
Received March 21, 2020, accepted April 5, 2020, date of publication April 10, 2020, date of current version April 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2987065

A Network-Centric Analysis for the Internet
of Vehicles and Simulation Tools
SHAHAB TAYEB 1, (Member, IEEE), SUMANJIT GILL1, FLETCHER TRUEBLOOD2,
ROBERT WONG1, AND MATIN PIROUZ 2, (Member, IEEE)
1Department of Electrical and Computer Engineering, California State University, Fresno, CA 93740, USA
2Department of Computer Science, California State University, Fresno, CA 93740, USA

Corresponding author: Shahab Tayeb (tayeb@csufresno.edu)

This work was supported by the Fresno State Transportation Institute under Grant SB-1.

ABSTRACT The Internet of Vehicles (IoV) is an emerging research framework, with network and graph
theories as two of the major fields. Researchers in these topics use a variety of tools and approaches
to simulate and perform experimentation on their proposed methodologies. A comprehensive study to
facilitate the selection of such simulation tools is lacking from the literature. In this work, we provide
a systematic review of the different simulation platforms. More precisely, the contributions of this paper
are fourfold: firstly, we propose a two-tier hierarchical taxonomy based on the trends in the literature;
secondly, we investigate the strengths and limitations of different simulation platforms; and thirdly, we take
a network theoretic approach to identify the patterns in IoV research. To this end, we create a network of
the publications and populate the edges among them. Community detection is performed using Louvian and
Clauset-Newman-Moore algorithms. To the best of our knowledge, this is a novel approach to reviewing
the literature which provides a more in-depth analysis of the trends in the literature. Finally, we review the
common datasets for IoV experimentation.

INDEX TERMS Complex networks, community detection, OSM, SUMO, VANET, VEINS.

I. INTRODUCTION
The Internet of Vehicles (IoV) is an inter-network of
autonomous and connected vehicles that interact with one
another using an ensemble of wireless protocols. IoV has
gained much interest among researchers and practitioners
alike, and many have applied graph and network theories to
the IoV for improving its design and implementation. Exten-
sive experimentation is required to evaluate the practicality of
the proposed approaches.

With the prevalence of network and graph tools,
researchers have applied such tools to the IoV. Figure 1 shows
the number of such papers from 2013 to 2019, as well as the
number of unique authors. From 2013 to 2016, the numbers
were relatively low, which doubled from 2016 to 2017. This
growth is noticed until today, with over 20 published studies
that apply network and graph theories to the IoV.

Many researchers lack the resources to implement a ‘‘phys-
ical’’ IoV for experimentation [1]–[3]; therefore, simulation
tools play an important role in measuring the performance
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FIGURE 1. The number of papers and authors who applied graph and
network theories to the IoV from 2013 to 2019.

of the proposed research. The selected simulator should be
capable of implementing the different features of the IoV
as well as supporting performance metrics that allow the
researchers to evaluate their methods. Hence, selecting ‘‘the
best’’ simulator for one’s research is a decision that needs to
bemadewithmuch thought. The environment the simulations
are performed, what its capabilities are, its effectiveness in
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providing meaningful results, and its relevancy to the project
are all aspects to be taken into account when deciding on a
simulation tool.

This paper provides an evaluation of both simulation tools
and experimentation methods across different applications of
network and graph theories in the IoV. Based on a systematic
review of the literature, we propose a taxonomy of papers
that incorporate network and graph theories in addition to
classifying them based on the particular IoV application.
Collectively, these serve as a starting point for researchers
intending to research the IoV; and these provide insights on
the research gaps and how to properly conduct meaningful
and effective experimentation.

To perform this research, we review the papers with key-
words ‘network theory,’ ‘graph theory,’ ‘IoV,’ ‘Intelligent
Transportation Systems,’ and ‘VANET’ and identified the
most relevant ones. Our search yielded 1,329 papers pub-
lished between 2015 and 2019. We considered a total
of 59 papers out of them as the most relevant to the proposed
taxonomy. Many publications applies machine learning, deep
learning [4]–[7], and/or game theory [8], which would skew
our findings so we separated them and processed the remain-
ing for further analysis. The proposed taxonomy was itera-
tively optimized and 29 additional papers were considered.
A summary of the papers reviewed and classified in the first
round are presented in Table 1. The proposed taxonomy is
aligned with the framework developed by [9].

TABLE 1. The number of papers per category.

To the best of our knowledge, this work is the first attempt
in applying complex network theory to surveying the litera-
ture. A network or graph is defined as a collection of nodes
and edges [10]. In the context of the IoV, nodes are either
vehicles or Road-Side Units (RSU) and the edges are the
communication links between them. IoV nodes are mobile,
resulting in a dynamic networks, with temporal and spatial
features and a changing network topology over time [10].
For the purpose of this paper, keywords are considered nodes.
Edges are the connection between keywords used within the
same paper. This will allow for a network of keywords to
analyze further.

A. SUMMARY OF CONTRIBUTIONS
This paper has four major contributions to the body of
knowledge:
• Inspired by recent trends in literature, we iteratively cat-
egorize the research in terms of application and broader
focus. The findings form a novel, two-tier hierarchical

TABLE 2. Summary of the acronyms.

taxonomy that categorizes the research at the intersec-
tion of the IoV and network theory.

• We conduct a systematic review on IoV simulators.
We evaluate the strengths and limitations of current
simulations and examine the trends in using specific
simulators for particular research applications.

• We apply complex network theory to our findings and
identify the different communities based on the key-
words, which demonstrates the research trends.

• We also conduct a survey on the most commonly used
datasets for IoV research.

B. ORGANIZATION
The rest of this manuscript is organized as follows: Section II
provides an overview on the fundamental concepts of network
theory, explaining the concepts used in section IV. Section II
also introduces the IoV and its underlying architecture. The
proposed taxonomy is presented in Section III followed by a
summary of the literature for each classification. Section IV
applies network theory on the literature to visually represent
the research trends. Section V provides a thorough analysis of
the simulation tools used in the body of literature, followed
by a discussion on research gaps in Section VI. Section VII
summarizes the findings of this manuscript.

II. PRELIMINARIES
A. FUNDAMENTALS OF THE INTERNET OF VEHICLES
The IoV marks the next frontier of a new digital revolution
in Intelligent Transportation Systems. They enable the trans-
portation industry to increase productivity, the city services to
converge, vehicles to become (semi-) autonomous, and com-
munities to become smarter. There has been much research
on the design, evaluation, testing, and verification of (semi-
autonomous) vehicles and there are various communications
technologies that are being deployed as the IoV backbone.
With the proliferation of support for autonomous and con-
nected vehicles in private and public sectors, many IoV of
different types, sizes, and sensitivity levels exist. Figure 2
presents a high-level logical topology of the IoV backbone,
where Autonomous Vehicles (AV), Road-Side Units (RSU),
Aggregator Stations (AGT), are connected to one another.

