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ABSTRACT Over the last few decades, eye gaze estimation techniques have been thoroughly investigated
by many researchers. However, predicting a 3D gaze from a 2D natural image remains challenging because
it has to deal with several issues such as diverse head positions, face shape transformation, illumination
variations, and subject individuality. Many previous studies employ convolutional neural networks (CNNs)
for this task, and yet the accuracy needs improvement for its practical use. In this paper, we propose a 3D
gaze estimation framework based on the data science perspective: First, a novel neural network architecture
is designed to exploit every possible visual attribute such as the states of both eyes and the head position,
including several augmentations; secondly, the data fusion method is utilized by incorporating multiple gaze
datasets. Extensive experiments were carried out using two standard eye gaze datasets, including comparative
analysis. The experimental results suggest that our method outperforms state-of-the-art with 2.8 degrees for
MPIIGaze and 3.05 degrees for EYEDIAP dataset, respectively, indicating that it has a potential for real
applications.

INDEX TERMS Gaze estimation, data fusion, convolutional neural networks, MPIIGaze, EYEDIAP.

I. INTRODUCTION
Eye movement and gaze estimation are important in terms
of visual and cognitive processing [1]. Specifically, eye
movements have been widely studied for human visual atten-
tion [2], [3], emotion analysis [3] and for behavioral disor-
der identification [2], [4]. Gaze estimation has been studied
thoroughly in the computer vision area because it has a wide
range of applications in human-computer interaction [5],
psychology [1], [6], [7], disability studies [8], navigation
and detecting driver’s behavior [9], surgical robots [10] and
marketing research [11]–[15].

Given that the previousmodels and features-basedmethods
for gaze prediction have certain limitations depending on
the illumination condition, camera calibration method, and
individual head-pose variations. Computer vision researchers
have been explored the appearance-based methods to esti-
mate the human gaze in an uncontrolled environment typi-
cally using a convolutional neural network (CNNs), due to
recent availability of large gaze datasets. Even though deep

The associate editor coordinating the review of this manuscript and

approving it for publication was Gianluigi Ciocca .

learning approaches have achieved a remarkable success in
estimating human gaze within a natural environment, the cur-
rent approaches achieve about 3.6 degrees, which are still far
away from applying it to real-time applications.

For the appearance-based gaze estimationmethod, the state
of the art techniques typically utilize a full-face image as
input [16]. Krafka et al. initially proposed a weight sharing
mechanism where they used an Alex-net like architecture to
estimate a 2D gaze from still images [17]. Given that a face
has two eyes, it seems reasonable to use dual eye channels
to estimate a gaze [18]. Since eye gaze behavior is not static,
the head movement is responsible for a gaze to locate a target
of interest. Lian et al. proposed a feature fusion technique
for gaze direction and point estimation utilizing eye patches
from multiple cameras [19]. Their goal was to use features
from MPIIGaze for gaze direction prediction combined with
ShanghaiTechGaze for gaze point estimation by weight shar-
ing technique. In the present study, we show that the two eye
patches, alongwith the head position, are essential to estimate
a 3D gaze accurately, even in uncalibrated and uncertain
environments. Our extensive experimental results suggest
that the proposed network is a light and yet high-performing
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gaze estimation method. Contributions of this research are
summarized as below.
• Since the task of gaze estimation is highly depen-
dent on eye movements and head translation and rota-
tion, a small variation in the movements of eyes and
head, makes large differences in gaze angle. There-
fore, employing gaze estimation in a real-time applica-
tion requires the most accurate system. In this paper,
we presented a multi-stream shallow CNN with a
dual spatial layer mechanism that was based method
that combines features from both eye patches and
a head position for 3D gaze estimation. Thus, our
network architecture is light, fast, and highly accu-
rate, and it outperformed the state-of-the-art methods
(Section III-B).

• Data fusion is an effective technique to improve the sys-
tem accuracy. For deep learning-based computer vision
tasks, it usually needs a considerable amount of data in
order to achieve the best results. However, it is quite a
time-consuming and challenging task to collect such an
enormous amount of data, especially for eye tracking
and gaze estimation tasks since there is a limited num-
ber of datasets available. To solve this problem, a data
fusion technique is designed by training our network
using two publicly available datasets, MPIIGaze [20]
and EYEDIAP [21] and testing one of them in turn (see
Section IV-F). To the best of our knowledge, this is the
first report that employs such a data fusion technique for
3D gaze estimation.

• To analyze the effects of a dual spatial layer mecha-
nism efficiency, a comparative analysis between a single
spatial layer and a dual spatial layer mechanism is pre-
formed. It is found that the accuracy is much improved
with a double spatial layer compared with a spatial
layer [16] as described in Section IV-G).

