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ABSTRACT Over the past several years, sponsored mobile data and the payment directions on the Internet
have been two major subjects in network economics. Several tier-1 service providers (SPs) created their
frameworks for sponsored mobile data by cooperating with content providers. Based on these frameworks,
users can have free data transfer if they accomplish a predefined task such as watching advertised videos.
In this paper, we investigate particular types of mobile applications that can deliver their data to all
cellular users free, even to the users without a data plan. Our approach does not force users to click on
advertised content to obtain free data access yet it can still generate a level of revenue for application
providers (APs) that can compensate for the revenue loss of the network service provider. We call this
approach an Application-Oriented Free Data (AFD) program. To model and analyze the characteristics of
the considered framework we use a multi-stage game consisting of cellular users, an SP, and an AP. We solve
this game by backward induction. In this way, we define the required thresholds of price and data usage for
an AFD program. The feasibility of the AFD program is illustrated by several numerical examples.

INDEX TERMS Cellular data service, network economics, net neutrality, sponsored data, content-aware
networks, free cellular data, Google Maps.

I. INTRODUCTION
The circuit-switched networks have no knowledge about the
transmitted information or its worth and hence the dominant
type of pricing for these networks is based on the duration
of each connection. With the introduction of packet-switched
networks, the network service providers (SPs) could intro-
duce the second type of pricing that is based on the volume
of transferred data. Analyzing volume-based pricing schemes
was the subject of our recent work [1], [2]. Note that in
the volume-based pricing there is no resolution among dif-
ferent types of data, but this can change soon due to the
vast implementation of content delivery networks (CDN)
[3] and edge-computing. These developments lead to many
studies of content-aware networks (CAN), e.g. [4] and [5],
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and wide implementation of CAN networks is expected in
near future Internet. The arrival of CDN networks creates
new opportunities for customizations and improvements of
the current pricing policies that would have an eye on fairness
and user satisfaction. This context gives us the motivation to
focus in this paper on an economical framework and models
where specific mobile applications have no cost to the end-
users. In these cases, the network service providers (SPs) and
eligible application providers (APs) cooperate to leverage the
natural behavior of users, such as online shopping, to generate
revenue.

In the proposed approach, the users are not forced to click
on advertised contents in order to obtain free data transfer
but it should be underlined that this is possible only for
eligible types of applications. In particular, applications such
as mapping services with embedded advertising capability
for local businesses are the best candidates for our method
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but, for example, the data transfer for video streaming apps
with high demand cannot be offered free for all users without
experiencing revenue loss. Hence, we call our approach an
Application-Oriented Free Data (AFD) program. The eco-
nomic framework of the AFD program is different from the
classical sponsored data method in which the sponsored con-
tent is selected by a content provider and it can be a specific
video or music. It is also different from recent methods in
which users obtain free usage by participating in selected
activities such as clicking on online ads. We focus on the
entire data generated by an eligible application and prove that
it can be offered to all users free of charge and restrictions
on usage. We prove that any application that meets eligibility
criteria can join the AFD program. Hence, it does not affect
the APs that are competing and provide similar content types
through their applications. One example of an eligible appli-
cation type is mapping services that have small data usages
and generate their revenue from local businesses. These busi-
nesses can be hotels, shopping centers and any market rely-
ing on the online advertisement. The second example of an
eligible application type is real-time IoT services like health
monitoring wearable devices connected to cloud-based appli-
cations. These applications usually use small amounts of data
transfer, yet carry high-value information that is processed
and billed by third-party cloud-based services. In Section III,
we show the business models of different types of eligible
applications and elaborate on their differences. However,
in all of them, the payment directions under the AFD pro-
gram are similar to the ones shown in Fig. 1, where users
do not pay for the data transfer associated with the eligible
applicants. We show that even with a linear relation between
data usage and revenue of AP and with maximum usage of
the eligible application by all users, the AP can compensate
for the revenue loss of the SP in an AFD program.

In this paper, we consider the economic interactions
between three network entities. Namely, an AP, an SP, and
users. The data usage behavior of the SP’s subscribers is
modeled with a utility function that is in harmony with real
network statistics. The SP has a contract with each user that
is charged based on its usage excluding the usage under the
AFD program. The AP offers a free application to all users
and it makes revenue by showing advertisements or informa-
tion provided by third-party local businesses. We show that
the AP can compensate for the profit loss to the SP. In par-
ticular, we model this process as a two-person bargaining
problem and find its Nash Bargaining solution. Our model
identifies the threshold of the bargaining power of SP when
the AFD program is possible. We also prove that all APs with
eligible applications are better off with the AFD program if
their profit model is at least in linear relation with consumed
data.

The rest of this paper is organized as follows. Section II
is dedicated to the related work. In Section III, we intro-
duce two categories of applications that are candidates for
the AFD program. In Section IV, the sequential game for
the first category of applications is developed and analyzed

FIGURE 1. The payment directions for AFD and Non-AFD apps.

(we selected for analyzing the first category due to its higher
complexity). Section V includes numerical examples. Finally
Section VI concludes the paper.

II. RELATED WORK
To have a deeper understanding of the AFD program,
we explain several industrial and academic endeavors toward
partially free data access. From the industrial side, one of the
first mechanisms was sponsored data option introduced by
AT&T [6]. In this approach, users can have free data access
for sponsored content, besides their regular data plan. One
example is sponsored videos that are provided by content
providers (CPs) approved by AT&T. If users watch such
videos, there is no impact on the usage of their regular data
plan. T-Mobile and Verizon also introduced Binge On [7] and
FreeBee [8], respectively. They both follow philosophy simi-
lar to the one used in AT&T’s plan with several differences in
detail. The key to all of these plans is the presence of CPs who
are eager to sponsor free data transfer. Due to the required
sponsorship, the offered free content is restricted to specific
CPs and moreover, to the selected content that CP sponsors.
Also, these plans are offered to the users who already have
a data plan which is a major drawback regarding fairness
and social welfare. Another concern about the sponsored
data program is the violation of network neutrality. Since the
major SPs can attract powerful CPs by charging them for
their access to the end-users, the smaller CPs and SPs cannot
compete in this field and that is in contradiction to widely
accepted practice which suggests an equal and neutral policy
for all data over the Internet.