The integration of vehicular networks and social networks
gives birth to the vehicular social networks. Wang et al. [11]
provided a review for the privacy challenges in this context.
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FIGURE 2. IoV network backbone.

Ning et al. [12], on the other hand, presented a quality-aware
model for vehicular social networks. Xiong et al. [13] model
IoV as a cyber-physical-social system and analyze its control
and management.

IoV benefits from the advances in data analysis and big
data techniques. Xu et al. [14] studied the mutual impact of
IoV and Big Data on one another. Wang et al. [15] proposed a
software-defined IoV to separate the control and data planes
and thereby, reducing the number of rules without jeopardiz-
ing the real-time transmission performance. Ma et al. [16]
reviewed the artificial intelligence as applied to the IoV by
analyzing three key applications of perception, localization
and mapping; and decision making. Their review included
other emerging technologies of big data, augmented/virtual
reality, and 5G communication. Kebria et al. [17] analyzed
the impact of Convolutional Neural Network layers, filters,
and filter sizes to the image processing in the IoV. They iden-
tified proper filter allocation requirements for this task and
demonstrated that the performance stays largely unaffected
by the varying number of filters.

In terms of routing, there have been numerous studies ana-
lyzing the most efficient routing scheme for a given topology.
Cheng et al. [18] reviewed the problem of IoV routing and
proposed four classifications of topology, position, map, and
path-based routing approaches.

Other noteworthy studies in the IoV realm are as follows:
Guo et al. [19] analyzed the problem of vehicle dynamic state
estimation, including velocity, sideslip angle, yaw rate, and
roll angle. Cheng et al. [20] developed an urban-road con-
nectivity model using possibility, data forwarding time, link
forwarding capability, and packet error rate. Cheng et al. [21]
proposed a position prediction framework for IoV to be
used by medical units. Their framework considered vehicle’s
attributes, road conditions, and driving load.

B. NETWORK PRELIMINARIES
As opposed to full-mesh networks [10], vehicular networks
consist of nodes that may or may not be connected to other
network components. In the case of our keyword network,
a paper not sharing any keywords with the rest of the papers
will result in a component. In networks with two or more
components, a component is considered to be strongly con-
nected if there is a directed path between every possible pair
of nodes belonging to the component. If an edge in the IoV is
considered to be directional, a strongly connected component
would be able to disseminate messages to every vehicle in the
component.

Finding the shortest paths in the IoV is an important
task [22], [23]. Shortest paths can be used to optimize mes-
sage dissemination [24]. They can also facilitate the iden-
tification of the best travel routes [25]. With the diameter
of a network defined as the longest shortest path between
two nodes within the network, it is not uncommon for the
diameter of a network to be small even when the network is
large [10]. The average shortest path in a network measures
the efficiency of information [10]. In the case of the keyword
network, a larger average shortest path can indicate there
is a larger variance in types of keywords used. A smaller
average shortest path can indicate the keywords used aremore
closely related. For the analysis of the keyword network a
large diameter indicates less correlation between keywords.
A smaller diameter means there is more correlation among
keywords.

The degree of a single node,K , is the number of ingress and
egress links [10]. The degree of node K is calculated using
Equation 1

Ki =
n∑
j=1

Aij (1)

where A is an adjacency matrix representing a graph and Ki
is the degree of node i. If there is a connection from node i to
node j, Aij = 1, otherwise Aij = 0.
In the keyword network, a node with a higher degreemeans

it has been used more in the papers covered. A smaller degree
means the keyword has not been used often.

Density is a measure of how connected or sparse a net-
work is. A higher density makes a network more connected.
Density is ratio between the number of edges a network has
over the maximum number of edges a network can have (full-
mesh) [10]. Density is calculated using:

ρ =
2m

n(n− 1)
(2)

where m is the number of edges and n number of nodes.
A higher density in the keyword network correlates to

keywords being paired together often in the papers covered.
It is worth noting that real world networks have a low density
and considered sparse [10].

Closeness centrality is a measure of a node’s average dis-
tance to other nodes in the network. Closeness centrality is
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mathematically defined as:

Cli =
n∑
j dij

(3)

where n is the number of nodes in the network and dij is the
distance from node i to all other nodes in the network [10].
Closeness centrality is used to find the shortest time ordered
paths in a temporal network [26].

Betweenness centrality plays a role in determining a node’s
importance in a network. Betweenness centrality captures
how many times a node lies on the shortest path from/to
other nodes in the network [10]. Betweenness centrality is
defined as:

Bi =
∑
st

nist (4)

If node i lies on a shortest path from s to t , nist = 1. If s
does not lie on a shortest path from s to t , nist = 0 [10].
In the keyword network a keyword with a high betweenness
centralitymeans it lays onmore shortest paths. Being onmore
shortest paths makes the keyword more important as it has
been used often in the papers covered [27].

Katz centrality measures the influence a node has on its
immediate neighbors. Katz centrality ensures all nodes will
have some importance in the network. This is done by giving
all nodes some base influence level [10]. In the keyword
network, a keyword with a Katz centrality will have more
influence on the network, which makes it more important.

III. THE PROPOSED TAXONOMY
This section discusses the categorization performed on
the papers in terms of their experimentation method and
application.

We use the following labels for experimentation methods:
Vehicle Simulation, Dataset, Mapping, Routes/Trajectory,
and Theoretical. Papers under the label Vehicle Simulation
conduct a simulation that has vehicles (represented by a
simple node network) interacting with one another; their
datasets are direct results of the vehicular simulation. Papers
that fall under the category of Dataset include datasets based
on real-life conditions. Papers that are labeled under the
category of Mapping conduct simulations that are based on
real-world maps/routes of cities. Papers categorized under
Routes/Trajectory focus on using common routes and where
the trajectories lie based on available real-world information.
Papers that are categorized as Theoretical are the ones that
contain a synthetic generated datasets for use in analysis.

The labels for application to the IoV are as follows: V2V
Interaction, Congestion Control, Optimization, Predictions,
Pattern Mining, and Offloading. Papers under the label of
V2V Interaction constitute papers with vehicles interacting
with one another (whether it be privacy preservation, com-
munication ranges, etc.). Papers under the label of Conges-
tion Control provide insight in how to alleviate congestion
control. Papers that are labeled under Optimization are cen-
tered around finding optimal paths, how to optimize resource

usage, etc. Papers that are under the label of Predictions
focus on how to predict flow of traffic or speeds of other
vehicles in the network. Papers that are under the category
of Pattern Mining discuss how to reconstruct data correctly
and reliably to use in network communications (e.g., how
to recognize pedestrians). There are too few pattern mining
papers in our taxonomy because we found that most of these
papers use machine learning instead of network or graph
theory. Papers that are categorized as Offloading focus on
how to distribute vehicles or paths to alleviate any potential
for overuse of public vehicles, roads, etc. Figure 3 shows the
different research applications used each year from 2013 to
2019. Figure 4 summarizes how each of the papers analyzed
are categorized in the application categories. Each method,
the right hand side, is linked to its specific application on the
left hand size. The nodes sizes change depending on their
degree. The edge widths vary depending on the amount of
time a method and specific application appear together.

Table 3 summarizes the categorization of the surveyed
literature.

A. VEHICLE TO VEHICLE INTERACTIONS
One of the main features of a VANET is the spatial-temporal
aspect, creating a dynamic graph [26], [28], [37], [41], [81].
Graph theory and complex network theory are used to han-
dle this distinguishing feature of the IoV [29], [38], [42],
[81], [82]. Using network density, diameter, and connectivity,
Loulloudes et al. showed vehicles traveling on freeways tend
to have longer connections with one another as compared
to urban routes [28]. Path ordering, temporal closeness cen-
trality, and strongly connected components have been used
to determine the reachability of a VANET [26]. Temporal
and spatial features were used in finding the time evolution
of important nodes, used in Intelligent Driver Model with
Lane Changes developed by Feng et al. [37]. Through the
use of temporal approximation, Feng et al. demonstrated the
positive impact of vehicle density on network invulnerabil-
ity [35]. Convolutional neural networks and spatial temporal
features were coupled to aid in the detection of anomalies in
traffic flow [38]. Clusteringmethodswere used byAvcil et al.
to track network topology changes and to manage network
stability [29]. Combining the cooperative sensing spectrum
and spatial temporal features of a VANET, a reduction in user
selection frequency was achieved [42]. Store-and-forward
relays have been used to restore connectivity by making use
of the spatial temporal aspect of VANETs [39], [40].

Another core feature of the IoV is inter-vehicle com-
munication, making message dissemination within the IoV
one of the core issues [27], [30], [36]. Message dissem-
ination causes overhead that must be considered to keep
a VANET from being overloaded [27]. Using neighbors
within one and two hops of each vehicle, a complex net-
works for data dissemination protocol among vehicles was
used to find the best relay nodes to retransmit data. The
relay nodes are selected using degree centrality and between-
ness centrality [27]. Through the use of bipartite graphs
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FIGURE 3. Different IoV methods from 2013 to 2019.

and the Kuhn-Munkres algorithm, Chai et al. [57] evaluated
the transmission performance of relay vehicles to minimize
overhead and maximize coverage. The Maximum Broadcast
Efficiency Relaying (MBER) Algorithm is a graph theory
based optimization algorithm, developed to lessen the vehicle
as an obstacle effect within VANETs. MBER outperforms
distance-based routing algorithms [58]. The use of an undi-
rected weighted graph to represent the IoV creates a scale
free network property, where only a few nodes have enough
connections that can be considered as network hubs. With a
scale free network and the small world effect,Wang et al. [36]
developed a hub selection scheme for collecting data. The
data is then used for optimizing message dissemination [83].

Vehicles belonging to a VANET are highly mobile, thus
making the topology of a VANET dynamic [25]. However,
the dynamic topology does have some structure to it which
comes from the underlying road structure. This structure
has some inherent patterns, i.e. stop signs and traffic sig-
nals, which can lead to some patterned mobility [32], [33].
By applying graph theory to capture the dynamic nature of
VANETs, Eiza et al. [25] makes use of the evolving nature
of the network to find reliable routes for highway travel
using Dijkstra’s algorithm. A comparison between Adhoc
On-demand Distance Vector (AODV) and Link State Geo-
graphic Routing protocol(LSGR) revealed that LSGR out-
performs AODV in packet drop, throughput, and average
end-to-end delay [33].

B. OFFLOADING
An issue with VANETs and other mobile networks is that
devices in the network have limited resources for perform-
ing operations [45], [80]. To solve this problem, offloading
calculations using fog computing, edge computing, or cloud
computing are often used to solve the issue of limited

resources [45], [80]. Luo et al. propose a method using a
graph theory based algorithm to improve data sharing and
cooperation in edge computing assisted 5G network [45].
Another approach is the quality of experience for the user,
which Zhang et al. improve by introducing mobile edge com-
puting using an approach based on Skyline Graph Model
and Directed Acyclic Graph theory to store and update the
network [80].

C. CONGESTION CONTROL
Traffic congestion is a common problem due to the dynamic
environment, rush hours, and deadlocks [61], [75], [76].
VANETs have the potential to solve this problem using a
routing technique to direct vehicles in a way that reduces
congestion in traffic [61], [63], [71], [75], [76]. Xia et al.
propose a greedy traffic light and queue aware routing
protocol (GTLQR) using network theory to reduce traffic
congestion [75]. Perronnet et al. also focus on routing at
intersections, but also includes road reservation using a graph
theory method to prevent deadlocks in traffic [76]. Other
papers focus on an opportunistic routing protocol like the
Dempster-Shafer evidence theory based method proposed
by Kashani et al. or propose temporal graph methods to
solve the routing problem due to the high mobility of a
VANET, such as in Zhao et al. [61], [63]. Khan et al. pro-
pose a different approach using oriented evolving graph
and clustering to improve reliable routing requests in the
network [71].

D. PREDICTIONS
Predicting components of a VANET such as traffic speed
and the best route for vehicles is important for being
able to better control the traffic and to optimize road ser-
vices [25], [69], [70]. The majority of papers classified under
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TABLE 3. Taxonomy of graph and network theory papers.
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FIGURE 4. Bipartite network of methods, left hand side, and specific application,
right hand side. Node sizes vary depending on the degree. Edge widths vary
depending the number of times a method and specific application occur together.

predictions focus on real time traffic speed to enhance rout-
ing [69], [70], [72], [73]. Tao et al. suggests a Delay-based
Spatial-Temporal Autoregressive Moving Average model to
deal with the travel delay problem in short term traffic
prediction. Other papers focus on deep learning such as
in Elbery et al. where they propose a graph convolutional
generative autoencoder which uses deep learning and graph
theory to predict real-time traffic speeds [69]. A similar
paper by Ge et al. propose a temporal graph convolutional
network technique to capture the spatial/temporal compo-
nent of the traffic speed prediction problem [70]. Kim et al.
take a slightly different approach using a recurrent neural
network with a spatio-temporal graph to learn and predict
traffic features [73]. Other prediction papers focus on creating

routes updated by an evolving graph such as in Eiza et al.
instead of predicting traffic speeds [25]. Elbery et al. propose
another prediction application for suggesting carpools using
a weighted bipartite graph between users and places [66].

E. OPTIMIZATION
Transmission of communications between vehicles is critical
for the IoV [84]. Using stochastic network calculus theory
and Dijkstra’s algorithm, Peng et al. [53] develop a method-
ology to minimize end-to-end transmission delay between
source vehicles and destination vehicles. This is done while
optimizing routing constraints. Chai et al. [57] use bipartite
graphs, network calculus theory, and the K-M algorithm to
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evaluate the usage of relay vehicles in optimizing transmis-
sion performance. Communications should also be optimized
to follow the shortest path between vehicles when transmit-
ting information. Kochhar and Mandoria [24] proposed a
protocol derived from ant-based routing algorithms to deter-
mine which path is optimal. In specific cases of traffic jams
and accidents in the network, the communications between
vehicles needs to spread rapidly, which falls prey to trans-
mission delay. Wang et al. [60] create a crowd sensing-based
system along with a cluster-based optimization framework to
minimize average delay, delivery ratio, cost, etc. in these cir-
cumstances. Huang et al. [58] develop a graph theory-based
optimization algorithm for VANETs, the maximum broadcast
efficiency relaying (MBER) algorithm. The messages relat-
ing to road safety are relayed effectively while also meeting
criteria of minimal delay and reliability.

Optimization of RSU placement pertains to the well-being
of the IoV ecosystem, since RSUs are facilitating struc-
tures for network communications. Bao et al. [59] develop a
method using space-time graphs to determine where RSUs
should be placed optimally, while still minimizing end-to-end
delay. Another strategy to effectively place RSUs in the IoV is
discussed in thework ofKim et al. [55], who use graph theory
and their proposed polynomial running time approximation
algorithm. Mehar et al. [51] attempt to address RSU place-
ment with their two-step solution, ODEL, which is based on
a genetic algorithm coupled with Dijkstra’s algorithm. Their
solution reduces delay as well as deployment cost.

Optimal routing for vehicles in the IoV is a key concern.
Zhang et al. [52] employ geocast spatio-temporal routing to
determine the best routing paths to provide optimal quality-
of-service for data delivery, while maintaining a scalable
method. Quality of service is also a focus in Cui et al. [62],
who use network calculus and bipartite graphs to optimize
wait time for passengers and autonomous vehicles. They also
aim tominimize energy consumption and travel time. Further,
they propose an online fleet management system to optimize
traffic flow in the network.

Topology control in a VANET is challenging, as the net-
work is temporal and transient. Koti and Kakkasageri [56]
propose a dynamic algorithm based on stationary topological
algorithms to address this concern. The approach enhances
the practicality of packet transmission with guaranteed net-
work connectivity.

Optimization of resources is critical to vehicular networks,
as they are very limited. Throughput in the network needs to
be maximized for optimal functionality. Li et al. [64] attempt
to address this issue by creating an algorithm based on greedy
algorithms for channel allocation.

F. PATTERN MINING
Security in the IoV is fundamental and a new form of mali-
cious activity are likely to develop. Gündüz andAcarman [79]
develop an investigation framework for IoV forensics based
on the interaction provenance model. They store and iden-
tify evidence (e.g., communications) and verify its integrity.

After experimentation, they ensured their system’s applica-
bility to the IoV and defense in adversarial scenarios.

Identification and interaction of objects and vehicles in
the environment is another important aspect to the IoV.
Hossain et al. [78] develop a multiple-object vehicle tracking
system based on an affinity network of directed graphs. The
accuracy and optimization of this system outperforms various
clustering-based methods attempting to solve the same issue.

IV. NETWORK ANALYSIS OF THE LITERATURE
The network created in Figure 5 was created from the key-
words listed in each author’s paper. The nodes are created if
a keyword is not present in the network yet. Once the nodes
have been added to the network, edges are then created. Edges
are added to link keywords used with in the same paper and if
a keyword can be linked from a keyword from another paper.

After the network was created several network measures
were applied. The first being node degree. The five nodes
with the highest degree were: VANETs with a degree of 152,
QoS with a degree of 28, graph theory with a degree of 27,
optimization with a degree of 27, and delays with a degree
of 23. The average node degree for the network was 10.91.
From analyzing node degree, VANETs is by far the highest
degree making it the most important node in the network.

The next network measure applied was, The average short-
est path between keywords with in the network. The average
shortest path was 2.22, meaning between each paper can be
linked to another by an average of 2.22 keyword hops. The
diameter of the network was 4, meaning the most separation
between papers was just 4 keyword hops.

The next network measure applied was betweenness cen-
trality, which measures the amount of times a node lies on
a shortest path. The five nodes with the highest between-
ness centralities were: VANETs at 0.89, heuristic algorithms
at 0.086, IoT at 0.069, graph theory at 0.063, and ITS at
0.061. These nodes are common terms used when researching
papers with in the IoV, so they do appear on more shortest
paths between keywords.

The next networkmeasure applied is Katz centrality, which
measures the influence a node has with in a network. The top
five nodes were: VANETs at 0.45, ITS at 0.37, IoT at 0.38,
CRVANETs at 0.35, heuristic algorithms at 0.31. These nodes
exhibit more influence throughout their neighbors and thus
the network itself. These nodes are also common terminology
when researching with in the IoV.

A. COMMUNITY DETECTION: LOUVIAN
Figure 6 was created by applying the Louvian community
detection algorithm to the previously created keyword net-
work in Figure 5. Communities are placed around a circle
with the first community starting at zero degrees. The nodes
represent keywords belonging to each community and are
placed in a circular pattern around the community center. The
nodes size depends on the degree of the node. The edge width
varies depending on how many times a pair of keywords are
used with in the same paper. The Louvian algorithm resulted
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FIGURE 5. Keyword network constructed from surveyed papers. Node sizes vary based on the
degree of the node. Edge width vary based on the frequency of the keyword pairs.

in eight communities. Keywords from each community can
be seen in Table 4.

Figure 7 was created by counting how many times a key-
word belonging to a specific category belonged to a com-
munity within Figure 6. Figure 7 shows the break category
breakdown of each of the eight communities from Figure 6.
Community names on the x-axis describe the major cate-
gories within the community. The V2V/Congestion commu-
nity is comprised of mostly V2V papers and it contains the
most congestion Papers of any other community. Offloading
and optimization have a category of their own, meaning those
communities only have keywords that belong to optimization
and offloading papers. A common theme in the optimization
category was, optimizing the routes taken. This can be seen
in the community labeled routing/optimization.

B. COMMUNITY DETECTION: CLAUSET-NEWMAN-MOORE
Figure 8 was created by applying the Clauset-Newman-
Moore algorithm to the previously created keyword graph
network in Figure 5. Communities are distributed around a
circle with the first community placed at the zero-degree
mark. The nodes represent keywords belonging to each
community and are placed in a circular pattern around the

community’s center. Node sizes vary based on the degree
of the node; a higher degree makes the node bigger. Edge
widths depend on the number of times a keyword pair is
used with in the same paper, wider widths mean the keyword
pairs appears more frequently with in a paper. The Cluaset-
Newman-Moore algorithm resulted in six communities. Key-
words from each community can be seen in Table 5.
Figure 9 was created by counting how many times a

keyword belonging to a specific category belonged to a com-
munity with in Figure 8. Figure 9 shows the break category
breakdown of each of the eight communities from Figure 6.
Community names on the x-axis describe the major cate-
gories with in the community. The community label V2V is
comprised of only keywords belonging to V2V papers.

C. COMMUNITY DETECTION RESULTS
When comparing Louvian and Clauset-Newman-Moore
algorithms, Louvian provides more communities that reveal
overlap among the categories of papers. For example, routing
and optimization are common overlaps in categories, as find-
ing the optimal path could have implications in most cate-
gories. Louvian also detected communities that are comprised
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FIGURE 6. A network of communities created by applying the Louvian community detection algorithm to the network
of keywords. Communities are placed around a circle with community one starting at the zero degree mark. Nodes are
drawn in a circular pattern around the center of the community. Node sizes vary on the degree of the nodes. Edge
width vary based on the frequency of keyword pairs.

of primarily one type of paper, offloading, V2V, and
Optimization.

The Clauset-Newman-Moore algorithm provides more
condensed communities, resulting in six communities,
as opposed to eight communities detected by Louvian.
Clauset-Newman-Moore provides the same communities
comprised of one type of paper, V2V, optimization and
offloading. The community labeled routing in Figure 9 is
where the majority of routing papers belong. While the other
communities are fairly balanced between five different types
of papers.

V. A COMPARATIVE ANALYSIS OF SIMULATION TOOLS
Many IoV papers use simulators to validate their pro-
posed method on the given application. There are numerous

simulators and tools that can be used for the IoV, and most
researchers use a combination. The most common simula-
tion tools are Open Street Maps, Objective Modular Net-
work Testbed in C++ (OMNeT++), Simulation of Urban
Mobility (SUMO),Vehicles inNetwork Simulation (VEINS),
Network Simulator (NS), and MATLAB. The different simu-
lators and tools used for papers by year from 2015 to 2019 are
shown in Figure 10.

A. OPEN STREET MAPS
Open Street Maps (OSM) is a free open source software cre-
ated in 2004 by Steve Coast. OSM is a collaborative project
where users can edit the map data. The geo-data created by
the users is considered to be the primary achievement of the
project. Since 2004, the number of OSM users has increased
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TABLE 4. Louvian community keywords.

to over two million. Each registered user has the ability to
edit the OSM data through means of aerial photography and
manual surveys, among other free sources. The OSM data is
available under the open database license [85].

The data obtained from OSM can be used in such ways
as producing paper maps, geo-coding of address and place
names, electronic maps, and route planning. Some users of
OSM include Facebook, Foursquare, and MapQuest [85].

While OSM is not a simulator itself, it is a tool that supple-
ments simulations. By accessing the geo-data from the open
database license, users can import that data into simulators to
use real-world maps. Using real maps for simulations saves
time onmanually creating a map and allows for more realistic
simulations.

B. OBJECTIVE MODULAR NETWORK TESTBED IN C++

The Objective Modular Network Testbed in C++
(OMNeT++) is primarily a network simulator based on
C++. OMNeT++ uses C++ programming language to
program the network simulator to determine what the nodes
in the simulation do and then an omnetpp.ini file to specify

the simulation parameters. OMNeT++ is not a network
simulator by itself, but can be used to create network sim-
ulators for different types of networks such as ad-hoc net-
works, sensor networks, wired and wireless communication
networks, etc. Data can then be easily exported into a CSV,
JSON, OMNeT++ Scalar or Vector, or SQLite Scalar or
Vector file to analyze the results using R, MATLAB, Python,
or any other visualization programs. OMNeT++ has many
simulation models and tools on their website and has easy
to find tutorials for working with the program and has a
user friendly interface. OMNeT++ works for customizing
network simulators of various types, but does not offer vehic-
ular movement features of other simulators, for example to
simulate VANETs.

C. SIMULATION OF URBAN MOBILITY
The Simulation of UrbanMobility (SUMO) simulator is open
source and designed specifically to simulate large road net-
works. The simulator includes structures for different types
of roads (i.e. parking, surface roads, highways) and traffic
management structures such as traffic lights, speed signs,
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TABLE 5. Clauset-Newman-Moore community keywords.

and sidewalks. The main simulator supports pedestrian, bicy-
cle, railway, waterway, and standard vehicle simulation.
Using a few files, road networks can be created along with
other structures with each road having different speed limits,
and another file can program routes for different vehicles in
the simulation. SUMO includes additional features such as
emergency vehicles, electric and hybrid vehicles, emissions,
etc. The software has multiple extensions that can be used to
enhance the simulator, and works well with OpenStreetMap
to importmaps around theworld [86]. SUMO is easy to install
and works well in simulating road networks but does not
simulate network communication as required in VANETs.

D. VEHICLES IN NETWORK SIMULATION
Since OMNeT++ is a network simulator but lacks vehic-
ular movement simulation, and SUMO is a road network
simulator but lacks vehicular communications, Vehicles in
Network Simulation (VEINS) is a software that combines
the two programs to work in unison to simulate both compo-
nents of a VANET. VEINS includes instructions about how
to link the two simulators as well as links to the instruc-
tions for downloading and installing each of the programs.
VEINS relies on models based on IEEE 802.11p and IEEE

1609.4 DSRC/WAVE network layers. VEINS allows for the
addition of other parameters in the omnetpp file such as
RSU placement and vehicles parameters that are not typically
included in an OMNeT++ simulation. While VEINS itself
does not simulate the network, if working with SUMO and
OMNeT++ for simulating VANET, it connects the two pro-
grams to run simultaneously and collects the data on both the
network and traffic components of the VANET [87].

E. NETWORK SIMULATOR
Network Simulator (NS) is a discrete-event computer net-
work simulator. Its main purpose is for networking research,
and supports simulation of routing, multi-cast protocols, and
IP protocols over both wired and wireless networks. It also
supports routing and queuing algorithms. In relation to the
IoV, it allows for the implementation of IEEE 802.11p. The
simulator is applicable for congestion control, as it allows
researchers to understand mechanisms on a deeper level with
the implementation of protocols, along with the documen-
tation and logs of the simulations. NS requires multiple
packages (i.e., Tcl/Tk with its header files, NAM, a C++
compiler) to be running in connection with itself. NS on its
own requires 320 MB of disk space. Although the setup for
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FIGURE 7. A bar chart used to describe the make up of each community in the Louvian community network, in terms of our categories. Labels for each
community are based on the make up of the community.

the simulation is more complicated, it is developed for simu-
lating networks, which is essential to conducting experiments
for the IoV.

F. MATLAB
MATLAB is a matrix-based tool that is commonly used to
visualize and analyze data. Visualization is accessible and
convenient when using MATLAB’s built-in graphics capabil-
ities. Various data distributions, 2-D and 3-D plots, and ani-
mations are common methods used for analysis. MATLAB
also has an extension, Simulink. Simulink takes input datasets
from MATLAB and simulates it in real time. The results will
then be output to MATLAB for visualization. MATLAB is
organizational, where large-scale projects can be created and
multiple people may work on it simultaneously. Adaptabil-
ity is also available in MATLAB, as libraries in program-
ming languages besides R (e.g., Python, Java, C++) can
be imported, therefore allowing those languages to be used
instead. Although the software is not directly developed as
a simulator, it shows compatibility with its ability to con-
duct visualizations and its compatibility with ThingSpeak,
an IoT analytics platform. The software runs on Windows,
Linux, and Macintosh, and requires approximately 11 GB of
memory.

G. SIMULATOR COMPARISON
NS is similar to OMNeT++, as they are both network simu-
lators that can build simulations. Both NS and VEINS require

other components to be downloaded to create a more realistic
simulation. In addition, both support IEEE 802.11p, which is
key to the Internet of Vehicles. SUMO does not compare to
the other aforementioned test beds analyzed, however, it is a
tool that can be used in unison with OMNeT++ and VEINS
to simulate traffic. MATLAB and OSM are both program-
ming tools, rather than simulators. MATLAB is primarily
used for visualization of IoV datasets and shares insight
with data analytics. OSM allows for both real-world data
extraction as well as mapping.

Other less commonly used simulators in IoV papers
include: Opportunistic Network Environment (ONE) simula-
tor, SQLite, App Tune-up Kit application, VISSIM, MOVE,
Abstract Notation Syntax One, MIXIM, VanetMobiSim,
ndnSIM, and custom simulators using various tools devel-
oped by the researchers.

H. DATA SETS
Table 6 summarizes the different data sets in the papers
analyzed in this survey. A third of the papers in the following
table used OSM for information about road networks around
the world [30], [52], [55], [68], [69], [82]. The majority of
these papers used the OSM data with generated data to create
synthetic data sets to test their proposed method, these are
summarized in more detail in Section VI. However, some of
these papers combined the OSM data with other collected
data to use as a real data set [52], [69]. Other data sets
focused on real-world data collected by various sources on
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FIGURE 8. A network of communities created by applying the Clauset-Newman-Moore community detection algorithm
to the network of keywords.Communities are placed around a circle with community one starting at the zero degree
mark. Nodes are drawn in a circular pattern around the center of the community. Node sizes vary on the degree of the
nodes. Edge width vary on the number of occurances the number of times a keyword pair is used.

cars, buses, and taxis and these are also classified as real data
sets [26], [28], [36], [46], [62], [69], [70], [72], [73]. Two
of the locations were used multiple times, but with differ-
ent data sets, Beijing, China [36], [52], [62] and Cologne,
Germany [28], [69]. These real data sets used in the papers are
summarized in more detail. Data sets used that were not on
road networks were also used as real data sets to test proposed
methods and are also summarized below.

In Qiao et al., two data sets of Beijing GPS taxi traces,
one from 12 am to 1 am and the other from 7:30 am to
8:30 am, to analyze the temporal structure of VANETs [26].
The original data set included 2927 taxis with data, such
as coordinates, collected every minute, all day on Jan. 5,
2009 [88]. Other data collected is not specified, but from the
coordinates, speed and other variables can be calculated and
used for testing IoV applications. Beijing is a good area for

collecting real data due to the number of taxis used, however
usage of data from only one day does not give multiple
samples to testing variations in different parameters.

In Wang et al., they use the Microsoft Research Asia
T-Drive taxi data from the Beijing area to analyze traffic
information collection and diffusion in IoVs [36]. The data set
includes 10,357 taxis which creates about 15 million points
and ranges a total trajectory distance of 9 million kilome-
ters [89]. The data includes the ID, date, time, longitude,
and latitude of each point and separates data into files that
each contain the data from one taxi. The data set provides
good real-world data on vehicle movement, especially in a
more congested city such as Beijing, but does not provide
any information such as vehicle speed, however, it could be
calculated from the times and locations. The data set also
covers an entire week which provides more variation and
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FIGURE 9. A bar chart used to describe the make up of each community in the Clauset-Newman-Moore community network, in terms of our categories.
Labels for each community are based on the make up of the community.

FIGURE 10. Frequency of the simulation tool 2015-2019.

multiple samples, but does not discuss how long the data was
collected for during each day.

Zhang et al. use a quality of service data set to assess the
quality of experience in mobile edge computing [80]. The
paper uses the second version of two of the Quality of Web

Service (QWS) data set which includes 2507 web services
and their measurements [90]. The data set includes nine mea-
surements of multiple benchmarks averaged over a six day
period, as well as the service name and WDSL address. The
benchmarks used are response time, availability, throughput,
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TABLE 6. Summary of data sets.

successability, reliability, compliance, best practices, latency,
and documentation. The data collected is good for analyzing
communication and quality of service, but does not include
mobility for the IoV, which is an essential component and
affects the quality of IoV services.

OpenStreetMap road network topology and GPS data
from three bus routes in Beijing China are used to evaluate
Zhang et al.’s proposed method as well as a synthetic data
set [52]. The GPS data is gathered from the three bus routes:
No. 939, No. 944, and No. 983; collected between 6 AM
and 10 PM on March 13 with reports every 20 seconds [52].
Each report contains a timestamp, ID, line number, current
location, speed, and other information [52]. The data set used
seems to have enough information to provide a thorough
simulation to test an IoV application and includes important
parameters that most other data sets include.

Ge et al. use California Transportation Agencies Perfor-
mance Measurement System (CalTrans PeMS) data sets
PEMSD7, for district 7, and PEMSD4, for district 4, of Los
Angeles [70]. They select 204 during Jan. to Mar. 2018 and
325 sensors during Jan. to Mar. 2017 from PEMSD7 and
PEMSD4, respectively, and extract speed information to test
their traffic speed prediction [91]. In both data sets, the peri-
ods of Jan. 1 to Mar. 14 are used for the training sets
and Mar. 15 to Mar. 31 are used for the testing set [70].
The CalTrans PeMS data is collected from real-time sensors
located around the freeway network in California and can be
accessed through CalTrans. This data set includes extensive
real data that can be used for testing many applications in the
IoV due to the number of sensors and extensiveness of the

collection area. However, the data collected is not specified
which is important for the use of the data set.

The Stanford Network Analysis Project (SNAP) Gowalla
data set is used in Elbery et al. to train and test their proposed
carpool prediction method [66]. The training data is from
Feb. 2009 to Aug. 31, 2010 and future data to test the method
is from Aug 31, 2010 to Oct. 2010. SNAP is a collection
of large network data sets including social, autonomous sys-
tems, temporal, and various other networks. Gowalla is a
location-based social networking website, and the data set
consists of 196591 nodes and 950327 edges and includes
the user ID, check-in time, latitude, longitude, and location
ID [92]. This data set provides data that works with analyzing
connectivity between users which works for carpool predic-
tion, but does not include any vehicular data for testing or
simulating an IoV and also does not specify the data collected
from users. Using the majority of the first part of a data set
for training and less of the second half the data set for testing
predictions works well for testing a prediction application.

In Cui et al., another Beijing taxi data set is used, due
to their similarity to autonomous vehicles, to analyze
their proposed methods of using network calculus and a
Kuhn-Munkres algorithm [62]. The data set contains trajecto-
ries of 12509 taxis in Beijing from Nov. 1 to 27, 2012 which
resulted in 785.4 million entries each containing the time,
location, ID, and taxi state [62]. This data set takes into
account the taxi state (i.e. vacant, loaded, parking, not in
service, or other) which allows for altering the data set to
fit the needs of the application. However, it does not discuss
how many vehicles had data collected on, although it can be
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assumed that since it is Beijing taxi data, there is an extensive
number of vehicles the data was collected on.

In Chen et al., a synthetic data set based in Madrid was
used go approach maximizing message dissemination [46].
The data set is a generated realistic mobility trace in Madrid;
it has a traffic flow rate of 3,600 vehicles per hour with a
speed limit of 120 kilometers per hour. Three lanes were used
in the simulation, which allows for an evaluation of how the
scheme performs in wide, more populated areas. By having a
large area to test their algorithm in, the authors are able to
analyze how popular broadcasting are received among the
vehicles. A limitation of this paper is that more rural and
sparsely populated areas are not included in the evaluation,
so the algorithm analysis is not comprehensive.

Gündüz and Acarman [79] use the KITTI data set to
approach improving real-time object detection by vehicles.
The KITTI data set is composed of 7,481 training images and
7,518 test images with 80,256 labeled objects. The data is
collected from Karlsruhe, a mid-sized city; both rural areas
and highways are located in the city, which provides for an
adaptive use of the data set. The authors select images that
contain a maximum of 15 cars and 30 pedestrians per image
so they may evaluate how vehicles using their algorithm will
respond to different densities of objects in their paths.

In Yu et al., [69] traffic data collected in Cologne is used
to develop and test an algorithm to estimate the speed of
other vehicles. The data set used in the work implement
16,658 sparsely connected nodes as well as 37,034 edges.
It stems from a larger set of information containing 3.54 bil-
lion GPS and speed records of over 700,000 individual trips
taken over 23 hours. Speeds are randomly selected from the
speed records for the vehicles in their simulation; this enables
the authors to conduct experiments that rigorously tests the
ability of their algorithm to estimate traffic speed.

In Tao et al. [72], a real data set from England was used
to analyze how an algorithm centered around predicting
short-term traffic flow would respond in a vehicular net-
work. The data set contains traffic flow data with intervals
of 15 minutes; the times the data was collected were all
Wednesdays in May of 2015. Seven different roads were
selected to extract the data from. This enables the authors
to test their scheme in places with varying amounts of traf-
fic flow to obtain a more comprehensive analysis of their
scheme. A limitation of this approach is the times data was
collected. Specifically choosing Wednesdays in May with
unstated time slots does not provide an accurate represen-
tation of how traffic will always flow. More defined and
consistent data collection times need to be established on
different days to gain a more inclusive and comprehensive
data set to experiment on.

Loulloudes et al. [28] use the TAPAS-Cologne dataset to
describe patterns and characteristics of how vehicles behave
in the network. The portion of the dataset used is during
a traffic rush period from 6:00 AM to 8:00 AM; the area
in question is 33 × 35 kilometers with 134,645 roads and
42,148 intersections. 75,600 unique vehicles were used to

analyze vehicular behavior; by using such a large amount of
vehicles, a more accurate representation of the behavior in
the network can be demonstrated. To properly evaluate all
vehicular behavior in a network, more time slots with less
traffic flow should also be analyzed to identify behavior of
vehicles in a more sparse area.

Kim et al. [73] use a data set from Santander, Spain to
support their claim that embedded topology improves the
process of vehicles learning traffic features. The data set
comes from case studies in the SETA EU project [93] and
contains real traffic speed data. Measurements for the data set
were taken every 15 minutes for unstated times throughout
the year 2016. The first nine months of data was used as
a training set and the following three months were used to
evaluate their scheme. This great amount of data allows for a
deeper andmore realistic analysis of how vehicles will benefit
from embedded topology. A limitation of this paper is that the
time slots are unstated which does not provide an idea of what
the sample of vehicular data is representing.

TABLE 7. Summary of experimentation methods.

I. SIMULATOR-APPLICATION RELATIONSHIP
Table 7 refers to a table relating IoV-related applications
discussed in the paper to simulators used by the authors. For
V2V interactions, MATLAB, SUMO, and NS were the most
popular simulation tools; they are also among the most com-
monly used simulators discussed in this paper. This can be
attributed to the different methods of experimentation in the
category of V2V interaction, which would call for different
operation tools for different experimentation (e.g., dataset
versus vehicular simulation). For optimization in the IoV,
OMNeT++ was the most commonly used tool. Simulations
centered around routing were performed in Network Simu-
lator. Despite efforts to find relevant papers from 2016 that
incorporated simulation tools, there was a noticed trend that
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FIGURE 11. Different IoV experimentation 2013-2019.

focused on data-centric evaluations rather than conducting
experiments using simulations.

J. EXPERIMENTATION METHODS
Most papers opt to perform vehicular simulations (54%
of papers in this survey), with many authors opting for a
multi-lane street or highway as the simulation’s map layout.
These simulations typically constituted of three different sce-
narios: sparse traffic, medium-level traffic, and dense traffic.
This way, the application of their algorithm or methodology
can be evaluated at different levels of traffic density to provide
a more well-rounded analysis of its performance.

Datasets extracted from transportation sources
(e.g., CalTrans) are the next most-common form of experi-
mentation. This can be attributed to the availability of large
sets of data points. Following the applications in the proposed
taxonomy, the information from the datasets (which may
include: vehicle paths, speeds, number of vehicles, etc.) is
visualized and analyzed.

Less commonly used experimentation methods are: using
common city routes or maps, and synthetic datasets.

VI. DISCUSSION ON SIMULATION STRENGTHS
AND LIMITATIONS
In the category of congestion control, none of the papers use
datasets to test their proposed method. This is linked to the
fact that the traffic and congestion have already happened
in a given dataset and therefore, it would be inefficient to
control the traffic. Therefore vehicle simulation is neccessary
for these papers. All but one of the congestion control papers
use NS2, and the one that doesn’t uses VISSIM. Three papers
that useNS2 also use SUMO to simulate the vehiclesmobility
part since NS2 simulates the network part. The last paper uses
MOVE and Matlab as well as NS2 and SUMO. Some of the

congestion control papers vary cars, speeds, and densities,
but none of them include RSUs or vary the duration of the
simulation which is important to thoroughly test the method.
The congestion control papers are able to reduce network
congestion, improve end-to-end delays and packet ratio, how-
ever they do not consider how their method works in a lower
density network, or it does not work as effectively in a less
dense network. It is relevant to find a method of congestion
control that works in all densities of traffic.

For the offloading papers, two papers use datasets. One
uses Matlab, and the other paper uses NS3 with Matlab. Only
one of the papers takes into account varying the number of
cars, but neither test multiple densities or durations. Since
the amount of processing that takes place can vary based on
the number of cars and the time, it is important for these
experiments to include consider environments. It is also good
to use datasets for testing how the method works in the real
world, but variation in the datasets used is also important.
One paper demonstrated an improved computation time, and
the other reduces the travel time and energy consumption,
and the last paper increases efficiency, but each one could be
improved in efficiency, applied to different traffic densities,
and work with a communication standard.

Of the predictions papers, five of them use datasets, three
of them use OMNeT++ and two use SUMO, with one
using the VEINS combination. Some of the papers also use
OSM, PyTorch, NS3, and Sklearn. Two of the papers vary
the number of cars, one paper varies the speeds, and one
paper varies the density. Since predictions need to take into
account various situations, the experiments need to include
more variations in duration and scenarios, among others. The
papers that use datasets work well since predictions should be
tested in a real world environment, however they should also
be evaluated for varying traffic conditions to make sure the
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TABLE 8. Overview of simulation parameters for predictions.

TABLE 9. Overview of simulation parameters for V2V interactions.

method works in all scenarios. The current prediction papers
perform well in RMSE, transmission ratio, end-to-end delay,
route lifetime, number of request ratios, producing a complete
speed map faster, more accurate, and work better in higher
density scenarios. However, papers can still be improved
under overhead, computational complexity, and different road
scenarios and structures. Table 8 summarizes the simulations
of the different predictions papers.

Table 9 is a breakdown of each parameter for the simu-
lation (number of vehicles, number of RSU, vehicle speeds,
density of vehicles, duration of simulations, scenario, num-
ber of lanes, and number of simulations ran). Each column
in Table 9 represents whether a parameter was varied during
the simulation. For example, the first row has a check mark
under the column referring to vehicles, whichmeans that sim-
ulation used different number of vehicles for each simulation.
The more thorough simulations have more check marks and
other information available.

The three most thorough simulations were discussed
in [47], [50], and [28]. All three of these simulations were ran

for at least two minutes and thoroughly validated using mul-
tiple simulations under different circumstances. For exam-
ple, [28] ran their simulation for 7200 seconds multiple times
while varying the number of vehicles, vehicle speeds, density
of vehicles, and used multiple lanes.

A common theme among the papers in Table 9 is the
constant number of RSUs throughout simulations. Another
common theme is short simulations. Short simulations may
not yield enough data to thoroughly test their approaches.
A final common theme throughout the simulations ran is not
running multiple simulations for each test. Running multiple
simulations gives a well-rounded set of scenarios to test and
lead to better results.

For the optimization papers, many of the authors per-
formed simulations with multiple factors taken into account.
The simulation conducted by Wang et al. is thoroughly
conducted. They ran 100 simulations with a duration
of 168 hours. The speeds of the vehicles were varied from
20 km/hr to 60 km/hr, with a communication range of 40 km.
They included four performance metrics: average delivery
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TABLE 10. Overview of simulation parameters for resource optimization.

ratio, average delivery delay, average communication cost,
and access ratio, which enabled a well-rounded evaluation.
Table 10 summarizes these parameters for the resource opti-
mization papers.

There are still gaps in the simulations. A commonality
between simulations is that the number of RSUs are only
varied in papers whose aim is to optimize RSU placement.
Other papers not optimizing RSU placement should also
include tests where there are different numbers of RSUs for
varying numbers of vehicles. Furthermore, the duration of the
simulations need to be extended to gather larger amounts of
data to base their results off of [30].

VII. CONCLUSION
The concept of the Internet of Vehicles (IoV) is becoming
an increasingly relevant topic as it allows for more efficient
traffic networks and better transportation. Due to its popu-
larity and the importance of many of its features, there is a
broad library of research on the IoV. This paper summarizes
the research projects that utilize network or graph theory,
and presents its different applications to the IoV, as well as
a discussion on the strengths and limitations and the sim-
ulations conducted. This paper paves the path for under-
standing the existing research on the IoV. This paper also
summarizes the different simulation tools most relevant to
IoV research and how they were used in the papers to provide
an analysis on which simulators are most appropriate for
various applications. Finally, the paper presents summary of
findings and discusses their key contributions to the body of
research. The shortcomings on the conducted simulations are
also discussed, which acts as the baseline for future research
to be performed on.

We identified the relationships among the keywords and
the categories by applying two community detection meth-
ods, Louvian and Clauset-Newman-Moore. These findings
visualize the trends in the literature and can guide researchers
on the existing challenges. Such an approach to surveying the
literature is a novel method, revealing many patterns that may
be hidden to the naked eye.
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