• The resource-constrained devices, such as Raspberry-pi
and mobile devices, have low computation power and it
is difficult for a deep neural network to perform well.
The proposed architecture is very light and fast, which
makes it adaptable for resource-constrained devices
(Section V).

The rest of the paper is organized as follows. Section II
introduces the related work that is conducted about eyemove-
ment tracking. The proposed gaze estimation method using
CNN is described in Section III. The experiments carried out
are explained in Section IV. Further discussion is made in
Section V and finally, we conclude our proposed method in
Section VI.

II. RELATED WORK
In this section, we briefly review the previous literature
on computer vision-based gaze estimation methods, which
are typically categorized as feature-based, model-based, and
appearance-based. Also, the relevant characteristics of the
CNN-based architecture for regression tasks are be discussed
in detail.

A. FEATURES-BASED GAZE ESTIMATION
Feature-based gaze estimation methods involve the usage
of hand-crafted extracted local features, such as the pupil
center, eye contours, and glints. Alternatively, other auxiliary
information, such as the head position, is used to estimate the
gaze direction. In earlier periods, an IR light source and a
collection of mirrors and galvanometers were used to extract
pupil-glints and head movement features for real-time eye
tracking [22]. Huang et al. used six landmarks around a
single eye as the feature with the head position in estimat-
ing a gaze [23]. Similarly, [24] proposed a Pupil-Center-
Eye-Corner (PC-EC) method, that is later used to estimate
the gaze direction on public displays [25]–[27] by combin-
ing the eye region landmarks model and the PC-EC fea-
tures. Similarly, other eye-tracking methods utilized the local
binary pattern (LBP) features [28], Gaussian Laplace [28],
and the histogram of Gaussian features [21], [23]. However,
these methods require different hand-crafted feature extrac-
tion techniques within a controlled calibrated environment,
rather than the natural environment.

B. MODEL-BASED GAZE ESTIMATION
The model-based approach adopts geometric eye models
for gaze estimation, and they are divided into shape-based
and corneal-reflection-based methods, which depend on
the requirement of external Infra-red light sources. Ear-
lier work on eye-tracking involved the corneal-reflection
methods, which are limited to only the stable head
movement settings [29]–[32] and are improved to handle
some head poses by imposing different light sources and
cameras [20], [33], [34]. On the other hand, the shape-based
methods [9], [35], [36] used the pupil center and the iris edges
to estimate the gaze direction.

Although the model-based method achieves a high accu-
racy, which is around 1 degree, they require different cam-
eras, light sources, and calibration systems. They cannot
perform well in low light conditions and with low-quality
images.

C. APPEARANCE-BASED GAZE ESTIMATION
Appearance-based methods aim to map directly gaze direc-
tions by taking raw images as the input. They typically
utilize a single camera to capture the eye images [20],
[31] and can predict the gaze with low-resolution images.
There are several appearance-based gaze estimation methods
such as adaptive linear regression ALR [37], artificial neural
networks [17], [18], [38], linear interpolation [31], visual
saliency mapping [39], and Gaussian process regression [30].
Previously, appearance-based method operated on a station-
ary head pose and required a specific training data for each
person [30], [31], [37]. However, new methods have been
focused on pose-independent gaze estimation either from
RGB still images or using depth information from RGB-D
images [16], [20], [21], [40], [41], but they still require
user-specific training.
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FIGURE 1. A schematic diagram of our proposed method where data preprocessing, data augmentation and
dataset fusion are used for training the model.

D. CNN-BASED GAZE ESTIMATION
The CNN-networks have proved to be extremely effective not
only for classification tasks [42] but also for regressions [43],
which include gaze estimation [16], [17], [20], [44]. Several
new methods have effectively employed deep learning and
CNNs for 2D and 3D gaze estimation. Reference [17] pro-
posed a 2D gaze estimation network for mobile devices, and
later [45] included temporal information to improve the accu-
racy of the Itracker method by introducing a bi-directional
LSTM network to the existing architecture. Zhang et al. used
a full face image as input to a modified pre-trained Alex-Net
to predict the gaze [16]. Park et al. introduced a stacked hour-
glass method for the eye region landmarks and gaze estima-
tion [27]. Other CNN-based methods included multi-stream
CNN architectures, such as an evaluation-guided asymmetric
regression network [46], a recurrent CNN network that uses
eye patches and facial landmarks as input [40], a deep 3D
gaze estimation that uses a model ensemble technique [41],
and a sequential neural network-based deep pictorial repre-
sentation of a 3D gaze that uses a single eye the input [47].
Reference [48] proposed a differential network for gaze esti-
mation by using reference samples from a specific person for
the person-specific gaze estimation. A recent study, employed
a professional eye tracker to train a camera far away from
user for long distance gaze estimation involving CNNs for
training [49]. Nonetheless, the accuracy of above methods is
not satisfactory for real world application. The present study
proposes an efficient multi-stream CNN based method that
requires less computing resources and yet achieves a high
accuracy.