Concerning the net neutrality itself, [9] analyzes the
short-term effect of net neutrality in a monopoly market.
This work investigates different rules of neutrality and shows
that the strict net neutrality that includes a single transport
class is not socially efficient due to traffic inflation. The
authors argue that by deviation from net neutrality, a socially
optimal traffic allocation can be achieved. The authors
of [10] consider two competing Internet providers and a group
of content providers. They study the effect of net neutrality
on investment for capacity expansion and also on content
innovation. They suggest that under a discriminatory regime
in which the platforms charge priority fees for faster content
delivery, the capacity investment and innovation are higher
than in the case with net neutrality. Reference [11] investi-
gates the profitability of non-neutral networks and shows that
in certain scenarios, a non-neutral network is nonprofitable.
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Also, it shows that when the market power of an SP is
small, the end-users can obtain a better overall payoff in a
non-neutral regime. Reference [12] analyses the interaction
between a CP and an SP when the SP agrees to offer a better
QoS to CP’s service. This can be seen as a coalition of the two
providers which is achieved by an agreement in a bargaining
game. The effect of bargaining power on the QoS and the
social efficiency level are the two factors that are considered
in this work. Reference [13] investigates the optimum amount
of content that the CP should sponsor. It shows that with
sponsored data applied, the utility of users increases more
than the utility of CPs. Reference [14] considers a case in
which an SP proposes a sponsored data service to several
CPs. In this case, the SP aims to select one of the CPs
for the offered service and to determine the service price
that maximizes its revenue. One of the main issues that is
addressed in [14] is the truthfulness of CPs when they report
their network parameters. In [15], authors consider a market
with a monopolist mobile network provider and two com-
peting content providers. The data usage of users and their
preference for CP selection are heterogeneous. The authors
found that the optimal pricing scheme in the mentioned
network settings is a two-part tariff without any data cap.
Reference [16] models the interaction between CP-SP as
a two-stage Stackelberg game where the CP and SP are
leaders and the users are followers. It considers two cases:
competitive and cooperative. In the competitive case, each
provider tries to maximize its own profit. In the coop-
erative case, CP and SP jointly optimize their strategies.
Reference [17] studies the concept of sponsored data and
models the interaction between CP, SP, and users as a
three-stage game. The authors derive the model for content
demand for users and the best-sponsoring strategy for CP.
This study proves that the revenue levels of CP and SP
and utilities of users are improved under the sponsored con-
tent policy. The authors of [18] analyze a sponsored con-
tent/service market with a two-stage Stackelberg model. The
service selection strategy of users is modeled as an evolution-
ary population sub-game. The sponsoring-pricing interaction
between CP and SP is modeled as a non-cooperative sub-
game. The authors prove the existence of equilibrium and
propose an iterative algorithm to find it. There are also several
works that study the cooperation between network entities
and network economics, e.g. [19]–[22].

The main difference between our work and the mentioned
studies, specially [16]–[18], is the type of sponsored content
that is analyzed in our work. As we explain throughout the
paper, AFD eligible applications have a very small usage
pattern but are highly important to the end-users according to
real-world statistics. They also have in-app business models
which generate the revenue from the local businesses and
third parties instead of regular end-users of the application.
This combination motivates the SP and CPs to cooperate and
achieve a common ground to offer such apps free of charge.
To the best of our knowledge, the full sponsorship model
proposed in our paper was not addressed in the previous

studies. Also note that in our paper, we consider AP-SP mod-
els instead of studying the CP-SP interaction. The advantage
of this approach is that we can take advantage of particular
features of the content provided by an application while in
general, a content provider offers many contents that are often
controlled by independent application providers.

III. ON THE FEASIBILITY OF AFD PROGRAM
In this section, we focus on those types of applications that
can be offered free of charge to the end-users. We define
two categories of the eligible applications and their common
characteristics.

A. CATEGORY 1: MAPPING APPLICATIONS
The data acquired from comScore’s 2016 report [23] shows
that Facebook, FacebookMessenger, YouTube, GoogleMaps
and Google Play are the top five mobile applications. On top
of the list is Facebook having 80% of the audience. The
Facebook application is known for its moderate to high data
usage. The second rank is Facebook Messenger which is less
traffic greedy. However, its overall consumption can be very
high since it can be used repeatedly during a short time period
as a messaging service. The third most reached application
is YouTube which generates the most traffic when compared
with other applications in the list. Based on YouTube’s statis-
tics, the average viewing session for mobiles is 40 minutes
as of 2016 [24]. This means for 480P videos, having
2.5 Mbps data rate, YouTube consumes 750 MB per average
session. The fourth most reached application is Google Maps
with around 55% of reachability in the U.S market. From the
AFD viewpoint, Google Maps has three interesting features
comparing to the top three applications. First, it is not a social
media application or entertainment service. Hence, every
time a user opens this application, it is due to the importance
of information that is required. Second, while the first three
applications in the list have moderate to high traffic demand,
the amount of required data transfer for Google Maps is neg-
ligible per request; as of today, based on our measurements,
it uses 300-500 KB to process each location request. The final
aspect is the new feature of Promoted Pins that lets local
businesses offer different kinds of promotions to their cus-
tomers. The advertisements appear as pins on the map when
a user searches for a related location. For example, when a
user requests for nearby restaurants, the special offers would
appear. Google Maps also supports the bidding mechanisms
for hotels. In all of these cases, Google highly relies on its
reachability to the users that is directly related to the number
of data subscribers in local cellular networks. However, as the
data acquired from Ericsson Mobility report [25] in Table 1
shows, over 35% of wireless users in advance markets have
a data cap of less than 100 MB. The total traffic generated
by this group is 0.7% of total traffic. The traffic share for the
group of 100MB- 1GB plans is about 11.5%while this group
includes 29% of all subscribers. Thus, while Google requires
high connectivity of users for its business model, near 64%
of subscribers do not have the necessary data connection
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FIGURE 2. a) Traditional payment direction for Google Maps. b) The
alternative AFD concept.

to use Google Maps freely. The features mentioned above
indicate that mapping applications such as GoogleMaps have
the potential to be offered under the AFD program. The
traditional payment directions for Google Maps are depicted
in Fig. 2-a. Here the end-users pay for their data connectivity,
local businesses pay Google for advertisement, and finally,
the end-users may pay local businesses for their offers on the
mapping application. Under the AFD program, the payment
directions would be defined as shown in Fig. 2-b. In this case,
the end-users do not pay for their usage of Google Maps.
Instead, the content-aware cellular network allows them to
use this application free of charge. To compensate for the SP’s
lost revenue from the end-users, Google would share part of
its extra revenue with the SPs. The extra revenue comes from
the increased advertisement clicks which are due to the higher
service usage by the SP’s users. Note that this alternative
scenario is feasible due to some unique characteristics of
Google Maps. We will further discuss these characteristics
in Section III-C.

B. CATEGORY 2: REAL-TIME CLOUD-BASED IoT
APPLICATIONS
The second category of applications eligible for the AFD pro-
gram is related to the rapid development of wearable devices,
IoT applications, and edge-computing. In contrast to the first
category in which the end-users would not directly pay for
using the applications of Google or Apple, in the second
category users pay for the cloud-based applications. In the
current market model, the end-users pay for both data connec-
tivity and cloud-based applications that collect event-triggers
from sensors and react. However, there are some scenarios
in which the current market model can be inefficient or even
dangerous. For example, consider a health monitoring system
that loses its connection to the cloud-based service when
the data plan reaches its cap. In such a scenario, while the
user already paid for a critical service, the service cannot
save its life. Therefore, this service could benefit greatly
from the AFD program and the same applies to a broad
range of IoT applications using low data using sensors that
provide valuable information. The traditional payment model
requires the end-users to pay for both network connectivity

FIGURE 3. a) Current payment directions for cloud-cellular IoT
applications. b) alternative AFD model.

and the cloud-based applications located on the edge of the
provider’s network. This model of payment directions is
depicted in Fig. 3-a. The alternative AFD model removes
the data transfer and connectivity cost from the end-user.
In this model, the cost of data transfer is being paid by the
cloud-based service owner.

C. CHARACTERISTICS OF ELIGIBLE APPLICATIONS FOR
THE AFD PROGRAM
Until now we defined two categories of applications that are
good candidates for the AFD program. In this Subsection,
we define some general characteristics that should be pos-
sessed by the eligible applications.
Property 1: let us define the expected content size for each

application as the average size of data that is passed to the user
when it performs a regular content request such as obtain-
ing a map location from Google Map. Then, in the eligible
applications, the expected content size is relatively small and
its perceptual value to the user is high. On the other hand,
for the content types such as video, the expected size of each
video is significantly higher, and the data does not have the
same importance or time criticality. In other words, in most
cases when a user requires a map location data or health-care
service, the request cannot be postponed till another time.
This argument is backed by the real data from Ericsson [25]
that shows the higher priority of Mapping applications when
the monthly plan bandwidth is limited. Let us represent the
content size as θ and the perceptual importance to a user as
a random variable α. Then, the importance to size ratio is
ρ = α

θ
. Since the two variables are generally independent,

the average ratio is E[ρ] = E[α]
E[θ ] . We expect this ratio to be

the highest for the eligible applications when compared with
all application types in the network. This definition lacks two
pieces of important information. First, there is no metric for
perceptual importance. Thus, we need to use a utility function
to model user behavior. This utility function is presented in
Section IV-A. Second, ρ does not carry any information about
the user greediness for the application usage which forces us
to define the second property.
Property 2: the second property of eligible applications is

that the user should not be greedy for the application usage.
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TABLE 1. Subscriber and traffic shares in advance mobile markets, adopted from Ericsson mobility report [25].

TABLE 2. Application volume shares of different subscriber groups adopted from Ericsson Mobility report [25].

We define the overall size of data transferred by application a
and user j in the period from the beginning of the billing cycle
till time t as 2a

j,t (d), where d is the cap of user’s data plan.
Then, the application usage index (AUI) among all users can
be defined as,

Iaj (d) = lim
t→∞

2a
j,t (d)∑A

a=12
a
j,t (d)
· (1)

For the eligible applications, AUI should decrease with
increasing d , and that is stated in the following greediness
condition:

1
N

N∑
j=1

∂Iaj (d)

∂d
≤ 0, (2)

where N is the total number of users in the market. For
example, consider the Rows 3 and 4 of Table 2 that are
related to web browsing and communication services. When
users have a small monthly data plan, such as 100 MB,
the share of such services in their total usage is 20% and 12%
respectively. However, as the data plan increases, their usage
share decreases. For users with 1-10 GB of available data,
their share is 12% and 4%. This pattern is shown in Fig 4-c
and is an exact representation of Equation 2. We can find
two other general patterns related to I (d) from the data of
Table 2 that are shown in Fig 4-a and Fig 4-b. Fig. 4-a shows
the usage index shape for Type-I applications for which users
have the highest usage greediness; this type includes the video
applications in Table 2. Fig. 4-b illustrates the usage index
shape for Type-II applications. A user considers utilizing
these applications if it has enough bandwidth available. How-
ever, these applications are not important enough to be used
in plans with a small data cap. Audio services belong to this
category. Finally, 4-c depicts the usage index shape for the
critical applications that the user requires under any data plan.
A user may utilize only these applications when the data cap
is limited to a small value, e.g., one- or two-gigabytes. Also,
users are not greedy for these applications so condition (2) is
satisfied in this case.Web browsing andmapping applications

FIGURE 4. Three types of mobile applications based on subscriber’s
usage behavior defined by Iu(d ).

belong to this application type. Being a Type-III application
is a necessity to be eligible for the AFD program. However,
it is not sufficient; the business model should also support the
AFD program. Hence, a third characteristic should be defined
to resolve necessity and sufficiency conditions for eligible
applications.
Property 3: until now we considered the usage characteris-

tics of eligible applications. The third characteristic is related
to the market condition. For any service to be considered as
AFD eligible, there should be a business or a social entity
that can compensate for the revenue loss of cellular providers.
This characteristic may look trivial, but when we compare
a mapping service with web browsing applications, one can
notice a structural difference in the business model. Namely,
for mapping applications such as Google Maps, there is
an explicit financial loop from local businesses to Google,
to SPs, to users, and again to local businesses. On the other
hand, there is no such loop for browsing applications since
the potential gainers are distributed throughout the Internet.
The only exception would be injecting direct advertisement
from cellular provider to the web browsing data and making
a payment loop similar to Google Map’s business model
in Fig. 2-a.

Among the two categories of eligible applicants for the
AFD program, the first category has the most complicated
structure. It includes users, SPs and APs that directly affect
each other behavior. The AFD feasibility models for the
Category 2 and 3 applications are simpler and can be derived
by some modification of the first category model. We studied
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FIGURE 5. The general structure of the analyzed game.

the Category 3 applications in [26]. Hence, in the remainder
of the paper, we propose and analyze a detailed analytical
model for the AFD feasibility of the Category 1 applications.

IV. THE GAME FOR CATEGORY 1 APPLICATIONS
In this section, we consider a three-stage game that defines
the best strategies of SPs and APs for joining or refusing
the AFD program for an eligible Category 1 application.
The game consists of three entities: cellular users, an SP,
and an AP. Users adjust their subscription and data usage
behavior based on the offered plan prices from the SP. The
AP generates its revenue based on the number of subscribed
users and the amount of data requests they generate. Similar
to any market, since the volume of data requests is in close
relation to the unit data price offered by the SP, the AP earns
an extra revenue if the SP applies theminimum possible price.
Our goal is to investigate and define the conditions in which
an entirely free access gives a sufficient amount of extra
revenue to the AP to compensate for the revenue loss of SP.
Wemodel the interaction between SP and users as a two-stage
Stackelberg game and solve it by backward induction. Then,
the negotiation between AP and SP is modeled via the Nash
bargaining solution (NBS). Fig. 5 shows the general structure
of the game.

In the following Subsection A, we analyze the best demand
response of the mobile subscribers assuming that the service
price of SP is known. This is the second stage in our Stackel-
berg game. Then, in Subsection B, the optimal service price
of SP is modeled in the first stage of the game. Subsections C
and D are dedicated to the optimal prices of SP related to
its non-cooperative and cooperative strategies, respectively.
Subsections E, F and G are dedicated to the negotiation stage.
Subsection E discusses the possibility of AFD program from
the AP’s point of view while Subsections F and G present the
revenue of AP based on its bargaining power over SP using
the Nash bargaining solution and Shapley value, respectively.

A. STAGE II: USER’s UTILITY AND BEST RESPONSE
Since user behavior analysis is the foundation of the proposed
framework, we need to define the proper metric to find the
amount of data consumption. Similar to many related works,
we use the concepts from utility theory to formulate this

metric. With the help of the data provided by Ericsson [25]
in Tables 1 and 2, we know that 70% of current users have
a limited data plan with less than 2 GB; the primary con-
cern of these users is choosing between high priority data
provided by mapping applications and other less critical data
such as video. For these users, the utilization percentage of
high demanding applications such as video is negligible. For
the rest of users who share almost 80% of overall traffic,
the decision concern is mainly about the amount of traffic
they need to buy for their video streaming applications. For
these users, the traffic ratio of high-value applications to
the rest of applications is under 10% (Type-III applications
in Fig. 4). Hence, we can define a two-part utility function that
considers the importance of eligible application in one part
and the importance of high demand applications in the other
part. For each part, we use the familiar form of logarithmic
utility function due to its conformity to the law of diminishing
marginal utility [27]. The adoption of this law is essential
in studying cases of data consumption. Also, the logarith-
mic utility is a common practice in related works e.g. [28]
and [29]. The utility for a specific user j has the form of:

uj(p) =
α
j
eβelog(1+ d

j
e)−pd

j
e

Ue

+
α
j
rβr log(1+ d

j
r )−pd

j
r

Ur
· (3)

The first part of the above function defines the gained nor-
malized payoff from using an AFD eligible application.
This application is indicated by subscript e. The second part
belongs to the rest of the applications with lower importance
and higher traffic demand indicated by index r . We define
α
j
i, i ∈ {e, r} as a random variable which shows the impor-

tance of the application i to user j. This importance is coupled
with the amount of money that the user is willing to pay
for a specific type of application. For the sake of simplic-
ity in analysis, we assume that αje and αjr are i.i.d having
a uniform PDF of U (0, 1). Note that it is highly common
to use a uniform valuation in economic analysis. We refer
the readers to [30] and [31] as two well-known examples.
βi is a user-independent variable that controls the amount
of data consumption for a given price. d ji is the amount of
preferred data usage for each application type. We also define
constant Di which indicates the maximum amount of data
consumption users tend to achieve. Based on the definition,
we expect De to be negligible comparing to Dr . p ∈ <+

is the unit price for data implied by the SP. Finally, Ue and
Ur are the normalizing factors which control the peak of
utility for each application. These two constants are essential
since the two parts of utility have different peaks, yet they
may represent the same amount of satisfaction to each user.
By this definition, Ui = βilog(1 + Di) and the maximum of
uj(p) for the most demanding user can be 2. For the rest of
users, the maximum utility is ujM (p) = α

j
e + α

j
r < 2 which

shows that the maximum value of satisfaction is related to
the perceptual importance of the applications to the user. It is
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clear that uj(p) is concave with respect to d je and d
j
r . The first

derivative of uj(p) with respect to d ji is:

∂uj(p)

∂d ji
=

1
Ui

(
α
j
iβi

1+ d ji
− p

)
, (4)

d j′i =
α
j
iβi

p
− 1, (5)

where d j′i is the global maximum of uj(p). By considering
the positivity and the maximum level of usage, we have the
optimum value as:

d j
o

i = min

(
max

(
α
j
iβi

p
− 1, 0

)
,Di

)
. (6)

The above equation indicates that p ≥ α
j
iβi leads to zero

usage for the application of type i, and p ≤
α
j
iβi

1+Di
gives the

user the opportunity to reach the maximum demand for the
application of type i. To have the analysis of the user’s best
responses, we need to categorize the users based on usage
threshold orders. These orders can be represented by two
main sets:

Order set I-


1) αjeβe ≥ α

j
rβr >

α
j
eβe

1+ De
>

α
j
rβr

1+ Dr
,

2) αjeβe >
α
j
eβe

1+ De
> αjrβr >

α
j
rβr

1+ Dr
.

(7)

Order set II-



3) αjrβr > αjeβe >
α
j
eβe

1+ De
>

α
j
rβr

1+ Dr
,

4) αjrβr > αjeβe >
α
j
rβr

1+ Dr
>

α
j
eβe

1+ De
,

5) αjrβr >
α
j
rβr

1+ Dr
> αjeβe >

α
j
eβe

1+ De
.

(8)

The main difference between the two sets is the user’s appli-
cation prioritizing behavior. The first set represents the users
who prioritize the type e applications and the second set is
for the users who favor the type r applications. To have a
better understanding of the user behavior, let us define the
best response function as follows:
Proposition 1: The best response data values for the users

in the first order (set I-1) are as follows:

I-1



d j
o

ed
jo
ed
jo
e =0, d

jo
rd
jo
rd
jo
r =0 p>αjeβe,

d j
o

ed
jo
ed
jo
e =

α
j
eβe

p
−1, d j

o

rd
jo
rd
jo
r =0 αjrβr<p≤α

j
eβe,

d j
o

ed
jo
ed
jo
e =

α
j
eβe

p
−1, d j

o

rd
jo
rd
jo
r =

α
j
rβr−p
p

α
j
eβe

1+De
<p≤αjrβr ,

d j
o

ed
jo
ed
jo
e =De, d

jo
rd
jo
rd
jo
r =

α
j
rβr−p
p

α
j
rβr

1+Dr
<p≤

α
j
eβe

1+De
,

d j
o

ed
jo
ed
jo
e =De, d

jo
rd
jo
rd
jo
r =Dr p≤

α
j
rβr

1+Dr
.

(9)

Proof: The thresholds come directly from (7) and the
optimum values follow (6).

The best response for the rest of the threshold orders can
be easily defined based on the above definition. We omit
their discussion to simplify the presentation. Instead, we show
the typical curves of best responses for the threshold orders
in Fig. 6 (next page). As depicted in Fig. 6(a)-(e), the main
difference between the best response curves is the usage
behavior when the price is high. Sub-figures 6-(a) and (b) rep-
resent the users who prioritize the eligible applications over
the rest of the applications. Hence, when the price is high,
they use only the eligible applicants. This makes a significant
difference in the AUI curve. The single-user AUI of the eligi-
ble application, Ie(p) =

de(p)
de(p)+dr (p)

, for the first two orders is
similar to the one of the Type-III applications (a horizontally
flipped version of the curve in Fig. 4, having d inversely
related to p). Order II-1 shows a pattern similar to the
Type-II applications for the presumably eligible applications.
Orders II-2 and II-3 represent our eligible applications similar
to the Type-I applications. Based on the three characteristics
of the eligible applications for the AFD program, we know
that only Orders I-1 and I-2 are a realistic representation.
This assertion does not imply that all users act based on the
first two orders. However, since the marketwide AUI (Eq. (1))
represents the aggregated usage of an application in the entire
market when it comes to an eligible application the majority
of users behave based on Orders I-1 and I-2. Hence we can
propose the following proposition:
Proposition 2: For an eligible Category 1 application,

βe > βr always holds.
Proof: See appendix A.

B. STAGE I: THE BEST STRATEGY FOR SP
In Stage II, after the analysis of users’ best responses,
the SP should determine its best strategy. As discussed ear-
lier, the SP decides whether it wants to participate in the
AFD program or not and also sets the data price that max-
imizes its revenue. Thus, the strategy of SP is defined by
triple (p, γ SP, pAP) where p is the data unit price for type r
applications, γ SP ∈ {0, 1} defines the participation strategy
and pAP is the data unit price for the type e application
when the SP participates in the AFD program, γ SP = 1.
pAP is the base for any payment from the AP to the SP
to compensate for the SP’s revenue loss. In the following,
we derive the optimum revenue values for each strategy
triple.

The revenue of SP, when it does not participate in the AFD
program, is directly related to the overall data consumed by
the subscribed users. When the SP agrees to join the AFD
program, it loses a part of its revenue which comes from
the eligible application’s traffic. However, in the considered
scenario, the AP compensates for the revenue loss of SP by
making a side-payment. Thus, having N as the total number
of users in the SP’s network, we can define the revenue
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FIGURE 6. Best response of users base on threshold orders.

function of SP as:

πSP(γ SP = 0, p) = N ×
[ ∫ 1

αe=1
de(αe, p)dαe

+

∫ 1

αr=1
dr (αr , p)dαr

]
, (10)

πSP(γ SP = 1, p, pAP) = N
[ ∫ 1

αr=1
dr (αr , p)dαr

+ DepAP
]
. (11)

Eq. (10) represents the non-AFD revenue and (11) is the rev-
enue of SP under the AFD program. In (11) the side-payment

from AP to SP it is defined as NDepAP that implies that
under the AFD program, in which users are not charged for
transferring type e applications, all users reach maximum
usage De. Based on the above revenue equations, we define
a detailed revenue structure of SP based on its pricing and
participation strategies in the following two subsections.

C. THE REVENUE OF SP IN NON-COOPERATIVE
STRATEGY (γ SP = 0)
When the SP is not engaged in the AFD program, its only
source of revenue is the direct payments from the users for
their data usage. In this case, the SP should set the price value
that maximizes its revenue. Based on (6), the price threshold
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FIGURE 7. Optimal data usage with respect to αe and αr in ultra-high
price regime βr < p < βe.

abovewhich user j does not demand any data from application
i is p = αjiβi. Hence, if the SP sets the price p > βi, no user
would demand data from application type i. We have two
thresholds p = βe and p = βr representing the upper limit of
the price for each application type. Also, for the same user j,

p <=
αijβi

1+Di
leads to maximum data usage. We can take the

thresholds p = βi
1+Di

and p = βr
1+Dr

as the price values for
which greediest users start to enjoy full data usage for the
respective application. Based on the above definitions and
Proposition 2, there are two orders of thresholds:

1) βe > βr ≥
βe

1+ De
>

βr

1+ Dr
,

2) βe >
βe

1+ De
≥ βr >

βr

1+ Dr
.

(12)

The above orders can also be derived from Order set I in (7).
We select the first order as the base for further analysis since
the same approach can be applied to the wireless markets with
the second order. We define the SP’s best response price and
the associated revenue under each price regime as follows:

1) ULTRA-HIGH PRICE REGIME: βr < p < βe

When the SP applies an ultra-high price regime, no user reach
its maximum usage regarding application type e. However,
as it is depicted in Fig. 7, all the users with αe ≥

p
βe

can

enjoy a partial usage of de =
αeβe
p − 1. Considering the type

r applications, since p is above the minimal usage threshold,
no user will utilize these applications and hence dr = 0 for
all the users. The overall revenue of SP is:

πSPuh (γ
SP
= 0, p) = Np

∫ 1

αe=
p
βe

αeβe

p
− 1 dαe

= N
(
p2

2βe
− p+

βe

2

)
. (13)

The first derivative of above revenue function is N ( p
βe
− 1)

and the second derivative is N
βe
. Hence, the revenue function

in ultra-high price regime is convex and its maximum occurs
at the boundary price p = βr :

max
p
πSPuh (γ

SP
= 0, p) = N

(
β2r

2βe
− βr +

βe

2

)
. (14)

FIGURE 8. Optimal data usage with respect to αe and αr in high price
regime βe

1+De
< p < βr .

2) HIGH PRICE REGIME: βe
1+De

< p < βr

Considering the user’s best responses, the difference between
the ultra-high and high price regimes is that in the latter, a part
of users with αr ≥

p
βr

utilize the type r applications. The best
response for the type e application remains the same. This
behavior is depicted in Fig. 8.

πSPh (γ SP = 0, p) = Np
[ ∫ 1

αe=
p
βe

αeβe

p
− 1 dαe

+

∫ 1

αr=
p
βr

αrβr

p
− 1 dαr

]
= N

(
p2(βe + βr )

2βeβr
− 2p+

βe + βr

2

)
.

(15)

The revenue function of (15) is convex and similar to (13) and
its maximum value is in lower boundary of price p = βe

1+De
:

max
p
πSPh (γ SP = 0, p) = N

(((
βe + βr

2

(
βe

βr (1+ De)2
+ 1

)
−2

βe

1+ De

)))
. (16)

3) MODERATE PRICE REGIME: βr
1+Dr

< p ≤ βe
1+De

In the moderate price regime, the SP allows a part of users
with αe ≥

p(1+De)
βe

reach their maximal usage for applica-
tion e. However, with such a price regime no user is willing to
achieve maximum usage for application r . These conditions
are shown in Fig. 9. The revenue of SP in a moderate price
regime is defined as shown in (17), as shown at the bottom of
the next page.
Proposition 3: The revenue function in moderate price

regime has a maximum at p = βeβr (De−1)
βr ((1+De)2−1)−βe

, if De > 1

and Dr >
De(βr (De+2)−βe)

βe(De−1)
, otherwise, the maximum occurs

at lower boundary price p = βr
1+Dr

.
Proof: See Appendix B.

4) LOW PRICE REGIME: p ≤ βr
1+Dr

When the low price regime is applied, a part of users achieves
the maximum usage for application types e or r or both,
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FIGURE 9. Optimal data usage with respect to αe and αr in moderate
price regime βr

1+Dr
< p ≤ βe

1+De
.

FIGURE 10. Optimal data usage with respect to αe and αr in low price
regime p ≤ βr

1+Dr
.

as depicted in Fig. 10. The revenue of SP is given by (19),
as shown at the bottom of this page. The quadratic revenue
function of (19) is concave and the optimal price is given by:

pl =
βeβr (De + Dr )

βe
(
(1+ Dr )2 − 1

)
+ βr

(
(1+ De)2 − 1

) · (18)

Since Dr � 1, it can be easily proved that pl <
βr

1+Dr
and the

maximum value of concave revenue function is the optimal
value within the price boundary.

The optimal value of p is the one that maximizes the
revenue of SP. Since we derived the optimal value for each

pricing regime, the final value can be defined as:

πSPo (γ SP = 0, p) = max
(
max
p
πSPuh (γ

SP
= 0, p),

max
p
πSPh (γ SP = 0, p),

max
p
πSPm (γ SP = 0, p),

max
p
πSPl (γ SP = 0, p)

)
, (20)

po = argmax
p

πSPo (γ SP = 0, p). (21)

D. THE REVENUE OF SP IN COOPERATIVE
STRATEGY (γ SP = 1)
In the previous subsection, we analyzed the revenue of SP
under the non-cooperative strategy, γ SP = 0. We categorized
the best price responses of SP into four price regimes that
yield different usage patterns for application types e and
r . Consequently, the revenue values for these regimes vary.
If the SP decides not to cooperate, then it selects the price
regime that maximizes its revenue. Since the revenue in all
price regimes is related to four market parameters βe, βr , De
and Dr , we must adopt a parametric solution for the cooper-
ative strategy of SP as well. In this manner, by considering
the application of each price regime to the SP’s network, one
can derive the cooperative revenue counterpart. We start our
analysis by defining user behavior when the SP participates
in the AFD program.

When the SP aims to implement the AFD program, users
are not charged for demanding data from application type e.
The worst scenario for SP is that all users utilize application e
to its maximum level of De and, simultaneously, no user
is willing to raise its data usage from application r . Since
the very first condition in the AFD program is the price
invariance, the SP loses all the revenue from the application
e without obtaining extra value transfer of application r . This
condition is previously formulated in (11). One can apply this

πSPm (γ SP = 0, p) = Np
[ ∫ p(1+De)

βe

αe=
p
βe

αeβe

p
− 1 dαe +

∫ 1

αe=
p(1+De)
βe

De dαe +
∫ 1

αr=
p
βr

αrβr

p
− 1 dαr

]
= N

(
p2

2

(
1
βr
−

1
βe

(
(1+ De)2 − 1

))
+ (De − 1)p+

βr

2

)
. (17)

πSPl (γ SP = 0, p) = Np
[ ∫ p(1+De)

βe

αe=
p
βe

αeβe

p
− 1 dαe +

∫ 1

αe=
p(1+De)
βe

De dαe +
∫ p(1+Dr )

βr

αr=
p
βr

αrβr

p
− 1 dαr

+

∫ 1

αr=
p(1+Dr )
βr

Dr dαr

]
= N

(
−p2

2

(
1
βr

(
(1+ Dr )2 − 1

)
+

1
βe

(
(1+ De)2 − 1

))
+ (De + Dr )p

)
. (19)
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equation to different price regimes to obtain the revenue of SP
in the cooperative state. For example:

1) ULTRA HIGH PRICE REGIME: βr < p < βe

In the ultra-high price regime, the entire data traffic belongs
to application type e. Hence, by participating in the AFD
program, the revenue of SP solely comes from the AP as
follows:

πSP(p, γ SP = 1, pAP) = N × De × pAP. (22)

It is clear that SP agrees to participate in the AFD program if
and only if πSP(p, γ SP = 1, pAP) ≥ πSP(γ SP = 0, p). Based
on (13) and (22), pAP > 1

De

(
β2r
2βe
− βr +

βe
2

)
is the sufficient

condition for this case. Deriving the revenue function for the
other three price regimes is straightforward so it is omitted to
simplify the presentation.

E. AP-SP NEGOTIATION
In the negotiation stage, the AP decides if the AFD program is
profitable to itself and if yes, which data unit price should be
offered to the SP for its revenue loss. Hence, one can define
the strategy pair (γ AP, pAP) for the AP in which γ AP ∈ {0, 1}
represents the AFD participation of AP and pAP ∈ <+ is
the data unit price as the base for payment to the SP. As we
discussed in the previous section, a Category 1 application
is offered free of charge to the users and the central part
of the AP’s revenue comes from advertisements. The adver-
tisements price is related to the number of clicks, and it is
accepted in related studies to connect the click frequency to
the number of data requests from users.While it is common to
consider a logarithmic payoff function for AP (e.g., see [29]),
we aim to consider a worst-case scenario in which the revenue
of AP is linearly related to the data requests. The benefit of
such consideration is that by proving the possibility of AFD
program under a linear revenue model of AP, the logarithmic
revenue model also holds valid. The reason for the validity
is the direction of payment which is from the AP to the SP.
Thus, the more revenue APmakes, the bigger chance of using
the AFD program. Since the type of revenue for the AP and
SP is defined based on actually gained money by the AP,
their utility is transferable by a side-payment. We define the
revenue function of AP as follows:

πAP(γ AP = 0) = Nη
∫ 1

αe=0
de(αe, p) dαe, (23)

πAP(γ AP = 1, pAP) = NDe
(
η − pAP

)
, (24)

where η is the AP’s revenue ratio for the overall usage of
application type e. When γ AP = 0, the AP does not make a
side-payment to the SP and hence pAP = 0. The overall data
usage for γ AP = 1 is NDe which is considered together with
a side-payment to the SP in (24). To make the cooperation
feasible, the AP’s revenue after cooperation should be greater
than the sum of its revenue before implementing the AFD

program and the revenue loss of SP, that is:

NDeη > N (η + po)
∫ 1

αe=0
de(αe, po) dαe→

η >
po
∫ 1
αe=0

de(αe, po) dαe

De −
∫ 1
αe=0

de(αe, po) dαe
, (25)

where po is the optimal price of SP in Stage I and∫ 1
αe=0

de(αe, po) dαe is the overall usage of application e in
the non-cooperative form of the game. If the above feasibility
condition holds, the AP can consider the AFD program.
Otherwise, the best response of AP is γ AP = 0. In the case of
possible cooperation, the only remaining decision value for
the AP is pAP or in general, the amount of side-payment to
the SP. Several options can be considered in such a case. One
can find this game as a bargaining game and compute pAP as
the solution of a Nash bargaining game [32]. Another option
is considering the game as a cooperative type. In this case,
the solution concepts such as Core and Shapley value [33]
can be applied. In this paper, we consider both the bargaining
solution and the Shapley value.

F. NASH BARGAINING SOLUTION (NBS)
In this part, we find pAP as a solution to the Nash bargaining
game (NBS). Nash firstly introduced the NBS in [34] and
described a bargaining situation in which players try to reach
an agreement. The agreement can be a price definition or a
contract between bargainers. Nash built his solution based on
four axioms. Namely, Invariance to Equivalent Utility Rep-
resentations, Symmetry, Independence of Irrelevant Alterna-
tives, and Pareto efficiency. We refer the reader to [32] for
more information on these axioms. In what follows we give
a general definition of two-player NBS.
Definition 1: Consider two players 1 and 2 who try to

reach an agreement in a bargaining game. Set A contains the
agreement alternatives. If they cannot reach the agreement,
a disagreement event D occurs. Players have a preference
ordering on set A∪D.We define U i

: A∪D→ < as the utility
of player i. The union of all payoff pairs (U1(a),U2(a)) a ∈ A
is indicated by S. The disagreement utility point is defined by
the pair d = (U1(D),U2(D)).
Definition 2 ([32]): The unique solution to Nash’s four

axioms of bargaining in a two player game is a pair f 2 ∈ <2

given by:

f 2(S, d) = argmax
(d1,d2)<(s1,s2)∈S)

(s1 − d1)(s2 − d2). (26)

If player 1 has a relative bargaining power ζ ∈ [0, 1] over
its opponent, NBS is given by:

f 2(S, d) = argmax
(d1,d2)<(s1,s2)∈S)

(s1 − d1)ζ (s2 − d2)1−ζ . (27)

Based on the above definition, we can define the following
solution for our problem:
Proposition 4: In an AP-SP game in which the SP has

a bargaining power ζ ∈ [0, 1] over AP, if ζ ≥
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po(De−
∫ 1
αe=0

de(αe,po) dαe)

ηDe−(η+po)
∫ 1
αe=0

de(αe,po) dαe
and feasibility condition in (25)

is satisfied, then the NBS price pAPb is given by:

pAPb = ζη −
(ζ (η + po)− po)

∫ 1
αe=0

de(αe, po) dαe
De

, (28)

otherwise, a disagreement occurs.
Nonnegative NBS price in (28) is supported by the

AFD feasibility condition in (25). In other words, the NBS
price (28) is not a solution for the AFD program if the
feasibility condition of (25) does not hold. NBS price pAP

should be calculated for each pricing regime of the SP and
its associated overall usage of application e. In Stage I of the
game, since we already derived a closed-form representation
of the parameters mentioned above under each pricing regime
in Stage I of the game, we omit redundant equations that are
created by straightforward parameter substitution.

G. SHAPLEY VALUE
The multi-stage game is considered as a strategic type and
should be solved by the related solution concepts as we did
in the previous subsection. However, in the game that we
consider, increasing the revenue of AP does not decrease the
revenue of SP. To be more precise, the AP and SP are not
direct competitors. Thus, one can consider theAP-SP game as
a cooperative form. There are several options to solve a coali-
tional game. As an option, we consider Shapley value which
defines the revenue of each player by its relative power in the
market. As previously mentioned, we know that the direction
of payment is from AP to SP. Also, the utility of providers is
represented by a monetary unit that is transferable. For such
a case, the definition of Shapley value is as follows:
Definition 3: Consider an n-player game which the set of

players N . The function v(S) defines the utility of coalition
S ⊂ N. The Shapley value to player i ∈ N is defined by a
unique function8 that satisfies Shapley’s three main axioms.
Namely, Symmetry, Carrier and Linearity (see [35]) and is
given by:

8i
=

∑
S⊆N\{i}

|S|!(|N | − |S| − 1)!
|N |!

(v(S ∪ i)− v(S)) . (29)

For a two person game, the above equation gives:

81
=

1
2
(v(12)+ v(1)− v(2)) , (30)

82
=

1
2
(v(12)+ v(2)− v(1)) , (31)

where v(12) is the revenue of cooperation.
Proposition 5: In the AP-SP game, the Shapley value of

SP, 8SP, is given by De × pAP
b|ζ= 1

2
, where pAP

b|ζ= 1
2
is the NBS

price with ζ = 1
2 . Hence,

8SP
=
N
2

(
ηDe − (po + η)

∫ 1

αe=0
de(αe, po) dαe

)
. (32)

For the proof, see AppendixD. In the next section, we show
the feasibility of AFD program and the value of shared rev-
enue for several numerical scenarios.

FIGURE 11. Revenue of SP with and without AFD program for different
values of De and βe.

FIGURE 12. Revenue of AP with and without AFD program for different
values of De and βe.

V. NUMERICAL RESULTS
To have a visual representation of the AFD program feasi-
bility, we consider several examples that differ in user and
provider parameters such asDe, βe, η and bargaining power ζ .
Similar to real markets and characteristics of type e and r
applications, we set βe > βr , Dr � 10 De, Dr = 100,
and βr = 5. These settings provide that the numerical
examples follow the real behavior of cellular users covered
in Ericsson’s statistics. Our numerical analysis is focused on
the revenue values of SP and AP, side-payment price pAP, and
the minimum required bargaining power of SP, ζ , that makes
the AFD program feasible. We use De (the maximum desired
usage of the eligible application) as the primary independent
variable in the x-axis. However, in each example, there is
an additional variable whose effect is shown by introducing
several curves in each figure. For example, Figs. 11 and 12
represent the revenue of SP and AP, respectively, for 2 ≤
De ≤ 5 and βe ∈ {6, 10}. As indicated in Fig. 11, when the
SP and AP have equal bargaining power, ζ = 0.5, the desired
AFD area starts from De u 2.1 when βe = 6. Increasing
βe to 10, leads to slightly lower revenue for SP in Fig. 11
and notably higher revenue for AP in the non-AFD program
in Fig. 12. The reason behind such behavior is that tye e
applications generate a small portion of SP’s revenue, while
they are the main source of revenue for the AP. Hence, AP is
not eager to make an AFD program when the maximum
usage of type e application, De is not big enough. Since
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FIGURE 13. Revenue of SP with and without AFD program for different
values of De and η.

FIGURE 14. Revenue of AP with and without AFD program for different
values of De and η.

FIGURE 15. Minimum bargaining power, ζ , for AFD program and
related pAP .

with low values of De, the AFD program does not generate
higher revenue for AP comparing to the non-AFD program.
On the other hand, the bigger values of De such as De > 3.9
in Fig. 12 make the AFD program profitable since in that
case, each user generates De units of traffic and bigger De
means higher revenue for AP. In Figs. 13 and 14, βe is fixed
at 10 but the revenue factor of AP, η, is varied. As expected,
increasing the value of η decreases the required value of De
for AFD feasibility; since in case of having a bigger η, each
unit of type e traffic generates higher revenue for the AP.
In particular, for η = 2 the minimum value forDe is 3.9 while
for η = 4,De can be 1.5 or higher. Fig. 15 shows the unit price
for side-payment, pAP, and the minimum bargaining power,

FIGURE 16. Revenue of SP and AP with and without AFD program for
different values of De and ζ .

ζMin, for the feasibility of AFD. For βe > βr , ζMin acquires
a lower value comparing to βe = 10. The main reason for
this can be found in Fig. 11 where a lower βe gives a higher
revenue value to the SP while it is opposite for the AP’s
revenue given in Fig. 12. Hence, SP needs less bargaining
power to dictate the AFD program. Finally, in Fig. 16 the
bargaining power of SP, ζ , is set as the independent variable
in the x-axis. Here we can observe two effects related to De
and ζ . Firstly, by having a higher value of De, the overall
revenues of both AP and SP increase. Secondly, by increasing
ζ , the SP can force the AP to pay SP a bigger part of the
AP revenue under the AFD program. Also, the bargaining
power of 1 leaves no additional revenue for the AP in the AFD
program. In summary, the presented results show the feasibil-
ity of the AFD program for the eligible applications, even if
the AP revenue is linearly related to the size of transferred
data.

