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ABSTRACT AnH-infinity model predictive fault-tolerant control strategy is proposed for multi-phase batch
processes with interval delay and actuator failures. First, state variables, state errors and output tracking
errors are introduced to establish an extended-state-space switched systemmodel. Then, based on this model,
a predictive fault-tolerant control law is designed for tracking the set point by the output that satisfies the
requirements of the optimal performance index under input and output constraints. The feasibility conditions
for the solvability of the control law are presented in the form of linear matrix inequalities. In addition,
the designed switching law is constructed, and the gain of the control law is obtained via the optimization
algorithm. This design has several advantages: the output tracking is faster, the tracking performance is
superior, and the trace is smoother at the switching time. Finally, through a comparison with traditional
methods, the effectiveness and feasibility of this method are demonstrated via injection molding simulation.

INDEX TERMS Batch production systems, added delay, fault tolerant control, linear matrix inequalities,
Lyapunov methods, predictive models, switching systems, predictive control.

I. INTRODUCTION
As industrial production models exhibit a variety of char-
acteristics, such as small scale, diversity, high added value
and technological intensiveness, batch production technol-
ogy has attracted increasing attention and has begun to play
an important role in many fields. Although many studies
have considered batch processes, the high-precision control
of modern industrial processes remains a challenge. One
reason for such challenges is the occurrence of time delays
and perturbations, which may deteriorate the tracking perfor-
mance and result in reduced production efficiency [1]–[3].
Furthermore, both the requirement for a high automation level
and the complex process conditions increase the likelihood
of system faults, including actuator faults, internal faults, and
sensor faults. Actuator faults, which are the most frequently
occurring faults, substantially impact the system. If these
faults are not detected and corrected in a timely manner,
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then the production performance will deteriorate, and equip-
ment and personnel safety issues may occur. Once a fault
has been detected, the corresponding fault-tolerant control
strategy must be quickly implemented to mitigate the impact
of the fault on the control performance of the system. Fault-
tolerant control refers to the tolerance of the system to faults
such that, after a fault occurs, the control performance is not
substantially affected, and the system can still operate stably
for a period of time in the current state to ensure the quality
of the products produced during this period.

In recent years, there have been many achievements in the
research on fault-tolerant control for batch processes [4]–[8].
These results mainly occurred in two areas. In one area,
the batch process is regarded as a one-dimensional (1D)
system that is related only to time, as in [4] and the references
therein. In the other area, the batch process is regarded as
a two-dimensional (2D) system that is related to time and
the batch direction. In [7], the author transformed a batch
production process with unknown perturbations and actuator
faults into a two-dimensional Fornasini-Marchesini (2D-FM)
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model and designed a controller that ensures the closed-
loop convergence of the system along the directions of time
and batch. Regarding uncertainty, state delays and actuator
failures, Wang et al. [8] proposed H-infinity learning fault-
tolerant guaranteed cost control based on an equivalent 2D
system description of these processes.

A series of research results have been presented for the
fault-tolerant control of batch processes. The most popu-
lar methods for controlling batch processes are 2D iterative
learning control (ILC) methods based on the repetitiveness of
production processes [9]–[14], including single-phase batch
processes [12], [13] and multi-phase batch processes [14].
However, as such methods adopt the same control law, if the
deviation of the system output from the set value exceeds a
threshold, then the deviation will continuously increase with
time. Moreover, for safety, system constraints and restric-
tions must be considered during the design of the control
system. It is imperative to develop new control methods.
Model predictive control (MPC) with feedback correction
and rolling optimization at every moment is widely used.
In references [15]–[23], a set of control strategies that com-
bine ILC with MPC are proposed. Recently, MPC was com-
bined with fault-tolerant control (FTC) and applied [24].
Most research results focus on 2D systems theory.

As batch processes are processes that vary slowly with
time, no perfect repetitiveness occurs; i.e., if system informa-
tion cannot be repeated between batches, then the ILCmethod
is no longer applicable. At this time, it is more suitable for the
production process to be regarded as a 1D system [25]–[30].
Among these results, various design methods are combined
with model predictive control, such as the neural network
method and the extended-state control model method. The
design strategy of the extended-state control model method is
to introduce the state error and the output error along the time
direction, expand the original model into a new error model,
and design a control law under this model for the realization
of system tracking control. This method has been widely
applied since it has produced satisfactory control results.
Another advantage of this design is that a time-delayed sys-
tem can be transformed into a non-time-delayed system via
dimension expansion. Another design method is available for
time-delayed systems, in which the controller design depends
on the upper and lower bounds of the time delay. Although it
is difficult to design the Lyapunov function for the latter solu-
tion, its dimensionality and computing load are smaller than
those of the former solution. If the control process involves
uncertainties and external perturbations, then the stability of
MPC will be negatively affected, while the H-infinity model
predictive control strategy [31], [32] can analyze the stability
of uncertain closed-loop systems, reduce the impact of pertur-
bations on the system’s control performance, and enable the
controlled objects to remain robust to external perturbations.
Therefore, such control methods are widely used.

The above research on batch processes focused mainly on
single-phase processes. However, most batch processes are
multi-phase processes, and the phases influence one another.

Multi-phase batch process control has become a hot topic in
research [29], [33]–[36]. In [34], a switching system model
was used to study amulti-phase batch production process, and
a related predictive control strategy was proposed. In [35],
the average dwell time method was used to study a multi-
phase system, and an optimal control strategy is proposed.
According to the research results, these models were all
based on two-dimensional systems. As we have explained,
the information of batch processes is not always repeated
in the batch direction. In addition, few studies consider
time delays, external disturbances and other issues. There-
fore, the available research results cannot satisfy the market
demand, and further research on multi-phase batch processes
is urgently needed, especially for cases in which the batch
information is not repeated and time delays occur.

This paper proposes an improved H-infinity hybrid model
predictive fault-tolerant control method for time-delayed
batch processes against disturbances. In contrast to control
approaches for single-phase batch processes from the lit-
erature discussed above, for multi-phase batch processes,
we have introduced not only the above variables but also new
state variables that are related to output errors to form an
extended switching system model. The main contributions of
this work are as follows: (1) A new type of model is con-
structed, and the suitable switching conditions and running
times in various phases are specified based on this model.
(2) The solvability condition of model predictive control
is specified in terms of linear matrix inequalities (LMIs),
and the upper bound for the system’s optimal performance
index is identified to improve the efficiency of the produc-
tion process. (3) The designed controller is robust against
disturbances and time delays, and it realizes superior track-
ing performance. Finally, to evaluate the performance of the
proposed method, the proposed method is compared with the
traditional method. The results demonstrate that the proposed
method realizes a short running time and satisfactory tracking
performance.

The remainder of this paper is organized as follows.
Section II describes the system. In Section III, the design of
model predictive fault-tolerant control is considered. In this
part, the equivalent model is established, the sufficient con-
ditions for the feasibility of model predictive control are
established, and the optimization algorithm is constructed.
An injection molding simulation example is presented to
illustrate the performance of the proposed methods in
Section IV. Finally, the conclusions of this study are presented
in Section V.

II. PROBLEM DESCRIPTION
The following discrete-time faulty switched system with
uncertain parameter perturbation and an interval time delay
is considered:

x(k + 1)= (Aσ (k)+1σ (k)a (k))x(k)+Aσ (k)d x(k−d(k))
+ Bσ (k)uF (k)+ wσ (k)(k)

y(k) = Cσ (k)x(k)

(1)
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where k is the finite discrete-time; x(k), y(k) and uF (k)
represent the system state, system output and system con-
trol output under a fault condition, respectively; w(k)is the
unknown external perturbation; σ (k) = [0,∞) → p̄ =
{1, 2, · · ·,N } is the time- or state-dependent piecewise con-
stant switching signal; σ (k) = i denotes the activation of
the ith system; Ai,Bi,Aid ,C

i are the coefficient matrices for
the ith subsystem with suitable dimensions; 1i

a is the per-
turbation matrix of unknown parameters, which satisfies the
condition 1i

a = DiF i(k)E i; Di,E i are known real matrices
with suitable dimensions; and F i(k) is an unknown matrix
that satisfies the condition F i(k)F iT (k) = I .
The interval time delay d(k) satisfies the condition

d ≤ d(k) ≤ d

where d and d denote the upper and lower bounds, respec-
tively, of the interval time delay.
Remark 1: Some real systems can be expressed in the form

of system (1). For example, the process of a continuous stirred
tank reactor (CSTR) in [37] can be expressed in this form; in
[38], when the update law with an input delay is designed,
it can be converted into model (1).

In practical production operation, due to the long-term
overload operation of the equipment, actuator faults in the
system are unavoidable; hence, it is difficult for the input ui(k)
of the system to track its set value. Actuator faults mainly
include partial failure, complete failure and stuck failure.
The first two faults are represented by defining the value of
αi. If αi > 0 and αi 6= 1, then partial failure occurs; if
αi = 0, then complete failure occurs. For stuck fail-
ure, the input through the actuator is constant. In general,
αi = 1 means that the system is behaving normally. In case of
complete failure or stuck failure, the controller will no longer
function. Herein, we will discuss only partial failure. Thus,
the faulty model can be expressed as:

x(k + 1)= (Aσ (k)+1σ (k)a (k))x(k)+Aσ (k)d x(k−d(k))
+ Bσ (k)αu(k)+ wσ (k)(k)

y(k) = Cσ (k)x(k)

(2)

In real production processes, the model dimensions for two
adjacent phases may differ. When the system is switched to
the next phase, the form of switching can be expressed as:

x i+1(T i) = J ix i(T i)

where J i is the state transition function. If J i = I i, then the
system states of two adjacent phases have the same physical
meaning. If the system state is known, then it is critical
to determine the system switching time. Assuming that the
ith phase is within the time range [T i−1s ,T is ] and that the
switching time is T is (s ∈ (i, 2, 3, . . .)),

Tsi = min
{
t > Tsi−1|Gi(x(k)) < 0

}
, Ts0 = 0,

where Gi(x(k)) < 0 is the switching condition that is
related to the system state. For multi-phase batch processes,

the switching sequence for the entire operation phase is
expressed as:

6 =
{
T 1
1 , σ

(
T 1
1

)
,T 2

1 , σ
(
T 2
1

)
, . . . ,T p1 , σ

(
T p1
)
,

T 1
2 , σ

(
T 1
2

)
, . . .T p2 , σ

(
T p2
)
, . . . ,T is , σ

(
T is
)
, . . .

}
III. DESIGN OF MODEL PREDICTIVE FAULT-TOLERANT
CONTROL
A. ESTABLISHMENT OF THE EQUIVALENT MODEL
Since the information between batches is not repeated, here,
we regard the batch process as a 1D system, and we use 1D
variable dimension switched system theory to study the con-
ditions that are required for the system to operate smoothly
even after the occurrence of a fault. In addition, the proposed
strategy is a passive FTC that handles the fault occurrence as
parameter uncertainties. Based on the conditions of activation
at various phases, phase i control input uiF (k) represents the
input signal under an actuator fault, which can be expressed
as:

uiF (k) = αiui(k) with 0 < αi < αi < αi (3)

where αi < 1, αi > 1.
Therefore, the batch process with an interval time delay,

a perturbation and an actuator fault can be expressed as:
x i(k + 1) = (Ai +1i

a(k))x
i(k)+ Aidx

i(k − d(k))
+ Biαiui(k)+ wi(k)

yi(k) = C ix i(k)

(4)

The following notations are introduced:

β i= diag[β i1, β
i
2, . . . , β

i
m], β i0=diag[β

i
10, β

i
20, . . . , β

i
m0],

β i =
αi + αi

2
, β i0 =

αi − αi

αi + αi
.

Therefore, αi0 exists; hence,

αi =
(
I i + αi0

)
β i,

∣∣∣αi0∣∣∣ ≤ β i0 ≤ I i,
where

αi0 = diag[αi01, α
i
02, . . . , α

i
0m],∣∣∣αi0∣∣∣ = diag[

∣∣∣αi01∣∣∣ , ∣∣∣αi02∣∣∣ , . . . , ∣∣∣αi0m∣∣∣].
For system (4), the controller will be designed using

the novel model predictive fault-tolerant control method to
ensure satisfactory control performance. The main steps are
as follows: the error model and new state variables are intro-
duced and used to transform the model into an equivalent
model, and the novel controller and the switching law are
designed on this basis. The main strategy is as follows: The
difference operator 1 is introduced, and 1x(k + 1) = x(k +
1) − x(k) is defined. Then, the following equation can be
obtained from model (4):

1x i(k + 1) = Ai(k)1x i(k)+ Aid1x
i(k − d(k))

+Biαi1ui(k)+ w̄i(k) (5)
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where

w̄i(k) = [1i
a(k)−1

i
a(k − 1)]x i(k − 1)+1wi(k)

Ai(k) = (Ai + 1i
a(k)), and e

i(k) is the error between the
system output and the expected output at the ith phase:

ei(k) = y(k)− yr (k) (6)

The following equation can be obtained from (5) and (6):

ei(k + 1) = C iAi(k)1x i(k)+ C iAid1xi(k − d(k))

+C iBiαi1ui(k)+ C iw̄i(k)+ ei(k) (7)

A new state variable is introduced:

x̂ i(k + 1) = x̂ i(k)+ ei(k) (8)

where x̂ i(k) is selected based on the state of the extended
information that is determined by ei(k) . Let

x̄ i(k) =
[
1xTi (k) x̂ iT (k) eiT (k)

]T
,

then the state model of the dimension-extended system with
extended information at the ith phase is obtained:

x̄ i(k + 1) = Āi(k)x̄ i(k)+ Āid x̄
i(k − d(k))

+ B̄iαi1ui(k)+ Ḡiw̄i(k)
ȳi(k) = C̄ ix̄ i(k)

(9)

where

B̄i =

 Bi

0
C iBi

, Ḡi =

 I
0
C i

 , Āid =
 Aid 0 0

0 0 0
C iAid 0 0

,
C̄ i
=

 0
0
I

T , Āi(k) = Āi + 1̄i
a(k)

=

 Ai 0 0
0 I I

C iAi 0 I

+
 1i

a(k) 0 0
0 0 0

C i1i
a(k) 0 0

 .
When the ith phase is switched over to the i + 1th phase,

the phase transition can be expressed as:

x̄ i+1(k)

=

 J i1x i(k)
x̂ i(k−1)+ C i+1J i1x i(k −1)+ C i+1J ix i(k −2)− yi+1r

C i+1J i1x i(k)+ C i+1J ix i(k − 1)− yi+1r

.
B. DESIGN OF THE PREDICTIVE FAULT-TOLERANT
CONTROLLER
The objective of robust predictive control is to design a pre-
dictive controller such that the output can track the set point
under faulty conditions and satisfy the performance index at
each moment. Let x̄ i(k + j|k),1ui(k + j|k) and ȳi(k + j|k) be
the predicted state value, predicted input value and predicted
output value, respectively, for k + j at moment k , and let
x̄ i(k|k) = x̄(k) and 1ui(k|k) = 1ui(k). The state feedback
control law is designed as follows:

1ui(k + j |k ) = K̄ ix̄ i(k + j |k ) (10)

where K
i
denotes the gain of the proposed controller. At this

time, model (9) is transformed into:
x̄ i(k + j+ 1 |k ) = (Āi(k)+ B̄iαiK̄ i)x̄ i(k + j |k )

+ Āid x̄
i(k − d(k)+ j |k )+ Ḡiw̄i(k + j |k )

ȳi(k + j |k ) = C̄ ix̄ i(k + j |k )

(11)

The optimal performance indices for system (11) are
designed as follows:

min
1u(k+j|k)

max
1ai(k+j|k),w̄(k+j|k)

J i∞ (k)

J i∞(k)=
∞∑
j=0

[
x̄ iT (k + j|k)Q̄i1x̄

i(k + j|k)+1uiT (k + j|k)R̄i1
1ui(k + j|k)− ηiw̄iT (k + j|k)w̄i(k + j|k)

]
(12)

where the following condition must be satisfied:{
‖1ui(k + j|k)‖≤ 1uim
‖yi(k + j|k)‖≤ yi

(13)

The minimum upper-bound value of the objective function
(performance index J∞(k) ) is obtained under maximum
perturbation and minimum control input. In the formulas
above, Q̄i1 and R̄

i
1 are the process state weight matrix and the

input weight matrix, respectively, and 1uim and 1yim are the
upper-bound values of1ui and yi, respectively. The following
notation is introduced to simplify the expression:

V i
(
x̄ i(k + j|k)

)
= V i

j ,V
i
1(x̄

i(k + j|k)) = V i
1j,

x̄ ij = x̄ i(k + j|k), x̄ irj = x̄ i(r + j|k),

x̄ id+j = x̄ i(k + j− d(k)|k), x̄ i
d̃+j
= x̄ i

(
k + j− d̃ |k

)
,

x̄ i
d̃+rj
= x̄ i

(
r + j− d̃ |k

)
,

ε̄iTj = [ x̄ iT (k + j|k) x̄ iTd (k + j|k) x̄ iT
d̃
(k + j|k) ],

δ̄j = x̄ i(k + j+ 1|k)− x̄ i(k + j|k),

δ̄rj = x̄ i(r + j+ 1|k)− x̄ i(r + j|k).

Using the Lyapunov stability theorem, the controller
design problem is transformed into the equivalent model
stability problem. To demonstrate the system stability,
the Lyapunov-Krasuski function (LKF) is defined as:

V i
j =

5∑
l=1

V i
l (k + j|k)

V i
1j = x̄ iTj P̄

i
1x̄

i
j = x̄ iTj θ

iP̄−i2 x̄
i
j

V i
2j =

k−1∑
r=k−d(k)

x̄ iTrj ᾱ
k−1−r
i θ iT̄−i2 x̄ irj

V i
3j =

k−1∑
r=k−d̃

x̄ iTrj ᾱ
k−1−r
i θ iM̄−i2 x̄ irj
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V i
4j =

−d∑
s=−d̄

k−1∑
r=k+s

x̄ iTrj ᾱ
k−1−r
i θ iT̄−i2 x̄ irj

V i
5j = d̄

−1∑
s=−d̄

k−1∑
r=k+s

δ̄iTrj ᾱ
k−1−r
i θ iḠ−i2 δ̄

i
rj (14)

where P̄i1, T̄
i
1, M̄

i
1, Ḡ

i
1 are positive-definite symmetric matri-

ces, 0 < ᾱi < 1, and θ i is a positive number. To ensure system
stability, it is necessary to satisfy the following Lyapunov
inequality constraints:

J ij = x̄ iTj Q̄
i
1x̄

i
j +1u

iT
j R̄

i
11u

i
j − η

iw̄iTj w̄
i
j (15)

V i
j+1 − V

i
j ≤ V i

j+1 − αiV
i
j ≤ −J

i
j (16)

Moreover, if V i
(
x̄ i(∞)

)
= 0, x̄ i(∞) = 0, and the upper

bound of J i∞(k) exists and satisfies θ
i > 0, then:

J i∞(k) ≤ V
i(k) ≤ θ i (17)

Definition 1: For any t > t0 and any switching signal σ (k),
where t0 ≤ k < t , N i (t0, t) denotes the number of switches
of the ith subsystem within the time interval (t0, t). T̃ i (t0, t)
is called the total operating time of the ith subsystem. For
any specified τi > 0, the following formula is established:
N i (t0, t) ≤

T̃ i(t0,t)
τi

, where τi > 0is the average dwell time.
Definition 2: System (11) is said to be robustly exponen-

tially stable under the switching signal if there exist positive
constants a, b, and 0 < vi < 1 such that the following formula
holds: ∥∥∥x̄Tj ∥∥∥t =

√
b
a
ν
t−t0
i

∥∥∥x̄Tj ∥∥∥t0
Lemma 1 (Schur Complement Lemma): Let W ,L and V

be matrices of suitable dimensions in which W ,V are real
matrices. Then,

LTVL−W < 0

if and only if[
−W LT

L −V−1

]
< 0 or

[
−V−1 L
LT −W

]
< 0.

Lemma 2: If D, F , E andM are positive-definite matrices
with suitable dimensions, where M = MT and FTF < I ,
then the following inequality is established, and if there exists
ε > 0, then the sufficient and necessary condition for the
establishment of the inequality is

M + ε−1DDT + εETE < 0.

Lemma 3: For any vector δ(t) ∈ Rn, positive numbers k1
and k2, and matrix R ∈ Rn×n, the following matrix inequality
is established:

− (k1 − k2 + 1)
t=k2∑
t=k1

δT (t)Rδ(t) ≤ −
t=k2∑
t=k1

δT (t)R
t=k2∑
t=k1

δ(t)

Theorem 1: If w̄i(k) 6= 0, for specified constants d ≤
d(k) ≤ d , θ i > 0, and 0 < αi < 1, if there exist positive

definite symmetric matrices P̄i2, M̄
i
2, T̄

i
2, Ḡ

i
2, T̄

i
3,M̄

i
3, M̃

i
3, Ḡ

i
3,

and Ȳ i1 and positive real numbers ηi, εa, and εb such that the
following matrix inequalities are feasible for the switching
signal with an average dwell time that satisfies the following
inequality (23)

ϒ11 ϒ12 ϒ13 ϒ14 ϒ15
∗ ϒ22 ϒ23 ϒ24 0
∗ ∗ ϒ33 0 0
∗ ∗ ∗ ϒ44 0
∗ ∗ ∗ ∗ ϒ55

 < 0 (18)

ϒ11 =


ϕ̄i1 0 ᾱd̃i Ḡ

i
3 0

0 −ᾱd̃i T̄
i
3 0 0

ᾱd̃i Ḡ
i
3 0 ᾱd̃i M̃

i
3 − ᾱ

d̃
i Ḡ

i
2 0

0 0 0 −θ iηi


ϒ22=

[
−P̄i2 0
0 −d̃−2Ḡi2

]
, ϒ23 =

[
0 ε̄iaD̄

i

0 ε̄iaD̄
i

]
,

ϒ24 =

[
0 ε̄ibB̄

iβ i0
0 ε̄ibB̄

iβ i0

]

ϒ12 =


P̄i2Ā

iT
+ Ȳ iT1 β

iB̄iT P̄i2Ā
iT
+ Ȳ iT1 β

iB̄iT − P̄i2
T̄ i2Ā

iT
d T̄ i2Ā

iT
d

0 0
θ iḠiT θ iḠiT


ϒ33 =

[
−εia 0
0 −εib

]
, ϒ44 =

[
−εia 0
0 −εib

]
,

ϒ13 =


P̄i2Ē

iT 0
0 0
0 0
0 0

 , ϒ14 =


Ȳ iT1 β

iT 0
0 0
0 0
0 0

 ,

ϒ15 =


Ȳ iT1 R̄

i
2T P̄i2Q

i
2
1

0 0
0 0
0 0

 , ϒ55 =

[
−θ iI 0
0 −θ iI

]
,

V i < µiV i−1 (19)[
−1 x̄ il
x̄ i1 −8i

l

]
< 0 (20)[

−1u2m Ȳ i1
Ȳ i1 −8i

l

]
< 0 (21)[

−1y2m8
i
l 8i

lC̄
iT

C̄ i8i
l −I

]
< 0 (22)

τp >
(
τp
)∗
= −

lnµi
lnαi

(23)

P̄i2Ḡ
−i
2 P̄

i
2 = Ḡi3,P̄

i
2T̄
−i
2 P̄i2 = T̄ i3,P̄

i
2M̄
−i
2 P̄i2 = M̄ i

3,
ḠiT2 M̄

−i
2 Ḡi2 = M̃ i

3, Ḡ
i
2P̄
−i
2 Ḡ

i
2 = P̄i3, K̃

i
= Ỹ i1P̃

i
2,

ϕ̄i1 = −ᾱiP̄
i
2 + T̄

i
3 + M̄

i
3 +

(
d̃ + d + 1

)
T̄ i3 − ᾱ

d̃
i Ḡ

i
3,

where * represents the transposed element in the symmetric
position; then, the robust model predictive fault-tolerant con-
trol problem is solvable, and the fault-tolerant controller gain
in the system is K̄ i

= Ȳ i1P̄
−i
2 . The LMI (18) is the sufficient

condition. If the LMI (18) holds, then the system is stable.

70546 VOLUME 8, 2020



H. Yi, Z. Chen: Improved H-Infinity Hybrid Model Predictive FTC for Time-Delayed Batch Processes

Proof: Multiplying the left and right sides of inequality
(18) by diag

[
P̄−i2 T̄−i2 Ḡ−i2 θ−i I I I I I I I I

]
, by using

Schur complement Lemma 1 and Lemma 2, due to the occur-
rence of a perturbation and a fault in the control system, and
letting

Ãi = Āi(k)+ B̄iαiK̄ i
= Ai +1ai + B̄i

(
β i + αi0β

i
)
K̄ i

= Ai + DiF i(k)E i + B̄iβ iK̄ i
+ B̄iαi0β

iK̄ i,

we obtain:
ϕi1 0 ᾱd̃i Ḡ

−i
2 0

0 −ᾱd̃i T̄
−i
2 0 0

ᾱd̃i Ḡ
−i
2 0 −ᾱd̃i M̄

−i
2 − ᾱ

d̃
i Ḡ
−i
2 0

0 0 0 0


+

[
3̄iT

1
ḠiT

]
P̄−i2

[
3̄i

1 Ḡi
]
+

[
3̄iT

2
ḠiT

]
d̃2Ḡ−i2

[
3̄i

2 Ḡi
]

< −

[
0 0 0

√
ηi
]T
θ−i

[
0 0 0

√
ηi
]

+

[
λ̄iT1
0

]
θ−i

[
λ̄iT1 0

]
+

[
λ̄iT2
0

]
θ−i

[
λ̄iT2 0

]
(24)

namely,

82 < 83 (25)

where

ϕi1 = −ᾱiP̄
−i
2 + T̄

−i
2 + M̄

−i
2 +

(
d̃ + d + 1

)
T̄−i2 − ᾱ

d̃
i Ḡ
−i
2 ,

3̄i
1 =

[
Ãi Āid 0

]
, 3̄i

2 =
[
Ãi− I Āid 0

]
,

λ̄i1 =
[
Q̄

i
2 0 0 0

]
, λ̄i2 =

[
R̄

i
2 K̄ i 0 0 0

]
.

The increment function is defined as 1V i
= V i

j+1 − αiV
i
j ,

and the following formulas are obtained from the definition
of the Lyapunov function and Lemma 3:

1V i
1j ≤ x̄

iT
j+1θ

iP̄−i2 x̄
i
j+1 − ᾱix̄

iT
j θ

iP̄−i2 x̄
i
j

1V i
2j ≤ x̄

iT
j θ

iT̄−i2 x̄ ij − x̄
iT
d+jᾱ

d̃
i θ

iT̄−i2 x̄ id+j

+

k−d∑
s=k−d̃

x̄ iTrj ᾱ
k−r
i θ iT̄−i2 x̄ irj

1V i
3j ≤ x̄

iT
j θ

iM̄−i2 x̄ ij − x̄
iT
d̃+rj

ᾱd̃i θ
iM̄−i2 x̄ i

d̃+rj

1V i
4j ≤ (d̃ − d + 1)x̄ iTj θ

iT̄−i2 x̄ ij −
k−d∑
s=k−d̃

x̄ iTrj ᾱ
k−r
i θ iT̄−i2 x̄ irj

1V i
5j ≤ d̃

2δ̄iTj θ
iḠ−i2 δ̄

i
j − d̃

k−1∑
r=k−d̃

ᾱk−ri δ̄iTrj θ
iḠ−i2 δ̄

i
rj

≤ d̃2[x̄ ij+1 − x̄
i
j ]θ

iḠ−i2 [x̄ ij+1 − x̄
i
j ]

−ᾱd̃i [x̄
i
j+1 − x̄

i
d̃+j

]θ iḠ−i2 [x̄ ij+1 − x̄
i
d̃+j

]

(26)

By summing the inequalities (26) and multiplying both
sides by θ−i, we obtain:

1V i
j =

5∑
r=1

1V i
r (k + j |k )

θ−i1V i
j ≤

[
ε̄iTj w̄iT

]
82

[
ε̄ij
w̄i

]
< −θ−iJ ij (k)

θ−iJ ij =
[
ε̄iTj w̄iT

]
83

[
ε̄ij
w̄i

] (27)

Hence,

1V i
j < −J

i
j (k) (28)

The system is proved to comply with the Lyapunov inequal-
ity constraints. In addition, according to the performance
function (15), J ij (k) > 0; therefore, 1V i

j < 0, namely,
V i
j+1 < αiV i

j . By setting V i
j = V i(k), the following holds

for t0 < k < t:

V σ (t)(t) ≤ αiV σ (t−1)(t − 1) ≤ αt−T
i−1
s V i−1

(
T i−1s

)
(29)

where T i−1s denotes the switching time at the ith phase. From
(19), we obtain

V σ (t)(t) ≤ α
t−T i−1s
i µiV i−1

(
T i−1s

)
≤

p∏
i=1

(αi)
T̃ (t0,t)

p∏
i=1

(ui)
T̃(t0,t)
τi V σ t0 (t0) (30)

and considering the definition of the Lyapunov function,
we obtain:

a
∥∥∥x̄ il (t + j|t)∥∥∥2 ≤ V σ (t)(t) ≤ νt−t0V σ t0 (t0)

≤ bνt−t0‖x̄l (t0 + j|t0)‖2 (31)

where

‖x̄1(t + j|t)‖ ≤

√
b
a
νt−t0 ‖x̄1 (t0 + j|t)‖ ,

a = min λmin

(
P̄i1
)

(∀i ∈ N ),

b = λmax(P̄i1)+ d̃(λmax(T̄ i1)+ λmax(M̄ i
1)

+
d + d̃
2

(d̃ − d + 1)λmax(T̄ i1)

+
d̃2(1+ d̃)

2
λmax(Ḡi1)).

According to Definition 2, if the switching signal satisfies the
condition τ i ≥ − lnµi

lnαi
, then the time-delayed switched system

is robustly stable.
In the following paragraphs, it will be proven that the upper

bound θ i > 0 of performance function J i∞(k) exists, so that
(17) can be established. Since 0 < ᾱi < 1, in combination
with formula (28), the following inequality is obtained:

V i
j+1 − V

i
j < −J

i
j (32)

The sum of the inequality above is calculated from j = 0
to j = ∞:

V i(k + 1|k)− V i(k|k)+ V i(k + 2|k)− V i(k + 1|k)

+ . . .+ V i(k + 1+∞|k)− V i(k +∞|k)

= V i(k +∞|k)− V i(k|k) < −
∞∑
j=0

J ij (k) (33)
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namely,

V i(k +∞|k)− V i(k|k) < −J i∞(k) (34)

If V i
(
x̄ i1(∞)

)
= 0 and x̄ i1(∞) = 0, then:

J i∞(k) < V i(k|k) (35)

Taking x̄ il (k) = max
(
x̄ i1(r), δ̄

i
1(r)

)
and r ∈

(
k − d̃, k

)
,

we obtain

V i
(
(x̄1(k)) ≤ x̄ il (k)9̄l x̄ iTl (k) (36)

As 0 < αi < 1, from the definition of the Lyapunov
function, it follows that:

9̄ i
l = P̄i1 + d̃

(
T̄ i1 + M̄

i
1

)
+
d + d̃
2

(
d̃ − d + 1

)
T̄ i1

+

d̃2
(
1+ d̃

)
2

Ḡi1 (37)

The following inequality is obtained from the matrix
inequality (20) in combination with the Schur complement
lemma:

x̄ il (k)8
−1
l x̄ iTl (k) < 1 ≤

p∏
i=1

(
αiµ

1
τi
i

)T̃ (t0,t)
V σ(t0) (t0) (38)

Letting ν = max

(
αiµ

1
τi
i

)
, x̄ il (k) = max

(
x̄ i1(r), δ̄

i
1(r)

)
,

r ∈
(
k − d̃, k

)
, 9̄−il θ = 8l . Then, the following inequality

is obtained:

x̄ il (k)
(
9̄−il θ

)−1
x̄ iTl (k) < 1 (39)

namely,

x̄ il (k)9̄
i
l x̄
iT
l (k) ≤ θ i (40)

Combining (35) and (36), there exists an upper bound θ i of
J i∞(k) such that:

J i∞(k) ≤ V
i (x̄1(k)) ≤ θ i (41)

In the following section, the system constraints will be
discussed.

For constraint (13), we obtain:∥∥∥1uij∥∥∥2 = ∥∥∥K̄ ix̄ ij
∥∥∥2 = ∥∥∥Ȳ i1θ−1P̄i1x̄ ij∥∥∥2 ≤ ∥∥∥Ȳ i1θ−i9̄l x̄ ij

∥∥∥2
= Ȳ i1x̄

i
j8
−1
l x̄ ij8

−T
l Ȳ iT1 ≤ Ȳ

i
18
−T
l Ȳ iT1 (42)

Formula (21) is obtained from Lemma 1.
For output constraint (13), we obtain:∥∥∥1yij∥∥∥2 = ∥∥∥C̄ ix̄ ij

∥∥∥2 ≤ x̄ ij C̄ iT C̄ ix̄ iTj < 1yi2mj (43)

and we further obtain:

C̄ iT C̄ i
≤ x̄−iTj 1yi2m x̄

−i
j ≤ 1y

i2
m8
−i
l (44)

Output constraint (22) is obtained from Lemma 1.

Theorem 1 provides a sufficient condition for the solvabil-
ity of the model predictive fault-tolerant control problem for
batch processes with interval delays. If the lower bound of
the interval delays is zero, then this control problem becomes
the corresponding control problem with constant delays. As a
special case of interval time-varying delay systems, the fol-
lowing corollary can be easily obtained from Theorem 1.
Set

V i
j =

3∑
l=1

V i
l (k + j|k)

V i
1j = x̄ iTj P̄

i
1x̄

i
j = x̄ iTj θ

iP̄−i2 x̄
i
j

V i
2j =

k−1∑
r=k−d

x̄ iTrj ᾱ
k−1−r
i T̄ i1x̄

i
rj =

k−1∑
r=k−d

x̄ iTrj ᾱ
k−1−r
i θ iT̄−i2 x̄ irj

V i
3j = d̃

−1∑
s=−d̃

k−1∑
r=k+s

δ̄iTrj ᾱ
k−1−r
i Ḡi1δ̄

i
rj

= d̃
−1∑

s=−d̃

k−1∑
r=k+s

δ̄iTrj ᾱ
k−1−r
i θ iḠ−i2 δ̄

i
rj

(45)

Similar to the proof of Theorem 1, Corollary 1 can be
obtained. The content is represented as follows:
Corollary 1: If w̄i(k) 6= 0, then for specified constants

0 ≤ d ≤ d̃ , θ i > 0, and 0 < αi < 1, if there exist
positive-definite symmetric matrices P̄i2, T̄

i
2, Ḡ

i
2, T̄

i
3, M̃

i
3, Ḡ

i
3,

and Ȳ i1 and positive real numbers ηi, εa, and εb such
that the following matrix inequalities are feasible for the
switching signal with an average dwell time that satisfies
inequality (23),

ϒ̃11 ϒ̃12 ϒ̃13 ϒ̃14 ϒ̃15
∗ ϒ22 ϒ23 ϒ24 0
∗ ∗ ϒ33 0 0
∗ ∗ ∗ ϒ44 0
∗ ∗ ∗ ∗ ϒ55

 < 0 (46)

ϒ̃11 =

 ϕ̃i1 ᾱd̃i Ḡ
i
3 0

ᾱd̃i Ḡ
i
3 −ᾱd̃i M̃

i
3 − ᾱ

d̃
i Ḡ

i
2 0

0 0 −θ iηi


ϒ̃12 =

 P̄i2ĀiT + Ȳ iT1 β iB̄iT P̄i2Ā
iT
+ Ȳ iT1 β

iB̄iT − P̄i2
T̄ i2Ā

iT
d T̄ i2Ā

iT
d

θ iḠiT θ iḠiT


ϒ̃13 =

 P̄i2Ē iT 0
0 0
0 0

, ϒ̃14 =

 Ȳ iT1 β i 0
0 0
0 0

 ,
ϒ̃15 =

 Ȳ iT1 R̄
i
2 P̄i2Q

i
2

0 0
0 0


ϒ22 =

[
−P̄i2 0
0 −d̃−2Ḡi2

]
, ϒ23 =

[
0 ε̄iaD̄

i

0 ε̄iaD̄
i

]
,

ϒ24 =

[
0 ε̄ibB̄

iβ i0
0 ε̄ibB̄

iβ i0

]
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ϒ33 =

[
−εia 0
0 −εib

]
, ϒ44 =

[
−εia 0
0 −εib

]
,

ϒ55 =

[
−θ iI 0
0 −θ iI

]
,

V i < µiV i−1 (47)[
−1 x̄ il
x̄ i1 −8̃

i
l

]
< 0 (48)[

−1u2m Ȳ i1
Ȳ i1 −8̃i

l

]
< 0 (49)[

−1y2m8̃
i
l 8̃

i
lC̄

iT

C̄ i8̃i
l −I

]
< 0 (50)

where ϕ̃i1 = −ᾱiP̄
i
2 + T̄ i3 − ᾱd̃i Ḡ

i
3, 9̃

−i
l θ = 8̃l , and

9̃ i
l = P̄i1 + d̃ T̄ i1 +

d̃2
(
1+d̃

)
2 Ḡi1, then the robust model pre-

dictive fault-tolerant control problem with constant delays is
solvable, and the stable fault-tolerant controller gain in the
system is K̄ i

= Ȳ i1P̄
−i
2 .

C. OPTIMIZATION ALGORITHM
In this part, we seek the controller design with the minimum
upper bound under the maximum disturbance. The optimiza-
tion problem at time k can be solved using the following
formula:

min
1u(t+i|t,k+j|k),i,j≥0

θ i (51)

subject to V i(k|k) ≤ θ i, namely, subject to
[
−1 x̄ il
x̄ i1 −8

i
l

]
< 0

In (18), ηi can be optimized. Since (18) is a bilinear inequality,
let ς i = θ iηi; thus, ς i is optimized instead.

min
P̄i2,M̄

i
2,T̄

i
2,Ḡ

i
2,T̄

i
3,M̄

i
3,

M̃ i
3,Ḡ

i
3,Ȳ

i
1,εa,εb

ς i

subject to (18− 22) (52)

IV. SIMULATION
In this paper, fault-tolerant control for an injection molding
process, which is a representative multi-phase batch process,
is simulated. The injection molding process consists of five
phases: mold closure, injection, packing, cooling and mold
opening. First, during the injection phase, the molten material
is injected into the mold cavity until the cavity is filled.
Then, the system is switched to the packing phase, and the
polymer is filled into the contractions that are caused by
cooling and curing to realize the objective of packing. After
the packing phase, the cooling and mold opening phases
begin, in which the polymer in the mold cavity cools until it is
fully cured, and then the final product is ejected. The injection
rate and the packing pressure are the two main variables to
control because they have the largest impacts on the control
efficiency in the corresponding phases, and errors tend to
occur during these two phases. The injection rate and the
packing pressure are controlled by the degrees of opening
of the corresponding valves. When the mold cavity pressure

reaches a threshold level at the injection phase, the system
will switch to the next phase, namely, the packing phase.
In this paper, the model is transformed into a switched

system, and the injection phase and packing phase of the
injection molding process are controlled based on the prin-
ciple of predictive fault-tolerant control under the conditions
of time delay, perturbations and actuator faults.
The injection phase is defined as the first phase, and

the packing phase is defined as the second phase. For the
injection rate IV at the injection phase, the packing pressure
NP at the packing phase and the valve opening degree VO,
the model is expressed as:

(1−0.9291z−1−0.03191z−2)IV = (8.687z−1−5.617z−2)VO

(1−1.317z−1+0.3259z−2)NP= (171.8z−1−156.8z−2)VO

(53)

The model for the relationship between the mold cavity
pressure NP and the injection rate at the injection phase is
expressed as:

NP(1− z−1) = 0.1054z−1IV (54)

For the injection rate IV, packing pressure NP and valve
opening degree VO in systems with real actuator faults,
the model is expressed as:

(1−0.9291z−1−0.03191z−2)IV= (6.950z−1−4.494z−2)VO

(1−1.317z−1 + 0.3259z−2)NP = (137.4z−1−125.4z−2)VO

(55)

Denote x11 (k) = 0.03191IV (k − 1) − 4.4936VO(k − 1),
u1(k) = VO(k), y1(k) = NP(k), x21 (k) = 0.3259NP(k − 1)−
125.44(k − 1), u2(k) = VO(k), y2(k) = NP(k).
At the injection phase, the injection rate IV is set to

40 mm/s; at the packing phase, the packing pressure NP is set
to 300 bar. Under the conditions of an actuator fault and the
constraint conditions, the time-delayed extended state-space
fault model for the injection phase is:

x1 (k+1)=

 0.9291 1 0
0.03191 0 0
0.1054 0 1

+
 0.02δ(k) 0 0
0.01δ(k) 0 0

0 0 0

 x1(k)

+

 0.002 0 0
0.001 0 0
−0.0021 0 0

x1(k−d(k))+
8.687−5.617

0

αu1(k)+ω1(k)

y1 (k) =
[
1 0 0

]
x1 (k)

(56)

and the input and output constraints in this phase are selected
as: { ∣∣y1(t, k)∣∣ ≤ 45∣∣u1(t, k)∣∣ ≤ 6

(57)
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The packing phase model is:

x2 (k+1)=
([

1.317 1
−0.3259 0

]
+

[
0.02δ (t, k) 0
0.01δ (t, k) 0

])
x2(k)

+

[
0.002 0
0.001 0

]
x2 (k − d(k))+

[
171.8
−156.8

]
αu2 (k)+ω2 (k)

y2 (k) =
[
1 0

]
x2 (k)

(58)

and the input and output constraints in this phase are:{ ∣∣y2(t, k)∣∣ ≤ 302∣∣u2(t, k)∣∣ ≤ 0.6
(59)

where δ (k) is a random variable that is within the range
[0, 1], α = 0.8, and the switching condition is G1 (x (k)) =
350 −

[
0 0 1

]
x1 (k) < 0; hence, once the mold cavity

pressure exceeds 350 Pa, the systemwill be switched from the
injection phase to the packing phase. To examine the design
performance in this paper, we determine the initial control law
parameters. Then, MATLAB software is used for simulation.
The initial control law is obtained via Theorem 1 and its
optimization algorithm, and the controller gain is

K̄ 1
= [−0.1060,−0.1141, 0, 0.0433, 0.1323]

K̄ 2
= [−0.0015,−0.0012, 0.0004, 0.0013] (60)

To evaluate the performance of the proposed method,
we compare it with that of the traditional control method [7].
In the traditional method, the controller design is of the

following form: u(k + j|k)) = K i
[
x(k + j|k)
x̂ i(k + j|k)

]
(where

x̂ i(k + j|k) is obtained from (7)). The sampling time of each
step is 5 ms. Two kinds of faults are selected here to analyze
the influence of faults on the control performance of the
system. One is a constant fault (case 1); the other is a time-
varying fault (case 2). The comparison results are as follows.

FIGURE 1. An output comparison between the proposed control and the
traditional control strategy under constant faults.

Under case 1, α = 0.8. The results are presented
in Figs. 1 and 2. As shown in Figs. 1, under the proposed
control method, the system fluctuates less, output tends to
stabilize more quickly at the second phase, and the phase run-
ning time is shorter. The operation time of the first phase is 88,

FIGURE 2. An input comparison between the proposed control and the
traditional control strategy under constant faults.

FIGURE 3. An output comparison between the proposed control and the
traditional control strategy under time-varying faults.

FIGURE 4. An input comparison between the proposed control and the
traditional control strategy under time-varying faults.

while for the traditional control strategy, the operation time of
the first phase is 93. In addition, According to Fig. 2, under
random perturbations, both the predictive fault-tolerant con-
trol strategy and the traditional control strategy can enable the
system to stabilize at the injection phase. However, from the
94th step, according the input chart, the system that adopts
the predictive fault-tolerant control strategy is switched more
stably at an earlier time, and the range of the curve’s fluctua-
tion is smaller. Figs. 1 and 2 compare the output and input for
a fault of 0.8. We present the comparison results under other
fault conditions in Figs. 3 and 4. Here, the time-varying fault
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FIGURE 5. An output comparison with and without time delay under the
proposed method.

FIGURE 6. An input comparison with and without time delay under the
proposed method.

is chosen, and α = 0.6+0.2 sin(k) (case 2). According to the
two figures, although the control performance of the system
has decreased, the control target can still be attained. In
addition, to analyze the impact of a time delay on the system
control performance, the parameters of systems with a time
delay and those without a time delay are compared under the
predictive fault-tolerant control strategy that is proposed in
this paper, as shown in Figs. 5 and 6. The two figures present
the comparison results of output y and input u for systems
with and without a time delay. The system with a time delay
is characterized by lower control performance and larger
fluctuations in the output and input at the time of system
switching; however, the system ultimately stabilizes under
the predictive fault-tolerant control strategy. The comparison
results demonstrate that the time delay affects the control
performance of the system.

In the common control method for a batch process, the pro-
cess is regarded as a two-dimensional (2D) system, and
its tracking control via the iterative learning control (ILC)
method is studied. Here, we compare our proposed method
with this method (2D-ILC). The tracking error is selected as

DT (k) =

√
∞∑
k=0

eT (k)e(k). The comparison results demon-

strate that the output has a short running time in each phase
when the method proposed in this paper is used, but the

FIGURE 7. An output comparison between the proposed control
and 2D-ILC.

FIGURE 8. Tracking performance comparison between the proposed
control and 2D-ILC.

fluctuations are larger at the initial time and the switching
time. According to the comparison of the tracking perfor-
mance, the tracking error of our proposed method is small,
as shown in Figs. 7 and 8. The predictive fault-tolerant con-
trol strategy proposed in this paper can ensure high system
stability and satisfactory control performance.

V. CONCLUSION
In this paper, an H∞ -model predictive fault-tolerant con-
trol strategy is proposed for multi-phase batch processes
with interval time delays and actuator faults. The solvabil-
ity condition for ensuring that the system’s output tracks
the specified output is constructed in the form of LMIs.
In addition, a switching law has been proposed. The results of
the injection molding process simulation demonstrate that a
time delay impacts the system stability; however, the control
strategy that is proposed in this paper ensures that the system
can still operate stably under these conditions. In addition,
compared with traditional control methods, the simulation
proves that the control strategy that is proposed in this paper
can realize reduced fluctuations in output, input and their
increment; faster convergence; shorter operating time of the
first phase; energy conservation; and emission reduction.
From a long-term perspective, the method that is proposed
in this paper can serve as a reference for the design of
energy-saving controllers.
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