III. MULTI-STREAM CNN NETWORK
In this section, a new approach is described on how to predict
a 3D gaze angle using the combined features from both

eye patches and the head position as shown in Fig. 1. The
important step for 3D gaze estimation would be the data
normalization before performing any regression tasks since
the importance of data augmentation in term of system per-
formance will be emphasized.

A. IMAGE NORMALIZATION
To overcome any appearance variation and to predict the
gaze correctly regardless of the original camera parameters,
Sugano et al. proposed a data normalization method for 3D
appearance-based gaze estimation [39], which was further
revised by [50]. This work used the revised version for
data normalization. Given an input image I, and a reference
location x, the goal is to calculate the conversion matrix M
using (1). Using the rotation matrix R, the x-axis of both head
coordinates system and the camera are parallel.

M = SR (1)

The scaling matrix S is defined so that the virtual camera
looks at the reference point from a fixed distance ds using (2).

S = diag(1, 1, dx/||P||) (2)

The images are normalized with the perspective warping
using a transformation matrix in (3), where Cs is the pro-
jection matrix of the normalized camera, and Cn is the real
camera matrix. The normalized images are cropped patches
of sizeW×H centered at pwith the head roll being removed.

W = CsMC−1n (3)

The 3D ground truth gaze vector is also normalized
using (4). After normalization, the gaze vector is further
converted to spherical coordinates (horizontal and vertical
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FIGURE 2. An overview of the proposed method. The eye landmarks were extracted from an image and used as the input for the eye feature extractor.
A feature vector V = U �W was extracted, which is passed to the FC layers for the gaze estimation. At FC3, the head pose is appended as the input to the
network and the gaze angle (yaw and pitch) is computed with linear regression.

FIGURE 3. Baseline CNN architecture for eye feature extraction. C represents convolution layers, while SC represent spatial
convolution layers.

gaze directions), assuming the unit length. All the data from
both datasets are normalized similarly during both training
and testing.

gn = Rg (4)

B. PROPOSED GAZE ESTIMATION NETWORK
The proposed shallow multi-stream CNN-based network
have a spatial layer mechanism for 3D gaze estimation. The
network consists of baseline CNN architecture for feature
extraction, which is illustrated in Fig. 3, and it is used
to extract the features from each eye separately, as shown
in Fig. 2.

The network takes two eye images {I (i)L , I (i)R } with a size
of 60 × 60 and the head-pose angle h(i) as the input to learn
the regression function f that predicts the 2D gaze angle g(i),
where i is the index of each sample. Two previous studies

are related to the present one. Lamely et al. proposed a small
CNN based framework for 3D gaze estimation [18], and
Zhang et al. implemented a spatial weight mechanism with
a baseline that it could enhance some regions of the face
for gaze estimation [16]. In this paper, two-stream CNNs
are utilized for the two eye patches to process with a dual
weight mechanism, which is slightly different from the above
two methods. Our network has 5 convolutional layers for the
feature extraction and a spatial mechanism, which consists of
three convolutional layers with a filter size of 1 × 1 along
with a rectified unit layer, and a final max-pooling layer is
applied at the end of the baseline network, which is illustrated
in Fig. 3.

V = W � U (5)

The weighted activation maps were calculated using (5)
where W and U represent the spatial weight matrix and the
original activation tensor, respectively. It was found that using
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the same spatial layers mechanism for each eye image can
significantly improve the overall performance of the network
as illustrated in Fig. 2.

C. 3D GAZE ESTIMATION NETWORK FLOW
An eye patch having input size of (60 × 60) was fed sep-
arately to a CNN, consisting of five convolutional layers,
each followed by a Batch-Normalization (BN) layer and a
rectified linear unit layer as illustrated in Fig. 3. The output
from the 5t

h
convolutional layer (C5) was fed to the spatial

layers. At this point, the last max-pooling layer reduced
the dimensions of features received from the element-wise
multiplication of the spatial layers and the original activation
matrix with equation (5). Before concatenation of both eye
features, a dropout layer (p = 0.5) was connected to a fully
connected (FC) layer with a size of 512, which was followed
by a BN and a rectified linear unit layer, and finally two more
FC layers with sizes of 256 and 2, respectively. The head pose
vector was appended to the final layer and then the output of
the final layer were the gaze angles yaw and pitch.

Extensive experiments were carried out to find out the best
network architecture. It was found that adding a BN layer
before an activation layer was beneficial. It helped to improve
the accuracy as well as to increase the generalization ability
of a regression-based architecture [51]. Experiments with and
without using a BN layer indicated that a BN layer for the
spatial weight mechanism decreased the performance, so a
BN layer for spatial weights was not used. However, it was
found that there were no improvements with the BN layers
during the training of the architecture, but the generalization
ability was highly improved during validation and testing as
shown in Table 1.

TABLE 1. Model generalization was very much improved by introducing a
BN layer before the activation layer for both the CNN and the fully
connected layers except the last layer. The model performed well on the
test data when the BN layers were added. The best results are shown in
bold.

D. IMAGE DATA AUGMENTATION
To improve the robustness of our method, the training data
were augmented in three different ways. Firstly, to cover
the different illumination conditions, the gamma correction
technique was adopted. A gamma value of 0.5 and 1.25 were
used to cover both the darker and the brighter illumination
conditions, respectively. Secondly, to make the system robust
against camera blur conditions, the OpenCV Gaussian blur

technique was applied with a kernel size of 7 × 7 and
3 × 3. Finally, different noises were applied to the original
eye patches using Gaussian and salt pepper noise techniques
as shown in Fig. 4. The size of our dataset was increased by
3 times using the present data augmentation method as shown
in Table 2. Results were compared before and after applying
augmentation to the whole data (MPIIGaze and EYEDIAP)
drawn in Fig. 5.

FIGURE 4. Sample images of how data augmentation is processed, which
is best viewed in color.

TABLE 2. Datasets augmentation.

IV. EXPERIMENTS
Performance of this network was evaluated using two
datasets. First, two eye gaze datasets used in this paper for
training and evaluation are described. Secondly, data prepara-
tion and experimental details are explained in detail. Finally,
detail information is provided on framework evaluation on
both datasets, also single and multi-stream CNNs are com-
pared followed by time complexity analysis in the end.

A. DATASETS
For both experiment and evaluation, two well-known datasets
were used, such as the MPIIGaze [52] and the EYEDIAP
datasets [21] as shown in Fig. 6. The former contained
213,659 images collected from 15 participants over several
months. This dataset covered a wide range of head positions
and illumination conditions. In each session, each subject
was asked to look at 20 random positions. Each session was
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FIGURE 5. Training angular accuracy (error) (a) and validation angular
accuracy (error) (b) of the proposed model for eye gaze estimation are
shown before and after data augmentation.

FIGURE 6. The sample images from (a) the MPIIGaze dataset and (b) the
EYEDIAP dataset. The images in (a) are cropped images by removing the
black background for visualization purpose. The first row in (b) are
images with the stationary or movable head poses while gazing the target
in a continuous fashion. The second row in (b) shows the sample images
while gazing the floating target moving in 3D trajectory.

recorded during the daily routine of every subject without giv-
ing any specific instructions about how to record the sessions.
The dataset contained diverse head poses, the illumination
conditions, and the natural environment scenarios. So that
each image had a full-face, head feature, and the 3D gaze
target locations for each subject.

The latter was another large scale dataset for gaze
estimation research. Sixteen participators were recruited for
this project. Each session contained three different scenarios,
which included a discrete screen target, continuous screen
targets, and a 3D floating target. There were two head posi-
tions: one was a static position, and the other was a mobile
head-position case. Three different cameras, which included
a kinetic camera, a VGA camera (640 × 480), and an HD
camera (1920 × 1080), were used for the eye data record-
ing. For each participant, the videos were recorded in three
different visual scenarios included a Discrete screen target
(DS), a circle was drawn every 1.1 seconds uniformly, a Con-
tinuous screen target (CS), a circle moved along a random
trajectory every 2 seconds, and a 3D Floating target (FT)),
a ball that was 4cm in diameter attached to a stick with a
thread that moved within a 3D region between the camera and
the participant. To make the dataset robust against different
head poses, the participants were instructed to record two
videos (stationary (S) and mobile (moving head-position))
for each visual scenario. In this research, four videos from
a VGA camera of each participant used for experimentation.
The sample images from both datasets are shown in Fig. 6,
which shows variations of both datasets in terms of the data
collection, light intensity, head poses, and the camera angles
used, respectively.

B. DATA PREPARATION
From the MPIIGaze dataset, the left and right eye patches
were extracted from the full face dataset using perspective
warping technique. As both eyes of a human looked at an
object in a synchronizedmanner, the same ground truth vector
for both the left and the right eye patches were used. The
dataset was divided into training and evaluation with a ratio
of 95% and 5%, respectively. