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ABSTRACT Granger causality analysis (GCA) provides a powerful tool for uncovering the patterns of brain
connectivity mechanism using neuroimaging techniques. In this paper, distinct from conventional two-stage
GCA, we present a unified model selection approach based on the minimum description length (MDL)
principle for GCA in the context of the general regression model paradigm. In comparison with conventional
methods, our approach emphasizes that model selection should follow a single mathematical theory during
the GCA process. Under this framework, all candidate models within the model space might be compared
freely in the context of the code length, without the need for an intermediate model. We illustrated its
advantages over conventional two-stage GCA approach in a 3-node network and a 5-node network synthetic
experiments. The unified model selection approach was capable of identifying the actual connectivity while
avoiding the false influences of noise. More importantly, the proposed approach obtained more consistent
results in a challenging fMRI dataset, in which visual/auditory stimulus with the same presentation design
gives identical neural correlates of mental calculation, allowing one to evaluate the performance of different
GCA methods. Moreover, the proposed approach has potential to accommodate other Granger causality
representations in other function space. The comparison between different GC representations in different
function spaces can also be naturally deal with in the framework.

INDEX TERMS Code length, Granger causality analysis (GCA), minimum description length (MDL),
model selection.

I. INTRODUCTION
Causal connectivity analysis, also called effective connec-
tivity, plays an increasingly important role in brain research
using neuroimaging techniques [1]–[6]. It reflects a trend in
neuroscience away from focusing on individual brain unit
(functional specialization) toward complex neural circuits
(functional integration) at different spatial scales [7]–[9],
where the integration among specialized areas is mediated
by causal connectivity [10]–[15]. Causal connectivity refers
to the influence that one neural system exerts over another,
either in the absence of identifiable behavioral events or in the
context of task performance [16], [17]. It provides important
insights into brain organization. Causal connectivity anal-
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ysis is based on temporal relations existing between time
series recordings of neural activity, which may be obtained
by neuroimaging techniques, such as electroencephalogra-
phy (EEG) [18]–[20], local field potentials (LFP) [20]–[22],
magnetoencephalography (MEG) [23]–[25], and functional
magnetic resonance imaging (fMRI) [26]–[29] etc.

Granger causality analysis (GCA) is an effective tool for
detecting the causal connections that can provide information
about the dynamics and directionality of the associations.
Causality in the Granger sense is based on the statistical
predictability of one time series that derives from knowledge
of one or more other time series [30], [31]. For two time
series, X and Y , that are stochastic and wide-sense stationary
(i.e., constant means and variances) [32], the general idea of
Granger causality is that variable Y is said to have a causal
influence on variable X when the prediction of variable X
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could be improved by incorporating the history information
of variable Y .

In practical applications, the GCA is usually conveyed in
the context of linear autoregressive (AR) models of stochastic
processes. The AR models with different time lags repre-
sent the historical dependence on variables, with or without
including other variables, to forecast the dynamics of the
variable. The optimal model for predication then is chosen
by model selection techniques. The extension of GCA to
nonlinear model that capture nonlinear causal relations is
also available [33], [34]. And the validity of original GCA
can also be affected if the errors after the prediction with
the model is not normally distributed [26], [35]. Several
test methods of causality in Granger sense for the data with
asymptotical noise distribution have been developed that is
especially useful for task-related fMRI studies [36], [37].
Asymmetric causality testing recently has also been sug-
gested in order to separate the causal impacts of positive
and negative changes [38]. Moreover, Granger causality has
been also expressed in other function spaces, e.g. Fourier
spaces (frequency domain) [21], [39]–[45], kernel Hilbert
spaces [46], [47]. These methods are important in neuro-
science studies since the causal influences between neuronal
populations are often nonlinear and have complicated statis-
tics due to various sources of uncertainties. On the other hand,
the original GCA is limited to investigate causal connectivity
between two nodes. There have been numerous efforts on
expanding the approach from small network with few nodes
to large, complex network [48], [49]. A recent approach
presented an iterative scheme that gradually pruned the net-
work by removing indirect connections, considered one at
a time, to uncover large network structure with hundreds of
nodes [50].

Despite these developments, the basic idea of Granger
causality remains unchanged. It generally comprises two
stages in this framework: (1) specifying the model order
(the number of time lags that is associated with its own
history information and external effects), and (2) deciding
the optimal model. The order of the predictors is usually
determined with the Akaike information criterion (AIC) [51]
or the Bayesian information criterion (BIC) [52], whereas
the optimal predictor is judged through statistical pairwise
comparison [53]–[56]. Specifying model order and selecting
the optimal model comply two completely different mathe-
matical theories.

Indeed, from a mathematical perspective, the two stages
are all to select the best model capturing essential features
under investigation from a number of competing models
in terms of given observations. They are essentially the
same problem of model selection. Model selection is the
most important aspect of inference with causal models and
allows one to test different hypotheses by comparing dif-
ferent models in terms of selection criteria. Two different
theories applied in the same question might generate differ-
ent selection criteria and therefore degrade the performance
of GCA.

We argue that the two stages in GCA are the problem
of model selection, and should follow the same bench-
mark under one mathematical theory. In this paper, against
two-stage selection scheme, we therefore proposed a unify
model selection approach for GCA with the minimum
description length (MDL) principle that model selection
should follow a single mathematical theory during the GCA
process. We illustrated the benefits of introducing a uni-
fied model selection approach in simulated and real fMRI
experiments. Especially, we compared the proposed approach
with conventional two-stage GCA one in an empirical fMRI
dataset for the validation of causal connectivity analysis.

The rest of the article is organized as follows. Section II
introduces the basic GCA concept and discusses the poten-
tial problems in the current two-stage GCA scheme and
our motivation for introducing the MDL principle in GCA.
In Section III, the MDL principle has been illustrated in
detail, and the formula of two-part MDL also has been
derived with Bernoulli distribution in Markov model class.
Immediately, in Section IV, the MDL guided model selection
for linear model has been carried out, in time domain and
frequency domain respectively. In SectionV,We illustrate the
advantages of our proposal over conventional two-stage GCA
approach in a 3-node network and a 5-node network syn-
thetic experiments. At the same time, the proposed approach
obtained more consistent results in a challenge fMRI dataset
for causality investigation, mental calculation network under
visual and auditory stimulus, respectively. Section VI demon-
strates the comparison between conventional two-stage GCA
and our proposal from modeling standpoint, and discusses its
potential development in a wider Granger causality sense.

II. PROBLEM STATEMENT
Let variables X and Y be two stochastic and stationary time
series. Now consider the following pair of (restricted and
unrestricted) regression models{
X [n] =

∑p
i=1 βx[i]X [n− i]+ u[n]

X [n] =
∑p

i=1 βx[i]X [n− i]+
∑q

i=1 βy[i]Y [n− i]+ v[n],

(1)

where p and q are the model orders (the numbers of time lags)
in X and Y , respectively, βx and βy are the model coefficients,
and u and v are the residual of the models. The order of
historical predictor p is usually determined with the AIC [51]
or the BIC [52],

AIC = −2log(L(θ ))+ 2k

BIC = −2log(L(θ ))+ klog(n)

where n is the sample size, and k is the number of parameters
which your model estimates, and θ is the set of all parameters.
L(θ ) represents the likelihood of the model tested, given your
data, when evaluated at maximum likelihood values of θ .

The conventional GCA requires statistical significance to
determine whether the unrestricted model provides a bet-
ter prediction than the restricted model. The hierarchical
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F-statistics, based on the extra sum-of-squares principle [57],
can be used to evaluate significant predictability, given as

F =
(RSSr − RSSu)/q

RSSu/(n− p− q− 1)
vs F0(q, n− p− q− 1)

(2)

where RSSr and RSSu represent the sum of squared residu-
als of restricted model and unrestricted model, respectively,
n is the total number of observations to estimate the unre-
stricted model. The F-statistics approximately follows an
F-distribution with (q, n− p− q− 1) degrees of freedom.

If F>F0(q, n− p− q− 1), the variability of the residual of
unrestricted model is significantly less than the variability of
the residual of restricted model, then there is an improvement
in the prediction of X due to Y , and we refer to this as causal
influence from Y to X . But in the current bivariate model,
spurious connections will emerge frequently.

In order to remove spurious connections caused by indi-
rect causalities between nodes, GCA also provides a mea-
sure of conditional causal connection by introducing another
variable Z into Eqs. (1):
X [n] =

∑p
i=1 βx[i]X [n− i]+

∑r
i=1 βz[i]Z [n− i]+ u[n]

X [n] =
∑p

i=1 βx[i]X [n− i]+
∑q

i=1 βy[i]Y [n− i]
+
∑r

i=1 βz[i]Z [n− i]+ v[n].
(3)

Then, the causal influence from Y to X , conditional on Z ,
is defined as

FY→X |Z = ln
var(u)
var(v)

. (4)

Consider threemodel spacesA,B, and C, where each space
comprises three models. Let pi and qi, i = 1, 2, 3, denote
the model orders regarding its endogenous information and
the exogenous information from other variables, respectively.
And n ∈ N ,m ∈ N ,

A = {a1 : p1 = n, q1 = 0;

a2 : p2 = n+ 1, q2 = 0;

a3 : p3 = n+ 2, q3 = 0}

B = {b1 : p1 = n, q1 = m+ 0;

b2 : p2 = n, q2 = m+ 1;

b3 : p3 = n, q3 = m+ 2}

C = {c1 : p1 = n, q1 = m;

c2 : p2 = n+ 1, q2 = m;

c3 : p3 = n+ 1, q3 = m+ 1}.

We further assume that ai, bi, and ci, i = 1, 2, 3, have the
same residual variance. For spaceA, the models only specify
the regression model orders of the endogenous information
by AIC/BIC, and then specify the causal effect of endogenous
information byF-statistics. Themodels in spaceB specify the
regression model orders of the exogenous effect by AIC/BIC,
then specify the causal effect of exogenous information by

F-statistics. But the models C specify the regression model
orders of endogenous information and exogenous informa-
tion separately, and specify the causal effect between c1, c2
and c3 by F-statistics. In this situation, the model selection in
conventional GCA is split into a two-stage scheme, the model
orders is determining byAIC/BIC and then the causal effect is
quantified by F-statistics sequentially. It is clear that the final
inference might differ with rules applied, even though three
classes are completely equivalent from a model description
standpoint.

As stated above, specifying the effects of endogenous and
exogenous information in conventional GCA is split into a
two-stage scheme. Specifying the regression model orders
of historical information, which contains the regression of
endogenous information in restricted model and the regres-
sion of both endogenous and exogenous information in unre-
strictedmodel, ismainly based onAIC/BIC theory separately,
then specifying the causal effect of exogenous information
by F-statistics. However, specifying the two effects is the
same kind of problem of model selection from the mathemat-
ical perspective. Different theories might generated differ-
ent benchmarks in two stages for model selection, therefore
degrade the performance of GCA.

Aside from theoretical considerations, there are still some
issues in the F-test itself to be discussed. The American
Statistical Association’s (ASA) statement on statistical sig-
nificance and p-values has led to a collective rethinking of
the entire scientific community, and many scientists believe
that the application of p-values in current scientific research
has been distorted [58]–[61]. This also leads many studies
to selectively report results, and the dichotomous p-value is
arbitrary reductionism for scientific research. We believe that
any reasonable study has its implied meaning, whether or not
the p-value is less than 0.05. We should understand the true
meaning of p-values, and it should not be over-exaggerated
or degraded [62]–[64]. It is just a statistical tool, or just
one of the mapping relationships that is purely mathemati-
cal. Specifically, pairwise F-statistics in conventional GCA
arouses several potential problems that might lead to mis-
leading or unreasonable inferences in connectivity analysis.
Firstly, the model comparison with F-statistics is performed
under a specific significance level. The assignment of signif-
icance level is a subjective matter in conventional GCA pro-
cess [65], [66]. A significance level that is too low could cause
the false connection noise originated, whereas a significant
level that is too high could erase the actual connection. When
there is no rule to justify the assignment of the significance
level, F-statistics will lead to different connectivity results
depending on the significance level chosen.

