
Received March 26, 2020, accepted April 7, 2020, date of publication April 10, 2020, date of current version April 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2987099

Robotic System Specification Methodology
Based on Hierarchical Petri Nets
MAKSYM FIGAT , (Graduate Student Member, IEEE),
AND CEZARY ZIELIŃSKI, (Senior Member, IEEE)
Warsaw University of Technology, Institute of Control and Computation Engineering, 00-665 Warsaw, Poland

Corresponding author: Maksym Figat (maksym.figat@pw.edu.pl)

This work was supported in part by the National Science Centre, Poland, under Grant 2017/25/N/ST7/00900, and in part by the Dean of the
Faculty of Electronics and Information Technology, Warsaw University of Technology, Poland.

ABSTRACT The paper presents a methodology of creating a Hierarchical Petri Net modelling the activities
of a multi-agent robotic system. The methodology follows the separation of concerns approach to the design
of robot control software, thus five layers resulted, representing: the system composed of agents, agents’
subsystems, behaviours of subsystems, behaviour pattern, and finally inter-subsystem communication and
transition function calculation. Blocking and non-blocking communication modes are taken into account.
The robotic system structure and its activities are specified using the developed Robotic System HPN Tool.
It facilitatesmodelingHPNs, verification of the activities of a robotic system through theHPN simulation and
automatic code generation of an equivalent ROS based system. The specification methodology is presented
on a simple example of designing a controller for the LWR4+ robot.

INDEX TERMS Robotic system specification methodology, robotic system design methodology,
communication model, hierarchical petri net.

I. INTRODUCTION
Robotic control systems are inherently complex, hence the
process of developing them requires both appropriate devel-
opment methods and tools [1]. Usually robot program-
ming frameworks supplemented by design experience are
exploited. Frameworks provide use patterns, communica-
tion middleware and libraries of modules, all treated as
building blocks out of which systems are constructed. This
approach is completely focused on the implementation of
a robotic system, and the quality of the architecture of the
created system depends on the experience of the programmer.
Among the best-known frameworks used in robotics are:
OpenRTMaist [34], MARIE [34], ASEBA [34], Player [35],
CLARAty [36], MIRO [37], ORCA [38], ROS [39], ORO-
COS [40], [41], MRROC++ [42], GenoM [43], DCA [44],
TCA [45], TDL [46], Generis [47], CoolBOT [48]. Neverthe-
less, the architecture ofmany of the already developed robotic
systems is not obvious, because they have been most often
created without a clear architectural design [5].

The development method reflects the underlying robotic
system architecture, thus its definition is of relevance. The
robotic architecture [2] provides the principled way of

The associate editor coordinating the review of this manuscript and

approving it for publication was Christopher Kitts .

organizing a control system. It provides the structure of the
robotic system and imposes constraints on the way the control
problem can be solved. Another definition [3] states that the
architecture is an abstract design of a class of interconnected
components in which perception, reasoning and action occur.
The briefest definition states that an architecture describes
a set of architectural components and their interaction [4].
The common part of those definitions is the distinction of the
structure and the activities of the system.

An agent is a system rationally affecting its surround-
ings, relying on the information collected from the environ-
ment [6]. Diverse structures of robotic systems composed
of agents have been defined, e.g., [2]–[4], [7]. Usually the
structure is defined in terms of a class of agents composed of
a set of structural components in which perception, reasoning
and action occur [3]. Communicating agents together with
devices forming the control system were presented in [8], [9].

Many attempts have been made to treat the subject for-
mally [10]–[13]. One of the formal approaches is based on
Petri nets, which have been also utilised in robotics, e.g.:
[14]–[18], [20]–[22]. In the above-mentioned works Petri
nets are used for modeling, planning, fault tolerance anal-
ysis and supervisory tasks. However, the Petri net potential
is also visible in the context of designing robotic systems.
Some of those works treat Petri nets mainly as a formal tool

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 71617

https://orcid.org/0000-0002-1898-0540
https://orcid.org/0000-0001-8078-9360


M. Figat, C. Zieliński: RSSM Based on HPNs

used to model robotic systems and verify their correctness.
However, some designers use Petri nets in the whole cycle of
the development of a robotic system, i.e. system modeling,
verification, code generation and validation of the developed
model. Unfortunately, most of the above works do not take
into account all aspects of the robotic system activities, e.g.
they do not disclose all aspects of interactions between the
communicating subsystems. Even if they reveal the commu-
nication models, they limit the discussion to only two basic
models: fully asynchronous – the producer and the consumer
act in the non-blocking mode or fully synchronous – both act
in the blocking mode. However, there are other possibilities.
In the majority of papers, the methodology presenting how to
build a Petri net describing the activity of the robotic system is
missing. As a result, it is difficult or even impossible to assign
the obtained Petri net or a part of it to a particular element
of the robotic system. Such Petri nets do not foster any
particular robot system architecture. There are many different
types of Petri networks, e.g.: colored, time, timed, stochastic,
hierarchical. General networks, which are not limited to a
specific domain, robotics in our case, significantly hamper
the development of a robotic system, especially its modeling
and analysis. Thus we introduce in this article a multi-agent
robotic system specification methodology (RSSM), which is
based on a specific hierarchical Petri net (HPN) [23], [24]
tailored to fit the model of a multi-agent robotic system.
The RSSM methodology is based on the architecture of
an embodied agent [8], [13], [25]. However, in the men-
tioned papers the communication and computation model
within the HPN [23], [24] were not treated comprehensively.
In this article, we introduce the RSSM for defining the HPN,
which describes all aspects of the structure and activities
of a robotic system. The resulting HPN consists of layers
connected in a strictly defined way. By tailoring the HPN to
the requirements of an embodied agent meta-model, we get a
simplified network, which is easier to verify than the general
networks used in the above-mentioned articles. Moreover,
in contrast to the above articles, our approach is supplemented
by a methodology indicating how to design a robotic system
and how to specify it utilising a HPN. This methodology uses
HPN to define system activities at its all levels. Verification of
the thus constructed HPN can be done using RSHPN Tool or
using general purpose tools available for that purpose, and if
the net is positively verified, it is transformed automatically
a robotic controller C++ code implemented as a ROS sys-
tem [39]. Subsequently, the obtained robot controller is also
validated by simulation.

The produced HPN models the activities of subsequent
layers of the designed robotic system, i.e. multi-agent robotic
layer, agent layer, subsystem layer, behaviour layer, and
the action layer. The action layer models: 1) the transition
function decomposed into two sublayers based on: canonical
decomposition and data availability, and 2) the interaction
between communicating subsystems decomposed into two
sublayers based on: communication arrangement and com-
munication mode. Subsystems may communicate with each

other using other than just synchronous and asynchronous
models.

The structure of the paper is as follows. Introduction to
HPNs used here is presented in Sec. II. The next section
reveals the RSSM methodology defining the structure and
activities of a robotic system. The activities are modeled by a
five layered HPN. Sec. IV provides a detailed description of
each layer of the HPNmodeling amulti-agent robotic system.
Sec. V provides an example of a single-robot system specified
utilising the presented methodology. The conclusions are
drawn in Sec. VI.

II. HIERARCHICAL PETRI NET
A HPN is a bipartite graph consisting of transitions t and
either places p or pagesP , alternatively connected by directed
arcs [23], [24]. Each place is associated with a single oper-
ation O, while a transition with a single condition C. Each
page P , which is a HPN itself, has a distinguished single
input place pfusionin and a single output place pfusionout . A HPN
containing tokens in its places is a marked HPNH [23], [24].
Two places may be fused with each other. Fused places pfusion

represent the same place, however appearing in different
nets [27]. Fusing places enables the connection of nets. The
fusion of two places: pfusionH1,α

and pfusionH2,β
, belonging respec-

tively to nets: H1 and H2 is represented by a single place
pfusion(H1,H2),(α,β)

. A simple example of fused places is presented
in Fig. 5.

Graphical representation of the components of HPN H is
as follows: rectangles represent transitions, single circles are
places, while double circles are pages, arrows are directed
arcs, black filled circles represent tokens, and predicates
forming conditions C are placed within square brackets. If a
condition C is always fulfilled (i.e. is True) then it may be
omitted. Similarly, if an operation O associated with a place
does not produce any result it may also be omitted. This paper
considers only safe HPNs, i.e. each place contains at the most
one token.

III. ROBOTIC SYSTEM SPECIFICATION
METHODOLOGY (RSSM)
RSSM introduces the general robotic system architecture,
which is used to define any multi-agent robotic system.
It determines both the robotic system structure and its activ-
ities. The structure presents the entities out of which the
robotic system consists and interconnections between them.
The activities define how those entities behave and interact
in order to perform the entrusted task. Furthermore, RSSM
contains the robotic system development procedure, which
shows the consecutive steps indicating how to obtain the
required model of the robotic system. Last but not least,
RSSM provides the Robotic System HPN Tool (RSHPN
Tool) facilitating the system development process: construc-
tion of HPN, verification of HPN through simulating the
execution of the HPN (e.g. detection of deadlocks) and C++
code generation of the robotic system controller implemented

71618 VOLUME 8, 2020



M. Figat, C. Zieliński: RSSM Based on HPNs

as a ROS system [39]. The RSHPN Tool is only mentioned
in this paper, but it is available online at [28].

A. RSSM – STRUCTURE
RSSM defines the structure of the designed system in
terms of embodied agents [8], [25]. An embodied agent aj
(j – represents the name of the agent) consists of the follow-
ing subsystems: the control subsystem cj, real receptors Rj,l
(l – represents the name of a real receptor), real effectors
E j,h (h – represents the name of a real effector), virtual
effectors ej,n (n – represents the name of a virtual effector)
and virtual receptors r j,k (k – represents the name of a virtual
receptor). Receptors Rj,l read the data from the environment
and deliver it in the form aggregated by r j,k to cj. Based
on the received data, cj sends control commands, which are
adequately transformed by ej,n, to E j,h, in order to affect the
environment. The internal structure of an embodied agent aj
is presented in Fig. 1.

FIGURE 1. General embodied agent structure.

Each subsystem of an agent contains: internal memory,
input buffers and output buffers. Input and output buffers are
used to communicate between subsystems. Communication
between agents occurs only between their control subsys-
tems. Internal memory and buffers are named systemati-
cally [13], [25]. The name consists of a center letter indicating
the type of the subsystem s, where s ∈ {c, e, r , E , R};
the left subscript, which denotes: the buffer type, x – input
buffer, y – output buffer, no subscript – internal memory; the
left superscript s′ defines the type of subsystem with which
the buffer communicates: s′ ∈ {c, e, r , E , R,T }, where T
stands for inter-agent transmission buffer; the right super-
script denotes the discrete time stamp i; the right subscripts
for inter-agent communication determine the names of two
communicating agents, while for intra-agent communication
denote the names of the agent and subsystem in which the

buffer resides, as well as, if necessary, the buffer component.
Although each subsystem may have its own internal clock,
running at its specific frequency, the discrete time stamp is
always denoted as i – thus those are different i-s. If a certain
subsystem is unique within an agent aj its name is omitted,
e.g. cj, as only a single control subsystem exists within an
agent. Examples: 1) Txc

i
j,j′ is the input buffer receiving data

from the control subsystem cj′ of the agent aj′ at a discrete
time i; this input buffer is a part of the control subsystem cj
of the agent aj, 2) eeij,n is the internal memory of the virtual
effector named n of and agent aj at time i. No distinction is
made for the name of a buffer or memory and its contents, for
contextual obviousness.

B. RSSM – ACTIVITIES
The overall activity of a multi-agent robotic system results
from the activities of its agents aj, and those depend on the
activities of their subsystems sj,v. Each subsystem executes
its behaviours sBj,v,ω (ω – behaviour designator). Behaviour
iteratively executes an elementary action sAj,v,ω [13] and
checks the terminal condition sf τj,v,ξ and error condition
sf εj,v,β , where ξ and β are the designators of the terminal and
error conditions respectively. The behaviour terminates if one
of the above-mentioned conditions is fulfilled. In that case
the subsystem sj,v switches to another behaviour, selected on
the basis of the fulfilled initial condition sf σj,v,α(α – predicate
designator) [13].

An elementary action sAj,v,ω does the following: 1) calcu-
lates the transition function sf j,v,ω, which takes as arguments
the current data in the input buffers xsj,v and internal memory
ssj,v, and calculates the new values inserted into output buffers

ysj,v and internal memory ssj,v; 2) transmits data from ysj,v
to the associated subsystems, 3) increments the discrete time
counter i, 4) receives data from the associated subsystems
inserting it into xsj,v. Each elementary action employs its own
transition function. A transition function sf j,v,ω is composed
of partial transition functions s,s

′

f j,v,ω,ψ , where ψ designates
the partial function:(

ssi+1j,v , ys
i+1
j,v

)
:=

s,s′f j,v,ω,ψ
(
ssij,v, xs

i
j,v

)
, (1)

The two components of the left superscript denote the type
of subsystem to which the transition function belongs (s)
and type of the subsystem that this function calculates its
results for (s′). Partial functions result from the canonical
decomposition of sf j,v,ω based on the subsystem that output
buffer is connected to or the internal memory. The canonical
decomposition requires that each of the partial functions
produces output for a disjoint subsystem or its own memory,
thus no data collision occurs.

Communicating subsystems during data transfer may
block their other activities or not [1], thus they operate either
in blocking or non-blocking mode. Blocking mode used by
the producer results in it waiting until the consumer confirms
data reception, the non-blocking mode enables it to resume
its further activities immediately after dispatching the data.

VOLUME 8, 2020 71619



M. Figat, C. Zieliński: RSSM Based on HPNs

Blocking mode used by the consumer causes it to wait until it
receives fresh data, while the non-blocking mode causes it to
read the new data, if it is available, and, if not, immediately
resume its other activities. As a result, four possible commu-
nicationmodels emerge: 1) fully asynchronous – both the pro-
ducer and the consumer act in the non-blockingmode, 2) fully
synchronous – both act in the blockingmode, 3) producer acts
in blocking mode while the consumer acts in non-blocking
mode, 4) producer acts in non-blocking while consumer in
blocking mode.

FIGURE 2. Robotic system activities defined by HPN H.

C. HPN MODELLING A MULTI-AGENT ROBOTIC SYSTEM
The HPN H (Fig. 2) modeling a multi-agent robotic system
activities is composed of five layers:

1) multi-agent robotic system layer (section IV-A) –
defines a single net H representing the activities of
each agent aj defined by individual pages Pj,

2) agent layer (section IV-B) – defines netsHj represented
by pages Pj. Each net describes the activities of an
agent aj, which consists of several subsystems. The
activities of each subsystem sj,v are represented by
an individual page sPj,v. It should be emphasized that
within the agent layer only a single control subsystem
cj, zero or more virtual effectors ej,n, as well as zero
or more virtual receptors r j,k can exist. E j,h and Rj,l
are omitted, because they are treated as external devices
supplied by their vendors, thus they are not subject of
this design procedure,

3) subsystem layer (section IV-C) – defines nets sHj,v
represented by pages sPj,v. Each net describes the activ-
ities of subsystem sj,v switching between behaviours
sBj,v,ω represented by pages sPB

j,v,ω,

4) behaviour layer (section IV-D) – defines nets sHB
j,v,ω

represented by pages sPB
j,v,ω. Each net describes the

activities of behaviour sBj,v,ω executing an elementary

action sAj,v,ω. It contains pages:
sP f

j,v,ω (describing how
sj,v executes the transition function sf j,v,ω),

sPB
j,v,ω,snd

(defining the communication mode of sj,v when send-

ing data from ysj,v) and
sPB

j,v,ω,rcv (defining the com-
munication mode of sj,v when receiving data into xsj,v)
– each behaviour is thus represented by a parameterised
pattern, where the parameters are the definitions of:
sP f

j,v,ω,
sPB

j,v,ω,snd and
sPB

j,v,ω,rcv,

5) action layer (section IV-E) – defines three indepen-
dent nets sHf

j,v,ω,
sHB

j,v,ω,snd,
sHB

j,v,ω,rcv represented

by pages sP f
j,v,ω,

sPB
j,v,ω,snd,

sPB
j,v,ω,rcv, respectively.

Each net is hierarchical and consists of two sublayers
described later.

Fig. 2, presenting the HPN, uses the following convention.
Looking at any two consecutive layers, in the upper one pages
appear and in the lower one panels (stacked rectangles) are
drawn. Each panel is the HPN representing its respective
page. Thus each such page is represented by a panel, hence in
the lower layer there are as many panels as there are pages in
the upper one. Each dashed arrow connects one upper layer
page to its respective panel in the lower layer.

IV. DESCRIPTION OF ROBOTIC SYSTEM LAYERS
Regardless of the designed system the only layer of the HPN
H which has a fixed structure is the behaviour layer, as it
is a pattern. The structure of each of the first two layers
differs only by the number of pages that they contain. The
structure of the subsystem layer depends on the task that the
subsystem has to execute, thus it varies a lot. The structure
of the action layer depends on the task that is to be executed,
i.e. the organisation of the computations of Eq. (1), and to a
lesser extent on the selected communication modes.

A. MULTI-AGENT ROBOTIC SYSTEM LAYER – H
The HPN H consists of as many pages Pj as there are agents
aj in the designed robotic system. On system initiation t in
fires instantaneously. Once all pages complete their activities
tout fires and the system terminates.

B. AGENT LAYER – Hj
The agent layer HPN Hj contains one page sPj,v for each
subsystem sj,v within the agent aj, i.e. one cj, zero or more of
ej,n and zero or more of r j,k . pj,in and pj,out are the initial and
the terminal places of Hj. When the token appears in pj,in the
transition st j,in fires, starting the activity of all subsystems of
the aj. Upon completion of activities of all subsystems t j,out
fires and the token exits through the place pj,out .

C. SUBSYSTEM LAYER – sHj,v
The structure of HPN sHj,v depends on the task and
thus defines the order of execution of behaviours sBj,v,ω.

71620 VOLUME 8, 2020



M. Figat, C. Zieliński: RSSM Based on HPNs

The activity of each behaviour sBj,v,ω is represented by page
sPB

j,v,ω. For each pair of consecutive behaviors (e.g. sBj,v,ω
and sBj,v,ω′ , where the former is the current behaviour and
the latter is one of the possible next behaviours), a single
transition st j,v,α exists with an associated initial condition
sf σj,v,α . If it is true the switch between sBj,v,ω and sBj,v,ω′
occurs. At least one condition associated with transitions
st j,v,α connected by directed arcs emerging from sPB

j,v,ω must
be true upon termination of sBj,v,ω. pj,v,in and pj,v,out are the
initial and the terminal places of sHj,v.

D. BEHAVIOUR LAYER – sHB
j,v,ω

The structure of HPN sHB
j,v,ω, representing behaviour

sBj,v,ω,
is fixed, as it conforms to a universal pattern. It contains
a sequence of pages forming an elementary action sAj,v,ω
as well as the terminal sf τj,v,ξ and error sf εj,v,β conditions.
pj,v,ω,in and pj,v,ω,out are the initial and the terminal places
of sHB

j,v,ω. The elementary action sAj,v,ω consists of 3 pages
and one operation executed unconditionally as a sequence:
sP f

j,v,ω calculates the transition function, sPB
j,v,ω,snd sends out

the results inserted into the buffer ysj,v to the associated sub-
systems, operation sOB

j,v,ω,2 associated with the place
spj,v,ω,2

increments the discrete time stamp i, and page sPB
j,v,ω,rcv

inserts data received from the associated subsystems into the
buffer xsj,v. Subsequently both the error sf εj,v,β and terminal
sf τj,v,ξ conditions are checked. If none is fulfilled, then tran-
sition st j,v,ω,4 fires leading to the next iteration of sBj,v,ω.
Otherwise transition st j,v,ω,out fires terminating sBj,v,ω. The
activity subsequently returns to sHj,v.

E. ACTION LAYER – sHf
j,v,ω, sHB

j,v,ω,snd, sHB
j,v,ω,rcv

The action layer is composed of three independent HPNs:
sHf

j,v,ω,
sHB

j,v,ω,snd and
sHB

j,v,ω,rcv. As each one of them con-
tains pages, thus this layer consists of two sublayers.

1) TRANSITION FUNCTION sf j,v ,ω

It is defined by hierarchically composed nets: sHf
j,v,ω and

sHf
j,v,ω,ψ (Fig. 3). Each one of them decomposes this func-

tion, thus facilitating both its definition and future imple-
mentation. sHf

j,v,ω results from the canonical decomposition
(Eq. (1)), thus it has as many pages as there are output
buffers ysj,v (µ here) in the subsystem plus one (for internal
memory, thus µ+ 1 pages). Each partial function s,s′f j,v,ω,ψ ,

ψ = 1, . . . , µ+ 1, (Eq. 1), is represented by sHf
j,v,ω,ψ which

further decomposes this function by taking into account the
availability of new data in the input buffers xsj,v. Obsolete
data should not be used in the computations, hence a different
form of the function has to be used for different combinations
of available data [29]. Subsystem sj,v has ν input buffers, thus
2ν possibilities result.

FIGURE 3. Two sublayers defining the transition function sf j,v,ω within
the action layer.

2) COMMUNICATION
HPNs sHB

j,v,ω,snd and sHB
j,v,ω,rcv define how the data is

sent and received by sj,v while executing behaviour sBj,v,ω.
Each of those HPNs is decomposed into two sub-layers:
arrangement sublayer – determining the order in which
data is sent/received, and mode sublayer – determining the
mode of sj,v communication with the associated subsystems.
The arrangement sublayer is composed of sHB

j,v,ω,snd con-
taining pages sPB

j,v,ω,snd,ρ and sHB
j,v,ω,rcv containing pages

sPB
j,v,ω,rcv,κ , where ρ = 1, . . . , µ and κ = 1, . . . , ν. The

activation order of pages within each HPN may be arbitrary:
sequential, parallel or mixed. Fig. 4 uses parallel arrange-
ment both for sending and receiving data. Pages sPB

j,v,ω,snd,ρ
and sPB

j,v,ω,rcv,κ , defined by sHB
j,v,ω,snd,ρ and sHB

j,v,ω,rcv,κ
respectively, determine the communication mode utilised by
sj,v while sending/receiving data to/from each of the asso-
ciated subsystems. As it was mentioned in sec. III-B, there
are four possible communication modes. Both communicat-
ing subsystems acting in blocking mode or both acting in
non-blocking mode [23], [24]; PN for the sender using the
non-blocking mode and receiver using the blocking mode is
presented in Fig. 5a – PN is split into two nets (Fig. 5b and
Fig.5c) by using fusion places.

When a token appears in the input place spj,v,ω,snd,ρ,in
of sHB

j,v,ω,snd,ρ and there is a token in place spfusionj,v,ω,snd,ρ,2,
signalling that the data was consumed by sj,h, the tran-
sition st j,v,ω,snd,ρ,1 fires and thus activates operation
sOj,v,ω,snd,ρ , producing new data for sj,h. When operation
sOj,v,ω,snd,ρ is complete, and thus transition st j,v,ω,snd,ρ,3

VOLUME 8, 2020 71621



M. Figat, C. Zieliński: RSSM Based on HPNs

FIGURE 4. HPNs sHB
j,v,ω,snd and sHB

j,v,ω,rcv defining sj,v
communication while executing sBj,v,ω ; sj,v sends data using
non-blocking mode and receives data using blocking mode.

fires, a token appears in place spfusionj,v,ω,snd,ρ,1. Because two

places: spfusionj,v,ω,snd,ρ,1 and spfusionj,h,ω′,rcv,κ ′,1 are fused, a single

token also appears in spfusionj,h,ω′,rcv,κ ′,1. If sj,h is ready to read

data, i.e. a single token resides in spfusionj,h,ω′,rcv,κ ′,in, the transition
st j,h,ω′,rcv,κ ′,1 fires activating

sOj,h,ω′,rcv,κ ′ and thus receiving
new data. If sj,h is not ready to read data st j,v,ω,snd,ρ,2 fires
when new data is produced by sj,v, thus consuming the token

from fused places: spfusionj,v,ω,snd,ρ,1 and
spfusionj,h,ω′,rcv,κ ′,1 and hence

activating sOj,v,ω,snd,ρ . This assures that sj,v does not wait for
confirmation that the data was received by sj,h and that sj,h
blocks until new data is available.

V. EXPERIMENT
To show how the RSSM is to be used a rudimentary exper-
iment is presented here. A controller for a LWR4+ manip-
ulator having 7 d.o.f. utilising impedance control [30] was
designed. The task is to move the end-effector along a circular
trajectory (Fig. 18). The experiment is purposefully kept
simple in order not to hinder the understanding of the RSSM
methodology presented in this article.

A. SPECIFICATION – SINGLE-ROBOT SYSTEM STRUCTURE
The exemplary robot system consists of a single embod-
ied agent a1 containing: c1, e1,lwr and E1,lwr, as presented
in Fig. 6. The control subsystem c1 is responsible for calculat-
ing subsequent positions of the end-effector (w.r.t. Cartesian
reference frame) and inserting them in the output buffer
e
yc1,lwr, from which the data is sent to e1,lwr. Virtual effector

FIGURE 5. (a) Communication mode used to send data from subsystem
sj,v to subsystem sj,h. Subsystem sj,v sends data in non-blocking mode,

while sj,h receives data in blocking mode. (b) sHB
j,v,ω,snd,ρ defining the

communication mode used by subsystem sj,v executing behaviour
sBj,v,ω . (c) sHB

j,h,ω′,rcv,κ′ defining the communication mode used by
subsystem sj,h executing behaviour sBj,h,ω′ .

FIGURE 6. Structure of an agent a1 modeling the LWR4+ robot system
controller executing a rudimentary task.

e1,lwr has two input buffers: 1) Exe1,lwr acquiring data from
E1,lwr, namely: current joint positions, current end-effector
pose and its velocity, 2) c

xe1,lwr holding data obtained from
c1, i.e. the desired end-effector pose. The received data and
the model of the manipulator enable the calculation of the
necessary joint torques: torque compensating the gravity
and torque resulting from impedance control. The calcu-
lated torques are inserted into the output buffer Eye1,lwr and
subsequently sent to E1,lwr, which represents the LWR4+
hardware controller. E1,lwr reads the desired joint torques sent
by e1,lwr and uses them as the desired values for hardware
controllers of the motors.

71622 VOLUME 8, 2020



M. Figat, C. Zieliński: RSSM Based on HPNs

B. SPECIFICATION – SINGLE-ROBOT SYSTEM ACTIVITIES
The activities of the exemplary robotic system are represented
by a five-layer HPN presented in section III-C.

1) MULTI-AGENT ROBOTIC SYSTEM LAYER – H
The activities of the discussed robot system are modeled by
H (Fig. 7). The robot system consists of a single agent a1,
hence H contains a single page P1.

FIGURE 7. Robot system layer H for the LWR4+ robot system controller.

2) AGENT LAYER – H1
The agent a1 contains the control subsystem c1 and the
virtual effector e1,lwr, thus H1 consists of two pages cP1,c
and eP1,lwr (Fig. 8). Note that the E1,lwr is not represented
within H1, because it is treated as a real device, which has a
fixed structure that cannot be modified, i.e. e1,lwr contacts it
through its Eye1,lwr buffer, which must match xE1,lwr.

FIGURE 8. Agent layer H1 modeling the activities of the agent a1
representing the LWR4+ robot system controller.

3) SUBSYSTEM LAYER – cH1,c , eH1,lwr
a: CONTROL SUBSYSTEM – cH1,c
The control subsystem c1 switches between executing two
behaviours cB1,c,cw and cB1,c,ccw, thus two pages cPB

1,c,cw
and cPB

1,c,ccw appear within cH1,c (Fig. 9).

FIGURE 9. Subsystem layer cH1,c modeling the activities of the control
subsystem c1.

b: VIRTUAL EFFECTOR – eH1,lwr
The virtual effector e1,lwr executes only a single behaviour
eB1,lwr,move calculating the desired torques based on the data
received from c1 and E1,lwr, thus

eH1,lwr contains only a
single page ePB

1,lwr,move (Fig. 10).

FIGURE 10. Subsystem layer eH1,lwr modeling the activities of the
virtual effector e1,lwr.

4) BEHAVIOUR LAYER – cHB
1,c,cw, cHB

1,c,ccw, eHB
1,lwr,move

Behaviours of both subsystems follow the same pattern
(Fig. 2), however they are parameterized by different tran-
sition functions, send and receive communication modes as
well as terminal and error conditions.

FIGURE 11. Behaviour layer cH1,c,cw for c1.

a: BEHAVIOUR HPNs OF THE CONTROL
SUBSYSTEM – cHB

1,c,cw AND cHB
1,c,ccw

Petri nets modeling behaviours cB1,c,cw and cB1,c,cw have
the same structure (Fig. 11) – they differ by the names of
behaviours only. For both behaviours c1 calculates the tran-
sition function and subsequently sends the computed data
from the output buffer to e1,lwr. c1 does not receive data from
other subsystems thus the operations associated with places
cp1,c,cw,2 and cp1,c,ccw,2 are empty. Terminal conditions of
both behaviours are the same, i.e. they become fulfilled when
the end effector reaches once again the start position on the
circle (left side of Fig. 19a). Once the terminal condition is
fulfilled c1 terminates the current behaviour and switches to
the other behaviour, which simply changes the direction of
the end effector motion along the same circular path.

FIGURE 12. Behaviour layer eH1,lwr,move for e1,lwr.

b: BEHAVIOUR HPN OF THE VIRTUAL
EFFECTOR – eHB

1,lwr,move
The virtual effector e1,lwr endlessly executes a single
behaviour cB1,lwr,move (i.e. the terminal condition is always
not fulfilled) modeled by eHB

1,lwr,move presented in Fig. 12.
In each iteration of this behaviour e1,lwr calculates its transi-
tion function, sends the computed data from the output buffer

VOLUME 8, 2020 71623



M. Figat, C. Zieliński: RSSM Based on HPNs

to E1,lwr and subsequently receives new data from c1 and
E1,lwr, thus

eHB
1,lwr,move contains page

ePB
1,lwr,move,rcv.

5) ACTION LAYER
The action layer is composed of: 1) send arrangement sub-
layer for both subsystems, 2) receive arrangement sublayer
for e1,lwr and 3) canonical decomposition sublayer for both
subsystems.

a: SEND ARRANGEMENT SUBLAYER – cHB
1,c,cw,snd,

cHB
1,c,ccw,snd and eHB

1,lwr,move,snd
It was assumed that all subsystems send out data using the
non-blocking communication mode [24]. The control subsys-
tem c1 sends data only to a single subsystem, thus the send
arrangement sublayer cHB

1,c,cw,snd for cB1,c,cw, presented
in Fig. 13, contains only a single page cPB

1,c,cw,snd,1, which
represents the non-blocking mode utilised to communicate
with e1,lwr. The send arrangement sublayer cHB

1,c,ccw,snd
of cB1,c,ccw is the same, if cww is substituted for cw.
eHB

1,lwr,move,snd, presented in Fig. 14, contains a single page
ePB

1,lwr,move,snd,1, because e1,lwr contains a single output
buffer. This net defines the non-blocking communication
mode used to send data to E1,lwr.

FIGURE 13. Send arrangement sublayer for cB1,c,cw.

FIGURE 14. Send arrangement sublayer for eB1,lwr,move.

b: RECEIVE ARRANGEMENT SUBLAYER – eHB
1,lwr,move,rcv

The e1,lwr uses non-blocking mode to receive data from
both subsystems: c1 and E1,lwr. Thus its receive arrangement
sublayer eHB

1,lwr,move,rcv contains two pages
ePB

1,lwr,move,rcv,1
and ePB

1,lwr,move,rcv,2, executed sequentially, as presented
in Fig. 15. The former page represents the non-blocking
mode used to receive data from c1, while the latter page
also represents the non-blocking mode, however to receive
data from E1,lwr. In this case, the parallel receipt of data is
counterproductive, because the time required by the parallel
data reception mechanism exceeds the time of sequential
data reception. However it should be noted that this is an
implementation issue considered at the specification stage.

FIGURE 15. Receive arrangement sublayer for eB1,lwr,move.

FIGURE 16. Canonical decomposition sublayer for eB1,lwr,move.

c: CANONICAL DECOMPOSITION SUBLAYER – cHf
1,c,cw,

cHf
1,c,ccw AND sHf

1,lwr,move
The virtual effector e1,lwr behaviour

eB1,lwr,move in its each
iteration computes the transition function ef 1,lwr,move (Eq. 2),
which takes as arguments the contents of two input buffers:
c
xe1,lwr and

E
xe1,lwr, and internal memory ee1,lwr.(

eei+11,lwr,
E
ye
i+1
1,lwr

)
:=

ef 1,lwr,move

(
c
xe
i
1,lwr,

E
xe
i
1,lwr,

eei1,lwr
)
(2)

As e1,lwr contains only a single output buffer and inter-
nal memory, ef 1,lwr,move is in effect decomposed into two
partial transition functions, i.e. e,Ef 1,lwr,move,1 (Eq. 3) and
e,ef 1,lwr,move,2(Eq. 4).

E
ye
i+1
1,lwr :=

e,Ef 1,lwr,move,1

(
c
xe
i
1,lwr,

E
xe
i
1,lwr,

eei1,lwr
)

(3)

eei+11,lwr :=
e,ef 1,lwr,move,2

(
c
xe
i
1,lwr,

E
xe
i
1,lwr,

eei1,lwr
)

(4)

Transition function ef 1,lwr,move is defined by the canonical

decomposition sublayer eHf
1,lwr,move, (presented in Fig. 16),

while e,Ef 1,lwr,move,1 and e,ef 1,lwr,move,2 are represented by
eP f

1,lwr,move,1 and
eP f

1,lwr,move,2 defined by the data availabil-

ity sublayer eHf
1,lwr,move,1 and eHf

1,lwr,move,2, respectively.
As e1,lwr receives the data from two subsystems, the transition
function e,Ef 1,lwr,move,1 is decomposed into four partial tran-
sition functions e,Ef 1,lwr,move,1,$ based on data availability
criterium, as presented in Eq. 5, where $ = 1, . . . , 4.
Predicate new becomes TRUE whenever a new value of its
argument is obtained and FALSE when this value is utilised

71624 VOLUME 8, 2020



M. Figat, C. Zieliński: RSSM Based on HPNs

by the virtual effector.

e,Ef 1,lwr,move,1

,


e,Ef 1,lwr,move,1,1 for new(cxe

i
1,lwr) ∧ new(

E
xe
i
1,lwr)

e,Ef 1,lwr,move,1,2 for ¬new(cxe
i
1,lwr) ∧ new(

E
xe
i
1,lwr)

e,Ef 1,lwr,move,1,3 for new(cxe
i
1,lwr) ∧ ¬new(

E
xe
i
1,lwr)

e,Ef 1,lwr,move,1,4 for ¬new(cxe
i
1,lwr) ∧ ¬new(

E
xe
i
1,lwr),

(5)

Each partial transition function e,Ef 1,lwr,move,1,$ is repre-
sented by a respective operation eO1,lwr,move,1,$ . In the pre-
sented system, if either of the two buffers does not hold new
data (i.e. when $ = 2, 3, 4), the operation eO1,lwr,move,1,$
is assumed to be void. If new data is available eO1,lwr,move,1,1
executes e,Ef 1,lwr,move,1,1, defined as

E
ye1,lwr = Tgrav+Timp,

where Tgrav is the vector of joint torques necessary to com-
pensate the gravitation [31] and Timp is the vector of joint
torques resulting from impedance control, i.e.Timp = JTFext ,
where JT is a 7 × 6 transpose of the Jacobian matrix and
Fext is the vector of external forces and torques acting on the
end effector: Fext = K1P − DṖ, where K is the stiffness
matrix,1P is the difference between desired Pdes and current
Pcur end-effector poses, D is the damping matrix and Ṗ is
a vector of linear and angular velocities of the end-effector.
Transition functions of the two behaviours of c1 generate
consecutive desired end-effector poses Pdes along the circular
path. Their formal definition is omitted here, because of
obviousness.

C. TOOLS AND SIMULATION
The RSHPN Tool facilitating specification of multi-agent
robotic systems utilising HPN has been developed. Fig. 17
presents an exemplary screen-shot of a HPN representing the
activities of agent a1. It is used to create the HPN graphically.
The thus created HPN can be saved and edited. The RSHPN
Tool enables the specification of operations O appearing
within layers of H (Fig. 2) in the form of C++ code.
It contains two modules enabling automatic generation of
the robot controller code based on the presented specification
methodology.

FIGURE 17. Exemplary HPN presenting the activities of agent layer
viewed using RSHPN Tool.

The first module generates C++ code that interprets the
defined HPN [24]. The module is used to generate the code
which simulates the execution of the HPN, thus facilitates

its verification (e.g. detection of deadlocks). The generated
code consists of the scheduler, which searches for active
transitions (enabled transition with fulfilled condition). One
of such transitions is fired, i.e. a token is removed from each
input place (place directly connected to the fired transition by
a directed arc pointing at the transition) and inserted into each
output place (place directly connected to the transition by a
directed arc pointing at the place). The operations associated
with the output places are executed in separate threads. When
the directed arc connects the firing transition with an output
page, the input place of that page receives a new token and the
associated operation of that input place starts its execution in a
new thread. The scheduler repeats the above-mentioned steps
either endlessly or until a behaviour commands it to terminate
its activities.

The second module of RSHPN Tool generates C++ code
for ROS packages. For each agent a single ROS package is
automatically generated. The package consists of automat-
ically generated files: 1) C++ code defining a ROS node
for each subsystem within an agent, 2) the required include
files, 3) scripts utilised to launch the agent’s subsystems and
4) the necessary ROS configuration files, i.e. CMakeLists.txt
and package.xml. The generated C++ code for the ROS
system is currently constrained to only ROS topics assuring
asynchronous communication. Directly after generating the
above files the package is ready to be compiled and executed.
The functionality of the RSHPNTool is presented in the video
material [28].

FIGURE 18. Simulated LWR4+ manipulator with 7 degrees of freedom
controlled using impedance control. Its end-effector moves along a
circular trajectory (only its Cartesian position is controlled).

For additional types of communication two libraries have
been developed: 1) communication library – enabling com-
munication for single robot systems based on shared memory
(all four communication modes are available) and 2) LWR4+
dynamics library – providing functions necessary to calculate
joint torques compensating gravitation and resulting from
impedance control. Based on the specification, in the HPN
format, the robot controller code for ROS system was auto-
matically generated and run with a LWR4+ manipulator
using the Gazebo simulator (Fig. 18). The consecutive posi-
tions of the end-effector were saved to a file and the plots
were reproduced by a Matlab program (Fig. 19). The ROS
topics have been utilised for communication between c1 and

VOLUME 8, 2020 71625



M. Figat, C. Zieliński: RSSM Based on HPNs

FIGURE 19. The consecutive robot end-effector positions form a circular
trajectory.

e1,lwr (lower frequency), while shared memory library for
communication with E1,lwr (higher frequency).

VI. CONCLUSION
The paper presents the general RSSM methodology of
designing multi-agent robot systems. Following the principle
of separation of concerns five layer HPN is specified. In our
previous papers (e.g., [23], [24]) a robot system was also
decomposed into several layers, however the action layer was
not presented in detail. Thus the decomposition of transition
functions as well as send and receive communication modes
were absent. The canonical decomposition of a transition
function based on output buffers and further decomposition
based on the availability of new data in input buffers generates
µ · 2ν partial transition functions. Those partial functions can
further be decomposed if necessary following the presented
method of creating HPNs. Moreover, the decomposition of a
communication model into two sublayers enables both paral-
lel/sequential composition of individual interactions between
subsystems and the definition of operation of both communi-
cating parties (blocking/non-blocking mode).

The resulting HPN representing the system can be verified
using existing PN verification tools [32]. The resulting sys-
tem is modular, what greatly simplifies future modifications
of any of the defined layers. The specification of the LWR4+
robot control system was both verified and validated. The
verification consisted in checking whether the HPN is safe
and whether there are no deadlocks. For that purpose the
place invariants method was used [33]. Another verification
method was based on HPN simulation utilising automatically
generated C++ HPN interpreter [24]. Based on the resulting
HPN the robot system controller (for the ROS system) was
automatically generated and subsequently validated in simu-
lation.

Currentlywork is in progress on control of the real LWR4+
robot and on the automatic generation of the HPN structure
based on textual specification. In our further work, we plan
to extend the HPN model by including communication time-
outs. It will enable modeling temporal dependencies in the
system and verification in terms of meeting the real-time
requirements.

REFERENCES
[1] C. Zieliński, M. Figat, and R. Hexel, ‘‘Communication within multi-

FSM based robotic systems,’’ J. Intell. Robotic Syst., vol. 93, nos. 3–4,
pp. 787–805, Mar. 2019.

[2] M. Mataric, ‘‘Behavior-based control: Main properties and implications,’’
in Proc. IEEE Int. Conf. Robot. Automat., Workshop Archit. Intell. Control
Syst., May 1992, pp. 46–54.

[3] B. Hayes-Roth, ‘‘An architecture for adaptive intelligent systems,’’ Artif.
Intell., vol. 72, pp. 329–365, May 1995.

[4] T. L. Dean and M. P. Wellman, Planning and Control. San Francisco, CA,
USA: Morgan Kaufmann, 1991.

[5] D. Kortenkamp and R. Simmons, ‘‘Robotic systems architectures and pro-
gramming,’’ in Springer Handbook Robotics, O. Khatib and B. Siciliano,
Eds. Cham, Switzerland: Springer, 2008, pp. 187–206.

[6] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Upper Saddle River, NJ, USA: Prentice-Hall, 1995.

[7] R. C. Arkin, Behavior-Based Robotics. Cambridge, MA, USA: MIT Press,
1998.

[8] R. A. Brooks, ‘‘Intelligence without reason,’’ Artif. Intell., Crit. Concepts,
vol. 3, pp. 107–163, Sep. 1991.

[9] N. R. Jennings, K. Sycara, and M. Wooldridge, ‘‘A roadmap of agent
research and development,’’ Auto. Agents Multi-Agent Syst., vol. 1,
pp. 7–38, Jan. 1998.

[10] D. M. Lyons and M. A. Arbib, ‘‘A formal model of computation for
sensory-based robotics,’’ IEEE Trans. Robot. Autom., vol. 5, no. 3,
pp. 280–293, Jun. 1989.

[11] C. Zielićski, ‘‘Description of semantics of robot programming languages,’’
Mechatronics, vol. 2, no. 2, pp. 171–198, Apr. 1992.

[12] J. Cabrera-Gámez, Sensor Based Intelligent Robots (CoolBOT:
A Component-Oriented Program). Berlin, Germany: Springer, 2002,
pp. 282–304.

[13] C. Zieliński and M. Figat, ‘‘Robot system design procedure based on
a formal specification,’’ in Recent Advances in Automation, Robotics
and Measuring Technique, vol. 440. Cham, Switzerland: Springer, 2016,
pp. 511–522.

[14] P. Freedman, ‘‘Time, Petri nets, and robotics,’’ IEEE Trans. Robot. Autom.,
vol. 7, no. 4, pp. 417–433, Dec. 1991.

[15] T. Cao and A. C. Sanderson, ‘‘Task decomposition and analysis of robotic
assembly task plans using Petri nets,’’ IEEE Trans. Ind. Electron., vol. 41,
no. 6, pp. 620–630, Dec. 1994.

[16] A. Caloini, G. Magnani, and M. Pezze, ‘‘A technique for designing robotic
control systems based on Petri nets,’’ IEEE Trans. Control Syst. Technol.,
vol. 6, no. 1, pp. 72–87, Jan. 1998.

[17] P. Oliveira, A. Pascoal, V. Silva, and C. Silvestre, ‘‘Mission control of
the MARIUS autonomous underwater vehicle: System design, implemen-
tation and sea trials,’’ Int. J. Syst. Sci., vol. 29, no. 10, pp. 1065–1080,
Oct. 1998.

[18] L. Montano, F. J. García, and J. L. Villarroel, ‘‘Using the time Petri net for-
malism for specification, validation, and code generation in robot-control
applications,’’ Int. J. Robot. Res., vol. 19, no. 1, pp. 59–76, Jan. 2000.

[19] G. Kim and W. Chung, ‘‘Navigation behavior selection using generalized
stochastic Petri nets for a service robot,’’ IEEE Trans. Syst., Man, Cybern.
C, Appl. Rev., vol. 37, no. 4, pp. 494–503, Jul. 2007.

[20] J. López, D. Pérez, and E. Zalama, ‘‘A framework for building mobile
single and multi-robot applications,’’ Robot. Auto. Syst., vol. 59, nos. 3–4,
pp. 151–162, Mar. 2011.

[21] V. A. Ziparo, L. Iocchi, P. U. Lima, D. Nardi, and P. F. Palamara, ‘‘Petri
net plans: A framework for collaboration and coordination in multi-robot
systems,’’ Auto. Agents Multi-Agent Syst., vol. 23, no. 3, pp. 344–383,
Nov. 2011.

[22] C. Lesire and F. Pommereau, ‘‘ASPiC: An acting system based on skill
Petri net composition,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Oct. 2018, pp. 6952–6958.

[23] M. Figat and C. Zieliński, ‘‘Hierarchical Petri net representation of
robot systems,’’ in Automation. Cham, Switzerland: Springer, 2019,
pp. 492–501.

[24] M. Figat and C. Zielinski, ‘‘Methodology of designing multi-agent robot
control systems utilising hierarchical Petri nets,’’ in Proc. Int. Conf. Robot.
Autom. (ICRA), May 2019, pp. 3363–3369.

[25] T. Kornuta and C. Zielićski, ‘‘Robot control system design exemplified by
multi-camera visual servoing,’’ J. Intell. Robotic Syst., vol. 77, nos. 3–4,
pp. 499–523, Mar. 2015.

[26] M. Quigley, ‘‘ROS: An open-source Robot Operating System,’’ in Proc.
ICRA Workshop Open Source Softw., 2009, pp. 1–15.

71626 VOLUME 8, 2020



M. Figat, C. Zieliński: RSSM Based on HPNs

[27] P. Huber, K. Jensen, and R. M. Shapiro, ‘‘Hierarchies in coloured Petri
nets,’’ Lect. Notes Comput. Science; Adv. Petri Nets, vol. 483, pp. 313–341,
Dec. 1991.

[28] M. Figat. Robotic System HPN Tool (RSHPN Tool). Accessed: Mar. 20,
2020. [Online]. Available: https://github.com/mfigat/public_rshpn_tool

[29] P. Trojanek, T. Kornuta, and C. Zielinski, ‘‘Design of asynchronously
stimulated robot behaviours,’’ in Proc. 9th Int. Workshop Robot Motion
Control, Jul. 2013, pp. 129–134.

[30] N. Hogan, ‘‘Impedance control: An approach to manipulation: Part I—
Theory,’’ J. Dyn. Syst., Meas., Control, vol. 107, no. 1, pp. 1–7, Mar. 1985.

[31] J. J. Craig, Introduction to Robotics, Mechanics & Control. Reading, MA,
USA: Addison-Wesley, 1986.

[32] W. Thong and M. Ameedeen, ‘‘A survey of Petri net tools,’’ in Proc. Adv.
Comput. Commun. Eng. Technol., 2015, pp. 537–551.

[33] K. Jensen, ‘‘Coloured Petri nets and the invariant-method,’’ Theor. Comput.
Sci., vol. 14, no. 3, pp. 317–336, 1981.

[34] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, ‘‘Middleware for robotics:
A survey,’’ in Proc. IEEE Conf. Robot., Autom. Mechatronics, Sep. 2008,
pp. 736–742.

[35] T. Collett, B. MacDonald, and B. Gerkey, ‘‘Player 2.0: Toward
a practical robot programming framework,’’ in Proc. Australas. Conf.
Robot. Autom. (ACRA), Dec. 2005, pp. 1–5. [Online]. Available:
http://www.ai.sri.com/ gerkey/papers/acra2005.pdf

[36] I. Nesnas, ‘‘Claraty: Challenges and steps toward reusable robotic,’’ Int.
J. Adv. Robotic Syst., vol. 3, no. 1, pp. 23–30, 2006.

[37] H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschmar, ‘‘Miro–middleware
for mobile robot applications,’’ IEEE Trans. Robot. Autom., vol. 18, no. 4,
pp. 493–497, Aug. 2002.

[38] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Orebäck, ‘‘Orca:
A component model and repository,’’ Softw. Eng. Experim. Robot., vol. 30,
pp. 231–251, Dec. 2007.

[39] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. and Ng, ‘‘ROS: An open-source Robot Operating System,’’ in
Proc. ICRA, vol. 3, 2009, p. 2.

[40] H. Bruyninckx, P. Soetens, and B. Koninckx, ‘‘The real-time motion
control core of the Orocos project,’’ inProc. IEEE Int. Conf. Robot. Autom.,
Sep. 2003, pp. 2766–2771.

[41] A. Peekema, D. Renjewski, and J. Hurst, ‘‘Open-source real-time robot
operation and control system for highly dynamic, modular machines,’’ in
Proc. 9th Int. Conf. Multibody Syst., Nonlinear Dyn., Control, Aug. 2013,
pp. 1–5.

[42] C. Zieliński, ‘‘The MRROC++ system,’’ in Proc. 1st Workshop Robot
Motion Control, Kiekrz, Polska, Jul. 1999, pp. 147–152.

[43] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, ‘‘An architec-
ture for autonomy,’’ Int. J. Robot. Res., vol. 17, no. 4, pp. 315–337, 1998.

[44] L. Petersson, D. Austin, and H. Christenseni, ‘‘DCA: A distributed
control architecture for robotics,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. Expanding Societal Role Robot. Next Millennium, May 2001,
pp. 2361–2368.

[45] R. Simmons, R. Goodwin, C. Fedor, and J. Basista, ‘‘Task control
architecture: Programmer’s guide to version 8.0,’’ Carnegie Mellon
Univ., Pittsburgh, PA, USA, Tech. Rep., May 1997. [Online]. Avail-
able: http://www.cs.cmu.edu/afs/cs.cmu.edu/project/TCA/release/tca-8.5/
doc/tcaManual.ps

[46] R. Simmons and D. Apfelbaum, ‘‘A task description language for robot
control,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Systems. Innov.
Theory, Pract. Appl., Oct. 1998, pp. 1931–1937.

[47] E. Ruiz Morales, ‘‘GENERIS: The EC–JRC generalised software control
system for industrial robots,’’ Ind. Robot, Int. J., vol. 26, no. 1, pp. 26–32,
Feb. 1999.

[48] A. C. Dominguez-Brito, D. Hernandez-Sosa, J. Isern-González, and J. and
Cabrera-Gámez, ‘‘CoolBOT: A component model and software infrastruc-
ture for robotics,’’ in Software Engineering for Experimental Robotics,
(Tracts in Advanced Robotics Springer), vol. 30, D. Brugali, Ed. Berlin,
Germany: Springer, 2007, pp. 143–168.

MAKSYM FIGAT (Graduate Student Member,
IEEE) received the M.Sc.Eng. degree in computer
science (modeling CAD/CAM systems) from the
Faculty of Mathematics and Information Sci-
ence, Warsaw University of Technology (WUT),
Warsaw, Poland, in 2013, where he is currently
pursuing the Ph.D. degree with the Faculty of
Electronics and Information Technology (FEIT),
Institute of Control and Computation Engineering
(ICCE). He is also a member of the Robotics

Group in ICCE working on the design of robot controllers and programming
methods. His main scientific interests focus on automatic methods of robot
control system generation based on a formal specification. His research in
robotics is based on model driven engineering, domain specific language,
embodied agent approach, and the formal specification for robotic control
systems.

CEZARY ZIELIŃSKI (Senior Member, IEEE)
received the M.Sc.Eng., Ph.D., and Habilitation
degrees in control and robotics from the Warsaw
University of Technology (WUT), in 1982, 1988,
and 1996, respectively. He is currently a Full Pro-
fessor of WUT. He specializes in robotics, heads
the Robotics Group, Institute of Control and Com-
putation Engineering, working on the design of
robot controllers and programming methods. His
research interests focus on robotics in general and

especially include robot programming methods, multirobot system con-
trollers, robot kinematics, robot force control, visual servo control, utilization
of sensors in robot control, and design of digital circuits. He is also the Vice-
Dean of the General Affairs of the Faculty of Electronics and Information
Technology, WUT.

VOLUME 8, 2020 71627


