s2, . . . , sm}, m is a positive integer. For example, S
may contain Amazon, Microsoft, Google, HP, etc.
Step 2 (Identify Selection Criteria): Identify C, a set of

selection criteria chosen by the customer to evaluate and
rank S, where: C = {c1, c2, . . . , cn}, n is a positive integer.
To help identify C, we refer to the Cloud Services Measure-
ment Initiative Consortium (CSMIC) that proposes a Stan-
dard Measurement Index (SMI) [42]. The SMI framework is
a hierarchical model that provides a full view of QoS charac-
teristics (Fig. 2). All QoS metrics are broken down into seven
categories: Performance, Accountability, Assurance, Agility,
Cost, Security and Privacy and Usability. These categories
are further divided into four and more QoS attributes [59].
In addition, we refer to the work presented in the literature
review of section 3 and the work introduced in [71]–[73]
which provides a wide variety of (QoS and non-QoS) criteria.
Step 3 (Compute the Relative Weights of Criteria Using

BWM): Identify the Best criterion cB and Worst criterion cW
and follow the steps of BWM described above to determine
the weights of criteriaW = [w1w2 . . .wn] . This step requires
(2n-3) comparisons instead of n(n-1)/2 if we use AHP.
Step 4 (Compute the Relative Scores of CSPs w.r.t. Each

Criterion Using BWM): For each criterion cj, identify the
Best CSP (sB) and Worst CSP (sW), then follow the steps of
BWM to find the relative scores of CSPs over this criterion.
Similarly, this step requires 2m-3 comparisons (for each cri-
terion) instead of m(m-1)/2 if we use AHP. Assume that aij
is the relative score of CSP sj over criterion cj and Aj is the
vector of relative scores of all CSPs over cj then:

Aj = [a1j a2j . . . amj] (25)

Step 5 (Construct the Decision Matrix): The decision
matrix A(mxn) is defined as follows:

A = [AT1 A
T
2 . . . A

T
n] (26)

Step 6 (Construct the Weighted Decision Matrix): The
weighted decision matrix B(mxn) is defined as follows:

B = [w1AT1 w2AT2 . . . wnA
T
n]

bij = wjaij (27)

Step 7 (Find the Positive and Negative Ideal Solutions): For
every criterion cj, find the positive ideal solution v+j and the
negative ideal solution v−j , where:

v+j = max{b1j, b2j, . . . , bmj} (28)

v−j = min{b1j, b2j, . . . , bmj} (29)

The vector of positive ideal solutions is V+ where:

V+ = [v+1 v
+

2 . . . v
+
n ] (30)

The vector of negative ideal solutions is V− where:

V− = [v−1 v
−

2 . . . v
−
n ] (31)
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FIGURE 2. The quality of service attributes of cloud service management (SMI) [59].

Step 8 (Determine the Euclidean Distance for Each CSP
From the Positive andNegative Ideal Solution): For eachCSP,
si, the Euclidian distance of si from the positive ideal solution
is d+i where:

d+i =
√∑n

j=1
(bij − v

+

j )
2

(32)

and the Euclidian distance of si from the negative ideal solu-
tion is d−i where:

d−i =
√∑n

j=1
(bij − v

−

j )
2

(33)

Step 9 (Compute the Closeness Coefficient for Each CSP):
The closeness coefficient for an alternative si is ri and it can
be computed from equation (13).
Step 10 (Ran R):The vector of all closeness coefficients,R,

is given in equation (14). The best CSP is the one of the
highest closeness coefficient.

VII. VALIDATION
The proposed approach is tested and validated through a
use-case scenario which demonstrates its effectiveness and
correctness.
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Step 1 (Identify CSPs): We run our experiments with a
set, S, of eight CSPs where: S = {s1, s2, s3, s4, s5, s6, s7, s8},
m = 8. CSPs could be any real service providers such as HP,
Amazon, Google, GoGrid, Azure, Rackspace, Joynet, and
Linode (not in any order).
Step 2 (Identify Selection Criteria): A set C of nine selec-

tion criteria has been chosen by the Decision Maker (DM) to
evaluate and rank S where: C = {c1, c2, c3, c4, c5, c6, c7,
c8, c9}, n = 9. These selection criteria are illustrated
in Table 2.

TABLE 2. Selection criteria.

Step 3 (Compute the Relative Weights of Criteria Using
BWM): First, DM has to identify the Best (the most impor-
tant) criterion cB andWorst (the least important) criterion cW .

cB = c5 = security management

cW = c2 = sustainability

DM then estimates a pair of preference vectors (i.e., pair-
wise comparisons of criteria) which are (cB-to-Others) and
(Others-to-cW ). The estimates for pairwise comparisons are
shown in Tables 3 and 4 and the pair of preference vectors
(c5-to-cj) and (cj-to-c2) are shown in Table 5. The optimal
weights for selection criteria are computed as described in
equations 22, 23, and 24 and are shown in Table 6 and Fig. 3.

TABLE 3. (cB-to-Others) estimates.

Step 4 (Compute the Relative Scores of CSPs Over Each
Criterion Using BWM): For each criterion cj, DM has to
identify the Best CSP (sB, green) andWorst CSP (sW, yellow)
and estimate a pair of preference vectors for CSPs w.r.t.
cj, (i.e., pairwise comparisons of CSPs over cj) which are
(sB-to-Others) and (Others-to-sW). We have n = 9 criteria

TABLE 4. (Others-to-cW) estimates.

TABLE 5. The pair of preference vectors for criteria.

TABLE 6. Criteria weights.

FIGURE 3. Optimal weights of selection criteria.

and m = 8 CSPs, which means that the DM has to estimate
nine (sB-to-Others) vectors (one for each criteria), each vector
has eight elements which are the preferences of sB to all oth-
ers CSPs (sB-to-si). These vectors are shown in a tabular form
in Table 7. Each column in Table 7 represents (sB-to-si) pref-
erence vector w.r.t. certain criterion cj, for example column 1,
represents (s2-to-si) preference vector w.r.t. c1.
Similarly, DM has to estimate nine (Others-to-sW) vec-

tors (one for each criteria), each vector has eight elements
which are the preferences of all others CSPs to sW. This
can be represented in a tabular form as shown in Table 8.
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TABLE 7. (sB-to-Others) preference vectors.

TABLE 8. (Others-to-sW) preference vectors.

TABLE 9. Pair of preference vectors for CSPs w.r.t. c1.

TABLE 10. Relative scores of CSPs w.r.t. c1.

Each column in Table 8 represents (si-to-sW) preference vec-
tor w.r.t. certain criterion cj, for example column 1, represents
(si-to-s6) preference vector w.r.t. c1, the pair (s2-to-si) and
(si-to-s6) are shown in Table 9.
Now, using the above pairs of preference vectors and

the optimization formula (24), we can estimate the relative
scores for CSPs w.r.t. each criterion. For example, the relative
scores for CSPs w.r.t. criterion c1 (i.e., vector A1) are shown
in Table 10. If we continue this way, we can estimate nine
relative score vectors (A1, A2, . . . , A9) from which we can
construct (8× 9) decision matrix.

Step 5 (Construct the Decision Matrix): The decision
matrix A(8× 9) is defined as follows:

A = [AT1 A
T
2 . . . A

T
9 ] (34)

This matrix is shown in Table 11 (normalized to 100 instead
of 1 for simplicity). An element, aij, in matrix A represents
the normalized relative score of CSP si w.r.t. criterion cj.
Step 6 (Construct the Weighted Decision Matrix): The

weighted decision matrix B(8× 9) is defined as follows:

B = [w1AT1 w2AT2 . . . w9AT9 ] (35)

This matrix is shown in Table 12.
Step 7 (Find the Positive and Negative Ideal Solutions):

For every criterion cj, we find the positive ideal solu-
tion v+j and the negative ideal solution v−j as defined in
equations 28 and 29. The vectors V+ and V− are shown
in Table 13.
Step 8 (Determine the Euclidean Distance for Each CSP

From the Positive and Negative Ideal Solution): The Euclid-
ian distance of si from the positive ideal solution is d+i and
the Euclidian distance from the negative ideal solution is d−i
which are computed from equations (32) and (33). This is
shown in Table 14.
Step 9 (Compute the Closeness Coefficient for Each CSP):

The closeness coefficient for an alternative si is ri and it is
computed from equation (13), this is shown in Table 14.
Step 10 (Ranking): The best CSP is the one of the highest

closeness coefficient. The final ranking for CSPs is shown
in Table 14.

VIII. EMPRICAL EVALUATION
We compared our proposed approach to AHP in terms of
computational complexity and consistency. Experiments for
AHP and the proposed approach have been conducted with
the same setting described in section 4 (i.e., the same cri-
teria and the same CSPs). The steps of AHP are described
in detail in [29], [59] and its computations have been per-
formed using the tool described in [74]. Computations of
BWM have been implemented using the BWMLinear Solver
provided in [75].

A. COMPUTATIONAL COMPLXITY (EFFICIENCY)
We evaluated computational complexity in terms of the
number of pairwise comparisons needed to estimate relative
preferences of criteria and alternatives. Table 15 compares
number of pairwise comparisons in AHP and the proposed
approach. It shows that our proposed approach has fewer
elements in the pairwise comparison matrices and a smaller
number of pairwise comparisons than AHP. Fig. 4 shows
how the number of pairwise comparisons changes with the
number of criteria (or alternatives) in AHP and the proposed
approach, it is clear that the proposed approach always needs
fewer pairwise comparisons than AHP to calculate priori-
ties or weights which means that it needs less computation
effort, hence, it is more efficient than AHP.
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TABLE 11. Decision matrix, A.

TABLE 12. Weighted decision matrix, B.

TABLE 13. Positive and negative ideal solutions.

TABLE 14. Euclidian distances and ranking for CSPs.

B. CONSISTENCY (RELIABILITY)
Consistency ratio (CR) is a measurement of the reliability
of the output of an MCDM method. In [13], [14], Rezaei
concluded that CR in BWM can be calculated from equa-
tion (34). ξ∗ is computed from equation (24) and ξmax varies
for different values of pBW as shown in Table 16.

CR =
ξ∗

ξmax
(36)

TABLE 15. Comparison of the proposed approach vs. AHP in terms of
computational complexity.

TABLE 16. Relationship between ξmax and pBW .

In AHP, Consistency Index (CI) and Consistency
Ratio (CR) are computed using equations (35) and (38),
where λmax denotes the largest eigenvalue of pairwise matrix
(nxn) and n represents no. of criteria or alternatives. RI is the
random index of consistency, the value of RI varies with n,
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FIGURE 4. No. of pairwise comparisons needed to compute priorities in
the proposed approach and AHP.

TABLE 17. Relationship between RI and n.

TABLE 18. Comparison of the proposed approach vs. AHP in terms of
consistency (i.e., reliability of results).

as shown in Table 17 [29].

CI =
λmax − n
n− 1

(37)

CR =
CI
RI

(38)

Consistency ratio ranges between 0 and 1, CR ε [0, 1],
values close to 0 (0%) show more consistency, while values
close to 1 (100%) show less consistency. If CR equals 0 then
the judgments in pairwise comparison matrix are perfectly
consistent. Table 18 and Fig.5 show a comparison between
the proposed approach and AHP in terms of consistency.
As expected, the results show that the proposed approach

FIGURE 5. consistency ratio of the proposed approach and AHP.

always gives smaller CR, thus, it is more consistent and more
reliable than AHP.

C. DISCUSSION
Based on the above results, we report some important features
for the proposed approach as compared to AHP considering
efficiency and reliability. In the above example, we have
m = 8CSPs evaluated and ranked using n = 9 criteria chosen
by the DM. For this purpose, AHP uses10 pairwise compari-
sonmatrices, 1 (9×9) matrix for criteria weights computation
and 9 (8×8) matrices for computation of CSPs priorities w.r.t.
criteria. DM has to make estimates for 9 × 8.2 + 9 × 8 ×
7.2 = 288 pairwise comparisons. On the other hand, the pro-
posed approach uses 10 pairs of preference vectors (Best-to-
Others and Others-to-Worst), one pair (1× 9) for comparing
criteria and nine pairs (1 × 8) for comparing CSPs w.r.t.
criteria. The first pair implies 7+7+1 = 15 (or 2×9.3 = 15),
while the later 9 pairs imply 9x(6 + 6 + 1) = 117
(or 9x(2×8.3) = 117), the total number of comparisons used
by the proposed method = 15 + 117 = 132. Hence, AHP
needs 54% more comparisons than the proposed approach,
the ratio of AHP comparisons to the proposed approach com-
parisons is 2.18. If we use n = 20 criteria and m = 15 CSPs,
then AHP will need 2290 comparisons and the proposed
approach will imply 577 comparisons which means that AHP
has approximately 75%more comparisons than the proposed
approach, and the ratio is approximately 4. These number
illustrates the additive complexity of AHP compared to the
proposed approach as n and m increase. Given that the more
comparisons the DM has to judge, the more inconsistency
of the results, we can justify why the proposed approach has
always smaller values of CR compared to AHP.

IX. CONCLUSION AND FUTURE WORK
This paper proposed a novel MCDM approach that is fea-
sible, efficient and consistent using relative preferences of
criteria and alternatives. The proposed approach integrates
Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) and Best Worst Method (BWM) to rank
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CSPs using evaluation criteria characterizing their services.
BWM is used for acquiring the weights of criteria and rel-
ative scores for alternatives w.r.t. criteria. These acquired
values are utilized by TOPSIS to rank the cloud services. The
proposed approach has been tested and validated through a
use-case scenario which demonstrates its effectiveness and
correctness. We have compared the proposed method to the
most commonly usedMCDMmethod (i.e., AHP). The results
clearly showed that our proposed approach outperforms AHP
in terms of computational complexity and consistency; there-
fore, it is more efficient and more reliable. The future work
may be expanded as the integration of BWM with different
MCDM methods in the cloud service selection problem and
other applications.
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