Secondly, the selection results by pairwise F-statistics are
heavily dependent on the initially selected model and the
search path in model space. Consider the collection of three
modelsM = {A,B,C} and let S denote the residual variance
of each model with SA = S, SB = S+1S, and SC = S−1S.
We further assume I

2 ≤ 1S < I , where I is the interval
satisfying statistical significance. The aim of F-statistics is
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FIGURE 1. Consider a conceivable case involving a collection of three
candidate models M = {A,B,C} with residual variances of SA = S,
SB = S +1S, and SC = S −1S. Suppose I

2 ≤ 1S < I , where I is the
interval satisfying statistical significance. It is clear that model C , with the
minimum variance, is the optimal model in this case. Following search
path B→ A→ C (a) we can arrive at optimal model C , while if we start
with A and follow the search path A→ C → B (b), we reach suboptimal
model A. The results using F -statistics for model selection rely on both
the search path and the initial model. Comparing transverses within the
model space can only partially reduce the risk of model misspecification,
and is not always available due to the nested relation between
comparable models in F -statistics. Moreover, this strategy also leads to
concern about the computational complexity.

to find the model appropriate to the observations from the
model space, which is evidently model C in this case. The
search path B → A → C will arrive at optimal model C ,
whereas if we start at A and follow the search path A →
C → B, we will reach suboptimal model A, that is, optimal
model C is not considered. The distinct results obtained by
using F-statistics for model selection along with different
search paths and initial models are given explicitly in Fig. 1.
In fact, F-statistics can not discriminate the models by resid-
ual variance within a specific range relative to the chosen
significance level and the noise level. On the other hand,
F-statistics uses the extra sum of squares principle to iden-
tify a better model. This means that only models with a
nested relationship can be compared. Then the competitive
models perform pairwise comparison in an indirect way,
through intermediate model, namely unrestricted model in
F-statistics. Therefore, the comparison between any two
models is not available in practical applications, and the
search path relies on the structure of all candidate models.
In such situation the optimal model is not always guaranteed.

The third potential problem relates to computational com-
plexity. Consider the simplest case where conditional causal
connections are not taken into account (q = 1 and r = 0
in Eq. (3)). Suppose that there are m candidate models for
any one directional causality in the network with n nodes,
the number of F-tests that needs to be performed
is m(m − 1)(n − 1), and the total number of comparisons is
mn(m−1)(n−1). The problem on computational complexity
is compounded by conditional GCA, but it still will be
intractable while investigating large network [50].

Although different approaches might be applied for model
selection in GCA [37], [67], the two stages are kept
unchanged. They are generally based on two different math-
ematical theories in most GCA applications. However, as
mentioned above, determining the model orders by AIC/BIC
or quantifying the causal effects by F-statistics can

essentially be considered as a generalized model selection
problem from a modeling standpoint. And model selection
by a single mathematical principle throughout GCA, which
could be easily ignored, would determine the final result
working pattern of human brain. Thus the causal connectivity
obtained by conventional GCA could be misleading, and
main reason may be splitting model selection into a two-stage
scheme. Since all the issues we discuss can be attributed
to model selection problems, then a more practical model
selection method need to be enabled.

To keep consistency in model selection for GCA, we pro-
posed a code length guided framework based onMDL princi-
ple, which Rissanen first proposed to quantify parsimony of a
model [68], to map the two-stage scheme into the samemodel
space. Specifically, our proposal involves constructing a code
length guided framework, then the model selection process in
GCA can be converted into comparing the code length of each
model. That means our proposal incorporated the endogenous
and the exogenous information into a unified model selection
process, which the information will be quantified by convert-
ing into code length to obtain causality. The two-stage scheme
based on the two different theories is unified under the single
mathematical framework, MDL principle, which guarantees
the only benchmark in GCA methodology research.

And above all, the MDL is an information criterion that
provides a generic solution for the model selection prob-
lem [69]. As a broad principle, the MDL represents a com-
pletely different approach for model selection relative to
traditional statistical approaches, such as F-statistics and the
AIC or BIC. Compared with the AIC/BIC, the use of the
MDL does not require any assumptions about the data gen-
eration mechanism. In particular, a prior probability distribu-
tion does not need to be assigned to each model class. The
objective of model selection in the MDL is not to estimate
an assumed but unknown distribution, but to find models that
more realistically represent the data [70]–[72].

Fundamentally, MDL has intellectual roots in the algo-
rithmic or descriptive complexity theory of Kolmogorov,
Chaitin, and Solomonoff [73]. Only considering the prob-
ability distribution as a basis for generating descriptions,
Rissanen endowed MDL with a rich information-theoretic
interpretation [74]–[79]. Due to these characteristics, and it’s
reasonable to believe human brain meet minimum energy
principle, causality analyzed with help of MDL principle
may be more in line with physiological models of the brain.
On the whole, our proposal takes the MDL principle as
the single mathematical framework to select the generalized
model for GCA, which to ensure the consistency, objectivity
and the parsimony.

III. THE MINIMUM DESCRIPTION LENGTH PRINCIPLE
The principle of parsimony is the soul of model selection.
To implement the parsimony principle, one must quantify
parsimony of a model relative to the available data. With
help of the work of Kolmogorov [80], [81], Wallace and
Boulton [82], Rissenan formulated MDL as a broad principle
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governing statistical modeling in general. At beginning of
modeling, all we have is only the data. Luckily, With the
help of the algorithmic or description complexity theory of
Kolmogorov, Chaitin, and Solomonoff, MDL regards a prob-
ability distribution as a descriptive standpoint. And MDL has
some connections with AIC and BIC, sometimes it behaves
similarly to AIC and BIC [72], [83]. The difference is that
MDL fixes attention on the length function rather than the
code system. Therefore, many kinds of probability distribu-
tion can be compared in terms of their descriptive power [84].
Our code length guided framework can be used in generalized
model selection as long as there is a probability distribution
in the model.

A. PROBABILITY AND IDEALIZED CODE LENGTH
In order to describe theMDL principle explicitly, we deduced
the formula of MDL in different cases. In model selec-
tion process of MDL, we need to compare the code length
obtained by its probability distribution, so it is essential to
understand the relationship between probability and the code
length [72], [85].

A code % on a set A is simply a mapping from A to a
set of codewords. Let A be a finite binary set and let Q
denote a probability distribution of the any element a in A.
The code length of a is that − log2 Q, the negative logarithm
ofQ. For example, the Huffman code is one of the algorithms
that constructed this relationship between probability and
idealized code length [84]. Suppose that elements of A are
generated according a known distribution P. Given a code %
on A with length function L, the expected code length of %
with respect to P is defined as

L% =
∑
x⊂A

P(x)L(x). (5)

As is well known, if % is prefix code, the code length L is
equivalent to− log2 Q(x) for some distributionQ onA. There
is given an arbitrary code, if no codeword is the prefix of
any other, the unique decodability is guaranteed. Any code
satisfying this codeword condition is called a prefix code.

By Shannon’s Source Coding Theorem, for any prefix code
% on A with length function L, the expected L% is bounded
below by H (P), the entropy of P. That is

L% ≥ H (P) = −
∑
x⊂A

P(x) log2 P(x), (6)

where equality holds if and only if L = − log2 P, in other
words, the expected code length is minimized when Q = P.

B. CRUDE TWO-PART CODE MDL
In our view, modeling is a process that find the regularity
of data and compress it. In model selection within MDL
principle, What we have to do is selecting a suitable model
based on the probability distribution of the object. Generally,
the model we picked is overfitting or too simple. But model
selection guided by the MDL principle, the complexity term
or the error term in data fitting is incorporated into code

length guided framework, which ensures the objectivity of the
operation.

Until now, there are several forms of MDL principle to
polynomial or other types of hypothesis and model selection.
But at the original MDL, it usually divides the modeling for
the data set into two parts, one part is to describe the model’s
self-information. The other is to describe the data set with the
help of chosen probability model in part one. Consequently,
here we firstly introduce the most common implementation
of the idea – the two part code version of MDL [72], [85].

Suppose the data D ∈ X n where X = {0, 1}. Then there is
a probability P ∈M, and minimize

L1,2(P,D) = L1(D|P)+ L2(P). (7)

Here, it will select a reasonable model for D to make good
predictions of future data coming from the same source,
which therefore models the data using the class B of all
Markov chains [85].

1) THE FIRST PART
To get a better feel for the code L1, we prepare to consider two
examples. First, let Pθ ∈ B(1) be some Bernoulli distribution
with Pθ (x = 1) = θ , and let D = (x1, · · · , xN ). Since
Pθ (D) =

∏
Pθ (xi) and θ̂ is equal to the frequency of 1 in

D, the first part L1(D|P) is given as

− logPθ (D) = −n1 log θ − n0 log(1− θ )

= −N [θ̂ log θ + (1− θ̂ ) log(1− θ )], (8)

where nj denotes the number of occurrences of symbol j inD.
Let k = 2γ , the γ th-order Markov chain model is denoted
by B(k), it’s defined as

B(k)
= {Pθ |θ ∈ Θ (k)

};Θ (k)
= [0, 1]k .

where θ = (η[1|0 . . . 0], η[1|0 . . . 01], . . . , η[1|0 . . . 11]), for
all n, xn

Pθ (D) = (
1
2
)γ

N∏
i=γ+1

Pθ (xi|xi−1, · · · , xi−γ ) (9)

and

− logPθ (D) = −N
∑

y∈{0,1}log k

(η̂[1|y] log η[1|y]

+ (1− η̂[1|y]) log(1− η[1|y]))+ γ. (10)

Here γ = log k is the number of bits needed to encode the
first γ outcomes in D. The maximum likelihood parameters
η̂[1|y] are equal to the conditional frequencies of 1 prefixed by
y.

2) THE SECOND PART
In order to describe a P ∈ B, we have to describe a pair
(k, θ). We encode the all parameter in the distribution model
by firstly encoding k , which will use some prefix code C2a,
and then code θ with the help of the prefix code C2a. The
resulting code C2(the code length of the first part) is then
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defined by C2(k, θ) = C2a(k)C2b(θ |k). Firstly, N is nature
number set,

L2a(k) = LN (k) = O(log k). (11)

Since 2(k)
= [0, 1]k is an uncountable infinite set,

we would have to discretize it firstly. More precisely, we will
restrict 2(k) to some finite set 2̈(k)

d of parameters that can be
described using a finite precision of d bits per parameter.
Now that the number of elements of 2̈(k)

d is (2d )k . Thus
it needs log(2d )k = k · d bits to describe any particular ϑ ∈
2̈

(k)
d , andmay call d the precision used to encode a parameter.

Letting dϑ be the smallest d such that θ ∈ 2̈(k)
d , this gives

L2(k, θ) =

{
LN (k)+ LN (dϑ )+ kdϑ , if dϑ <∞
∞, otherwise.

(12)

At the end, the crude two-part codeMDL forMarkov chain
hypothesis selection is given by,

min
k,d∈N ;θ∈2̈(k)

d

− logPk,d (D)+ kd + LN (k)+ LN (d). (13)

IV. CODE LENGTH GUIDED MODEL SELECTION IN
CAUSALITY ANALYSIS
As stated above, conventional GCA splits the whole process
into two stages which are actually modeling endogenous
information and exogenous information. Since MDL has a
close relationship with information theory, causality analysis
with MDL here will also be more convincing and suitable.
Further the regression of endogenous information can be
converted to code length, and relative effect of exogenous
variables can be also quantified by the code length guided
framework, which the whole model selection process for
GCA is unified into same model space.

The following is that MDL principle guided model selec-
tion in causality analysis [68], and variable XN is given,

xt = a1xt−1 + a2xt−2 + · · · + anxt−n + εt . (14)

where t = 1, · · · ,m, which m can be anyone more than n
to keep the solution determined, N is the data length. The
parameter vector consists of data θ = (n, ξ ) and ξ =
(σ 2, a1, · · · , an), where σ 2

= ξ0 is the variance-parameter
of zero-mean Gaussian distribution model for εt . In order
to describe xt , turn to Gaussian distribution for εt . Clearly,
to describe the Gaussian distribution model, applying the two
part form of MDL, the total code length is given as

L(x, θ) = m ln
√
2πσ +

RSS
2σ 2 +

n∑
i=0

ln
|ξi|

δ
+ ln(n+ 1).

(15)

where RSS =
∑m

t=1(ε
2
t ) denotes the residual sum of squares

corresponding to the estimation in model. And δ is the preci-
sion, it’s optimal to choose 1/

√
N [72], [75], [86]. Specially,

|ξi|
δ
< 1 should be ignored.

A. TIME-DOMAIN FORMULATION
Combining with the above formula, the causality investi-
gation with the code length guided framework in the time
domain can be carried out. There are two time-series XN
and YN , then we consider two different models A and B
(in Eq. (16) and Eq. (17)) to describe xt . The representations
are {

Xt =
∑n

j−1 a1iXt−j + ε1t
Yt =

∑n
j−1 d1iYt−j + η1t

(16)

where var(ε1t ) = 61 and var(η1t ) = 01. Bivariate regressive
representations are given,{

Xt =
∑n

j−1 a2iXt−j +
∑n

j−1 b2iYt−j + ε2t
Yt =

∑n
j−1 c2iXt−j +

∑n
j−1 d2iYt−j + η2t

(17)

where var(ε2t ) = 62 and var(η2t ) = 02, and their contem-
poraneous covariance matrix is

6 =

(
62 ϒ2
ϒ2 02

)
where ϒ2 = cov(ε2t , η2t ).

Finally, ε1t and ε2t have Gaussian distribution with mean
0 and unknown variance σ 2, which denote the noise of
time-series are fitting residual. Therefore, the distribution of
residual terms εt can be a standpoint to describe the model
within MDL. Then, the code length of model A and B we
obtained can be compared to identify the causal influence
between xt and yt . In the whole process of model selection
for GCA, the causality investigation was mapped into the
unified code length guided framework. According to Eq.(15),
the code length of model A and model B can be given respec-
tively. By the definition of Granger causality, the influence
from Y to X is defined by our code length guided framework,

FY→X = LX − LX+Y . (18)

where LX denotes the code length of optimal model in
Eq.(16), and LX+Y denotes the code length of optimal model
in Eq.(17). If FY→X > 0, it means causal influence from Y
to X existed. Otherwise, there is no causal influence existed
from Y to X . As the causality represented above, our proposal
can unify two-stage scheme into the code length guided
framework, which can avoid inconsistency of two different
mathematical theories or the subjectivity of F-statistics in
model selection of the conventional GCA.

To compare conditional GCA, we consider the influence
from Y to X while controlling for the effect from conditional
node Z to X . Firstly, the joint autoregressive representation is
given{
Xt =

∑n
j−1 a3iXt−j +

∑n
j−1 b3iZt−j + ε3t

Xt =
∑n

j−1 a4iXt−j +
∑n

j−1 b4iYt−j +
∑n

j−1 c4iZt−j + ε4t
(19)

and var(ε3t ) = 63, var(ε4t ) = 63. By the definition of
conditional GCA, if FY→X > 0 existed, causal influence
from Y to X conditioned Z is defined

FY→X |Z = LX+Z − LX+Y+Z . (20)
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Same as above, if FZ→X > 0 existed, causal influence from
Z to X conditioned Y is given

FZ→X |Y = LX+Y − LX+Y+Z (21)

Clearly, in our code length guided framework, all candidate
models can be compared freely in the context of their code
length. Different from the traditional method, the causal con-
nection is obtained by repeated pairwise comparison between
models, our method can map all candidate models into the
same model space without the repeating comparison and to
obtain the conditional causal influence directly. Which is,
if both FY→X > 0 and FZ→X > 0 existed,

FY ,Z→X = min(LX+Y ,LX+Z )− LX+Y+Z . (22)

Here if FY ,Z→X > 0 existed, it means that both Y and Z have
direct influence on X . But if FY ,Z→X is less than 0, there will
be two cases. One is FY ,Z→X = (LX+Y − LX+Y+Z ) < 0
existed, it means only Y has direct influence on X . The other
is FY ,Z→X = (LX+Z − LX+Y+Z ) < 0 existed, it means that
Z impacts X directly. In the unified model space, multiple
selected models can be directly compared by code length,
which can release the complexity of the algorithm. In this
way, our proposal is more in line with Occam’s razor, or the
principle of parsimony.

B. FREQUENCY-DOMAIN FORMULATION
With help of Geweke’s work [39], the total interdependence
between two time series Xt and Yt can be decomposed into
three components: two directional causal influences due to
their interaction patterns, and the instantaneous influence
due to factors possibly exogenous to the (X ,Y ) system
(e.g. a common driving input) [41], [54]. Here other forms
of regressive representations need to be considered, We first
rewrite Eq.(16) and Eq.(17)(

a2(L) b2(L)
c2(L) d2(L)

)(
Xt
Yt

)
=

(
ε2t
η2t

)
(23)

where a2(0) = 1, b2(0) = 0, c2(0) = 0, d2(0) = 1,
the lag operator L denotes LXt = Xt−1. Performing Fourier
transform on both sides of Eq.(23), then we left-multiply

P =

 1 0

−
ϒ2

62
1

 (24)

on both sides and rewrite the result equation, the normalized
equations yield(

Xω
Yω

)
=

(
D11(ω) D12(ω)
D21(ω) D22(ω)

)(
E2(ω)
H ′2(ω)

)
, (25)

where H ′2(ω) = H2(ω) −
ϒ2
62
E2(ω). The spectral matrix is

S(ω) = D(ω)6D∗(ω), where ∗ denotes complex conjugate
and matrix transpose. The spectrum of Xt is

S11(ω) = D11(ω)62D∗11(ω)− D12(ω)ϒ ′2D
∗

12(ω), (26)

where ϒ ′2 = 02 −
ϒ2
62
ϒ2. The first term in Eq.(26) is

represented as the intrinsic influence and the second term as

the causal influence of Xt due to Yt at frequency ω. Based
on this transformation, the causal influence from Yt to Xt at
frequency ω is

fY−→X (ω) = ln
Sxx(ω)

D11(ω)62D∗11(ω)
. (27)

The model orders of historical information in frequency
domain for conventional GCA, are determined by AIC/BIC.
Distinct from conventional GCA, we obtained the causal
connectivities between nodes at frequency ω by the code
length guided framework.

V. EXPERIMENTS
A. 3-NODE NETWORK SIMULATION EXPERIMENTS
1) PROTOCOL FOR 3-NODE NETWORK
To verify the performance of MDL principle in synthetic data
experiment, a simple 3-node network is enabled. There were
1000 data points in time series of each node, to keep the
stationarity of synthetic data, the first 700 data points were
removed. The initial value of each node was 1, the variance
of noise term εi(i = 1, 2, 3) varied from 0.15 to 0.35. The
nodes was generated by

y1,t = 1.5y1,t−1 − 0.9y1,t−2 + ε1
y2,t = 0.8y1,t−1 + 0.2y2,t−1 + ε2
y3,t = −0.8y1,t−1 + 0.4y3,t−1 + ε3

(28)

2) RESULTS FROM 3-NODE NETWORK
Firstly, to ensure the rigor of the proposal, the distribution
of residual between the selected model and the observed
data was verified. It was almost corresponding Gaussian
distribution with mean 0, seen in Fig. 2(a) and 2(b), which
guaranteed the validity for our initial description standpoint.
And code length changed with different time lag in autore-
gressive model had shown in Fig. 2(c), it dropped down to
the minimum when time lag was 2, which corresponded with
generated model in Eq.(28).

Then, the causal connectivities identified by our proposal
had shown in Fig. 3(b), which obtained causal connection
by comparing the code lengths according to Eq. (15), then
the causal connectivities obtained by conventional GCA had
shown in Fig. 3(a). We found that causal influences from
node 1 to node 2 and node 3 were identified both in GCA and
our proposal. In other four causal influences, our proposal
almost guaranteed 99% accuracy. But conventional GCA
only guaranteed 95% accuracy.

At the same time, experiments with three different noise
levels and three confidence intervals had been carried out,
the comparison between conventional GCA and our proposal
showed in Table. 1. The accuracy of causal connection asso-
ciated with each node and the overall true model was also
verified. Comparing the accuracy of the single node and the
overall network at the same noise level and the same confi-
dence interval, it’s unevenly distributed in conventional GCA.
Meanwhile, the conventional GCA were very sensitive due
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FIGURE 2. The fitting Guassian distribution of the residual. (a): a histogram of values in data and fits a normal density function. (b): comparing the
distribution of the data to the normal distribution. (c): code length obtained by our proposal, changed with different time lag in node 1.

TABLE 1. Comparison between conventional GCA and MDL method in 3-node network.

FIGURE 3. Comparison between two methods within low variance noise
(0.15-0.35), the numbers on the arrow indicated the accuracy that the
causal influence was identified in 1000 samples. Specially, the accuracy
was only represent the probability that the single connection direction
was identified by two methods. (a): causal network obtained by
conventional GCA. (b): causal network obtained by our proposal.

to the different confidence intervals, especially in the iden-
tification of the overall network, even it had a stable per-
formance at different noise level. In generally, our proposal
always showed a relatively good performance whether it’s

identification in the whole network or a single node. It was
worth noting that the results obtained by conventional GCA
when α = 0.01 in F-statistics were close to the results of our
proposal. The results were also in line with our expectations,
that was because our proposal consider the complexity of the
model more thoughtfully. As we emphasized above, there is
only one mathematical principle guiding the model selection
throughout the GCA process, thus our proposal is a more
rigorous approach or a more robust approach.

The oscillations in neurophysiological systems and neu-
roscience data are thought to constrain and organize neural
activity within and between functional networks across a
wide range of temporal and spatial scales. Geweke-Granger
causality demonstrated that the oscillations at specific fre-
quencies had been associated with the activation or inactiva-
tion of different encephalic region. But for conventional GCA
in frequency domain, model selection of history information
is determined by AIC or BIC. For our code length guided
framework, the selected models for history information will
regress into the true model space automatically. Due to its
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FIGURE 4. Causal connectivities between 3-node network obtained in frequency domain. The causal influence was
obtained at frequency ω range from 1∼ 30, and at 50,100Hz.

FIGURE 5. The relationships of simulation data sets in 5-node network.

intellectual roots in descriptive complexity and close tie with
information theory, our proposal may be more capable to
identified causality in frequency domain.

Same as time domain, causal connectivities at frequency ω
between 3-node network obtained by our proposal showed
in Fig. 4. In particular, causal connectivities in frequency
domain were obtained within two nodes, whichmeant that we
did not introduce conditional GCA in the frequency domain.
This is mainly because there seems to be still some obfus-
cation with the method of using conditional GCA concept
in the frequency domain. Therefore, as shown in Fig. 4,
some non-existent connections between nodes were often
misjudged, except for the causal influence 1→ 2 and 1→ 3.
But we found that causal connectivities between node 2 and
node 3 had a bigger chance to be misjudged at low frequency
(0 − 10 Hz). Actually, comparing results obtained by con-
ventional GCA in the time domain, causalities between two
nodes were more legible in frequency domain, which meant
only direct causalities showed more consistent results in our
analysis. For example, there were only stable and significant
causal influence existed in 1→ 2 and 1→ 3.

B. 5-NODE NETWORK SIMULATION EXPERIMENTS
1) PROTOCOL FOR 5-NODE NETWORK
To verified in more detail whether the proposedMDLmethod
is just a conventional GCA method with a higher level of
confidence, a complex 5-node network was given to further
verified the robustness and the validity of our proposal, seen
in Fig. 5. Noise terms εi(i = 1, 2, . . . , 5) were the Guas-
sian distribution with mean 0, and the variance ranged from
0.15 to 0.3. The first two initial values of nodes are 1, they
were given by

x1,t = 0.792x1,t−1 − 0.278x1,t−2 + ε1
x2,t = 0.768x2,t−1 − 0.503x2,t−2 + 0.83x1,t−1

−0.32x1,t−2 + ε2
x3,t = 0.67x3,t−1 − 0.312x3,t−2 + 0.56x2,t−1

−0.42x2,t−2 + ε3
x4,t = 0.733x4,t−1 − 0.27x4,t−2 + 0.72x2,t−1

−0.27x2,t−2 + 0.52x3,t−1 − 0, 456x3,t−2
+0.76x5,t−1 − 0.33x5,t−2 + ε4

x5,t = 0.845x5,t−1 − 0.24x5,t−2 + 0.68x4,t−1
−0.254x4,t−2 + ε5

(29)

2) RESULTS FROM 5-NODE NETWORK
And in other connections in 5-node network, the accuracy of
our proposal also was not below 98.4%. Whereas, conven-
tional GCA did not showed the same robustness of our pro-
posal. Causal connectivities between direct related nodes was
not well identified, for example only 507 samples were iden-
tified as causal influences from node 3 to node 4 in 1000 sam-
ples and causal influence from node 5 to node 3was identified
at 92.9% accuracy. And in other connections, the accuracy of
conventional GCA was more poor than our proposal. Clearly,
in higher confidence levels (α = 0.01) of conventional GCA,
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FIGURE 6. Causal connectivities between 5 nodes identified by conventional GCA and our proposal respectively. (a): causal connectivities was
obtained by conventional GCA at α = 0.05 in F-test. (b): causal connectivities obtained by our proposal.

TABLE 2. 5-Node networks.

although the specificity of causal identification increased, its
sensitivity decreased.

The result of connections between 5 nodes showed
in Fig. 6(b), causal influence analyzed by code length was
largely consistent with connections in Fig. 5. Simultaneously,
causalities analyzed by conventional GCA between 5 nodes
showed in Fig. 6. Same as results in 3-node network, our
proposal showed 100% consistencywith connections in Fig. 5
between directly causal related nodes, seen in Table. 2.
More importantly, whether the causal influence from

Node 3 to Node 4 or from Node 5 to Node 4, the significance
level of connection were not enough to be identified, even for
α = 0.01 in F-statistics. Therefore, the results demonstrated
that our proposal was not equivalent to the conventional
GCA with a higher significance level in F-statistics at all.

Obviously, when target network was more complicated in
simulation, our proposal showed a more desirable property
in time domain, while conventional GCA generally made
mistakes. Luckily, our proposal performed very well regard-
less of the existence fo relationships between nodes, even
as in more complicated network. Same as 3-node network,
the result causal network was unrelated with the varying
variance of noise from (0.15-0.3) to (0.35-0.5). In conditional
causality analysis, our approach reduced the complexity of
algorithm, eliminating the need for repeated pairwise com-
parisons between models, while ensured the accuracy of
results.

Subsequently, we identified the causal connectivities
among 5-node network in frequency domain by our pro-
posal, seen in Fig. 7. Same as the 3-node network, causal
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FIGURE 7. Causal connectivities of 5-node network obtained in frequency domain. Same as 3-node network, the causal influence was
identified at frequency ω range from 1∼ 30, and at 50, 100Hz.

connection networks were identified without introducing
conditional GCA, and the causal connection network had
regular characteristics. The causal influence whether it was
direct or indirect existed in 5-node network was more stable
to be identified in the frequency domain. Similarly, since con-
ditional GCA was not considered, other non-existent causal
connectivities had a chance to be identified. And in 5-node
network, the possibility of being misjudged was even greater.
Therefore, it is necessary to introduce conditional GCA to
distinguish direct from indirect influences between system
components in the frequency domain. And at the same time,
we found that removing the noise frequency component is an
obstacle to causality analysis, main reason is that we have no
prior knowledge about which one is noise or others in row
data.

C. REAL DATA
1) EXPERIMENTAL PROTOCOL
In the study we let ten subjects perform simple one-
digit(consisting of 1-10) serial addition (SSA) and complex
two-digit(consisting of 1-5) serial addition (CSA) by visual

stimulus and simultaneously measured their brain activities
with fMRI.

Immediately, we asked the subjects to perform same
serial addition arithmetic tasks by auditory stimulus. Nine
right-handed healthy subjects (four female, 24±1.5 years
old) and one left-handed healthy female subject (24 years
old) participated. One of the subject’s(a right hand male)
data was deleted due to excessive head motion. All subjects
volunteered to participate in this study with informal written
consent by themselves.

The causal connection network of one subject performing
same task should be same or similar, which is also the basic
assumption in group analysis. Therefore, for mental calcu-
lation under different stimuli, causal connection network of
same subject may be different in the input node of stimulus,
but we have reason to postulate that the causal connection
should be same inside the mental calculation network, at least
it should be similar. Thus, we will compare the similarity of
causal connection network within the same mental calcula-
tion task under different stimuli. More directly, in order to
quantify which method is more robust, we will compare the
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FIGURE 8. Mental calculation of CSA-control state under the two stimuli (visual stimulus and auditory stimulus), the activation regions were processed
by SPM12, the control state meant that the sample was in rest state without mental calculation. (a): CSA-control state under visual stimulus. (b):
CSA-control state under auditory stimulus.(P<0.0001, uncorrected).

FIGURE 9. The similarity in 4-node mental calculation network and 6-node full network respectively.
Left panel compared the similarity on the individual, and the right panel compared the distribution of
similarities, collectively.

similarity of the result network within auditory and visual
stimulus on each subject. To obtain the similarity between
networks, we define a measure method to quantify the
similarity,

S =

∑∑
(A ∩ B)∑∑
(A ∪ B)

. (30)

where S represents the measured similarity, A and B are the
connectedmatrix of mental calculation networks. The numer-
ator is the sum of intersections of the same connected edges,
and the denominator is the sum of the unions of the connected
edges.
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FIGURE 10. Causal connectivities of subject 2 in mental calculation network under two stimuli.
Cyan node represented visual/auditory stimulus node. The blue/red nodes related to the mental
calculation network stated in the text. (a) and (b): mental calculation network obtained by
conventional GCA. (c) and (d): mental calculation network obtained by proposed approach.

FIGURE 11. Causal connectivities of subject 7 in mental calculation network under two stimuli.
Cyan node represented visual/auditory stimulus node. The blue/red nodes related to the mental
calculation network stated in the text. (a) and (b): mental calculation network obtained by
conventional GCA. (c) and (d): mental calculation network obtained by proposed approach.

2) MENTAL CALCULATION NETWORK
We already have verified the validity of MDL in simula-
tion data, but behavior in real data will determine the truly

robustness of the methods. Firstly, the activation regions of
mental calculation under different stimuli showed in Fig. 8,
and as had been postulated above, the activation regions
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between two senses were identical. The similarities in 4-node
connection network and 6-node full connection network
showed in Fig. 9 respectively. In 4-node network, we found
that causal connection networks of mental calculation
between visual stimulus and auditory stimulus were very
similar for most subjects, except for subject 6. There were
seven of nine subjects the similarities were above 0.6. Turned
to conventional GCA, we found that only three subjects of
causal connection networks between the two stimuli had a
similarity above 0.6. Meanwhile, only in subject 1 and sub-
ject 9, we found the similarity of causal networks between
two senses was above our proposal. Even for these two sub-
jects, the similarities in our proposal were close to conven-
tional GCA, especially in subject 1. Further the similarities
in 6-node full connection network also showed in Fig.11.
Duo to the difference between the input node of stimulus,
the similarities in twomethods were not above 0.5 mostly, but
there were still 3 subjects the similarities in our proposal were
mostly above 0.5, especially for subject 7. Clearly, whether
inside connection network of mental calculation or among
the 6-node full connection network, the similarities in most
of our subjects identified by our proposal were more than
conventional GCA.

Then, causal mental calculation networks of two subjects
showed in Fig. 10 and Fig. 11 respectively. As stated above,
the input node of stimulus should not be included into the
network to be compared, we removed the causal connection
between stimuli nodes and other four nodes of mental calcu-
lation network. Obviously, our proposal also had a desirable
robustness in fMRI data. As seen in Fig. 10 and Fig. 11,
for subject 2 and subject 7, the mental calculation networks
under different stimuli were almost identical. By the way,
even for different subjects, the causal connection networks
were similar at a large extent. As for conventional two-stage
GCA, causal connection networks of two subjects above
were more irregular, which seen in Fig. 10 and Fig. 11.
Comparing the similarity between causal networks identi-
fied by our proposal, the networks obtained by conventional
GCA had almost no consistency characteristics, the networks
under different stimuli appeared to be unrelated. Conven-
tional two-stage GCA identified a inconclusive results in
mental calculation. Consistent with the results in simulation,
our proposal was more robust in identifying causal connec-
tion network, especially in complex networks.

VI. CONCLUSION AND PERSPECTIVE
A. CONTRIBUTIONS AND DISCUSSIONS
The novelty of the present study is not in including the MDL
principle in the GCA procedure, but rather in considering
the MDL principle as unity strategy for model selection in
the analysis procedure. Conventional GCA usually consists
of two stages: (1) AIC/BIC for the predictors associated
with internal or external information, and (2) F-statistic
for evaluating the relative effects of exogenous variables.
We emphasize that these two parts fall within the scope of

model selection, and distinct theory might generate different
model selection criteria. Model selection should follow the
same mathematical theory in the GCA process.

In this paper, we have addressed this concern and have
proposed a unified model selection approach based on the
MDL principle for GCA in the context of the general regres-
sion model paradigm.We have demonstrated its efficacy over
conventional two-stage GCA approach in a 3-node network
and a 5-node network synthetic experiments. All results con-
firm the superiority of proposed approach over conventional
two-stage GCA. The unified model selection approach is
capable of identifying the actual connectivity in all the cases,
at the same time, avoiding greatly the false influences caused
by the presence of noise. GCA was originally designed
to handle pairs of variables, and may produce misleading
results when the true relationship involves three or more
variables [31], [32]. This case occurs when single connections
are strong enough: if A → B and B → C , then very likely
A → C will be picked up by GCA, thus inducing a denser
connected network than the truth. Our results suggest that the
proposed approach can remove the indirect connection and
retain the direct connection. The use of a better model selec-
tion strategy can improve the performance of GCA in sys-
tems involving a lager number of variables. As noted earlier
(section II), for the statistical strategy, the resulting network
are heavily dependent on the significance level chosen. In the
simulation experiments involving a 5-node system, while a
moderate significance level (P < 0.05) produces higher
sensitivity in revealing actual connectivity (true positive, TP),
it has lower specificity in avoiding false connectivity (true
negative, TN). A more stringent significance threshold (P <
0.01) makes the reverse effect. In contrast, the proposed
approach maintains high sensitivity and specificity in all
cases, indicating that the MDL principle do much more than
a higher significant level in F-statistics. The results illustrate
the benefits of performing comparisons over all competing
models in the model space as well.

More importantly, the proposed approach obtained more
consistent results in a challenging fMRI dataset, in where
visual/auditory stimuli with the same presentation design give
identical neural correlates of mental calculation, allowing
one to evaluate the performance of different GCA methods.
This provides clear experimental proof that unified GCA
is superior to conventional GCA [87]. The results are also
consistent with the current consensus that model selection is
crucial to investigate causal connectivity using neuroimaging
techniques [88].

Essentially, both the MDL and statistical strategies, indeed
all model selection methods, attempt to seek a trade-off
between goodness-of-fit and complexity of the model
involved. The MDL uses the code length which describes
both the model complexity and the fitting error to achieve
such a trade-off, whereas the statistical strategy implicitly
conveys it in F-distribution function through degrees of free-
dom. In the MDL framework all competitive models can
directly compare in terms of description length, without
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the need for an intermediate model. In contrast, F-statistics
resorts the extra sum of squares principle to determine which
model gives a better fit to the data. This approach requires
one model (the restricted model) to be nested within another
model (the unrestricted model). We argue that the pairwise
comparison in F-statistics is responsible for the inferior per-
formances when using the statistical strategy. The procedure
of model selection is confined to comparisons between mod-
els with a nested relationship, thereby impairing the perfor-
mance of the statistical strategy.

B. FUTURE WORKS
In this study we have focused on a general regression model
paradigm that provides a natural solution from two part form
of MDL to the GCA. As a general principle for statistical
model selection, the MDL principle develops many forms
of description length in terms of coding schemes. The MDL
forms can be viewed as imposing an adaptive penalty on
model size. Although all forms achieve pointwise and min-
imax lower bounds on redundancy [72], further investigation
is required to determine the optimal coding scheme suitable
for a given neuroimaging modality or noise level. Future
animal experiments that provide intracranial recordings of
and fMRI measurements of neural network synchronously on
the same animal will help to direct and test the development
of these forms. Moreover, the GCA schemes were also con-
veyed in different function spaces [49], [89]. The MDL will
provide potential approaches to the Granger-causality repre-
sentations in other function spaces principle because has rich
connections with Bayesian statistics [72]. More importantly,
the MDL principle allows the comparison between any two
model classes in terms of code length, regardless of their
forms [72]. This robust feature has potential to accommodate
the representations of Granger-causality generated from dif-
ferent model classes, while the causal correlation can be also
investigated between disparate function spaces.
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