VI. CONCLUSION
In this paper, we started by analyzing the recent statistics
of user behavior in cellular markets and found three general
types of applications in the mobile networks identified by
their traffic pattern. Type-III applications such as Google
Maps that require low bandwidth but carry sensitive infor-
mation for the users are shown to be perfect candidates for
the AFD program. This program should be implemented by
cooperation between an SP and an AP. In the AFD pro-
gram, the data usage associated with the eligible applica-
tions is free of charge. A mathematical framework for the
feasibility of the AFD program is introduced. We built the
framework by modeling the game as a Stackelberg game
with two stages. In each stage, one group of market entities
is involved; namely, users, an SP and an AP. The game
is solved by backward induction. Finally, several numerical
examples are constructed based on the user behavior data
acquired from recent Internet statistics. Using these exam-
ples, we visually explained the conditions under which the
AFD program is feasible. For future work, we aim to study
the feasibility of AFD program for the applications with
different business models such as health-care monitoring
systems.
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APPENDIXES
APPENDIX A
PROOF OF PROPOSITION 2
Comparing types e and r applications, if e belongs to Type-III
group of applications, we have limd→0 I e(d) > I r (d). For
d → 0 ( p < max(βe, βr )), the data usage for each appli-

cation type i and user j is indicated by
α
j
iβi
p − 1. With this

condition, there are two group of users: the group of users
with αeβe > αrβr who prefer the application type e over r ,
and the group of users with αeβe < αrβr . As stated above,
to have e as a Type-III application, when d → 0, the overall
usage of the first group should be greater than the second
group, whichmeans at near zero usage, the number of users in
favor of application e should be greater than the other group,
that is: ∫ 1

αe=0

∫ βeαe
βr

αr=0
f (αr )f (αe)dαrdαe

>

∫ 1

αr=0

∫ βrαr
βe

αe=0
f (αe)f (αr )dαedαr

→
βe

βr
>
βr

βe
→ β2e > β2r , (33)

since both values are positive, the above inequality
gives βe > βr .

APPENDIX B
PROOF OF PROPOSITION 3
Wemust prove the concavity of the revenue function forDe ≥
1. The revenue of SP in moderate price regime has a quadratic
form with first and second derivatives as follows:

πSPm (γ SP = 0, p) = N
(
p2

2

(
1
βr
−

1
βe

(
(1+ De)2 − 1

))
+(De − 1)p+

βr

2

)
, (34)

∂πSPm (γ SP = 0, p)
∂p

= N
(
p
(

1
βr
−

1
βe

(
(1+ De)2 − 1

))
+(De − 1)

)
, (35)

∂2πSPm (γ SP = 0, p)
∂p2

= N
((

1
βr
−

1
βe

(
De(De + 2)

))
. (36)

The first derivative has one extreme point at p =
βeβr (De−1)

βr ((1+De)2−1)−βe
. To have this point as a global maximum,

we can prove that for De ≥ 1, the extreme point is always
positive and the second derivative in (36) is always negative:

N
((

1
βr
−

1
βe

(
De(De + 2)

))
< 0→ βr >

βe

De(De + 2)
(37)

which is always true, since the threshold order is βr >
βe

De+1
.

The above inequality also proves that the denominator of
extreme point is always positive. Since De ≥ 1, we have a
positive extreme point with negative second derivative. Hence
the extreme point is a global maximum for all De ≥ 1,
otherwise, for all De < 1 the extreme point is negative and
the maximum of revenue function occurs at the lower limit of
price βr

Dr+1
·

APPENDIX C
PROOF OF PROPOSITION 4
First we show the optimum value of pAP and then prove the
boundary value of ζ . By taking the equations πSP(γ SP =
0) from (10), πSP(γ SP = 1) from (11), πAP(γ AP = 0)
from (23), πAP(γ AP = 0) from (24), and putting into the
NBS objective function (27), we achieve (38), as shown at
the bottom of this page. Based on the feasibility condition
of (25) both parts of (38) are always positive. The first
derivative of objective function in (39), as shown at the
bottom of this page, has one extreme point in pAPb = ζη −
(ζ (η+po)−po)

∫ 1
αe=0

de(αe,po) dαe
De

. The second derivative of objec-
tive function with respect to pAP is given by (40), as shown
at the bottom of this page, and is always negative. Hence the
extreme point is a global maximum. For the lower and upper
limits of ζ , we just check the given global maximum pAPb
with ε1(pAPb ) > 0 and ε2(pAPb ) > 0 in (38). This gives us

the boundary condition
po(De−

∫ 1
αe=0

de(αe,po) dαe)

ηDe−(η+po)
∫ 1
αe=0

de(αe,po) dαe
≤ ζ ≤ 1

for the relative bargaining power of SP.

APPENDIX D
PROOF OF PROPOSITION 5
Considering the application type e, we have the total revenue
of AFD program as v(12) = v(SPAP) = ηDe. Taking Shapely

f (pAP) = N 2
(
πAP(γ AP = 1, pAP)− πAP(γ AP = 0)

)ζ (
πSP(γ SP = 1, po)− πSP(γ SP = 0, po)

)1−ζ
= N 2

(
De(η − pAP)− η

∫ 1

αe=0
de(αe, po) dαe)

)ζ
︸ ︷︷ ︸

ε1(pAP)ζ

(
DepAP − po

∫ 1

αe=0
de(αe, po) dαe

)1−ζ

︸ ︷︷ ︸
ε2(pAP)1−ζ

, (38)

∂f (pAP)
∂pAP

= N 2Deε
ζ
1 × ε

−ζ
2 ×

(
−ζε−11 ε2 + 1− ζ

)
, (39)

∂2f (pAP)
∂(pAP)2

= −N 2D2
eζ (1− ζ )ε

ζ
1 × ε

−ζ
2 ×

(
ε−21 ε2 + 2ε−11 + ε

−1
2

)
. (40)
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value of (30) and substituting the revenue of application type
e from πSP(γ SP = 0) (10) for v(1) and πAP(γ AP = 0) of (23)
for v(2), we have the following revenue share for AP and SP:

8SP
=

N
2

(
η

(
De +

∫ 1

αe=0
de(αe, po) dαe

)
−po

∫ 1

αe=0
de(αe, po) dαe

)
, (41)

8AP
=

N
2

(
η

(
De −

∫ 1

αe=0
de(αe, po) dαe

)
+po

∫ 1

αe=0
de(αe, po) dαe

)
, (42)

since 8SP is defined as the side-payment from AP to SP,
we can achieve pAP as:

pAP =
8SP

NDe
(43)

=
1
2

(
η +

(η − po)
(∫ 1
αe=0

de(αe, po) dαe
)

De

)
,

which is the NBS price in (28) with ζ = 1
2
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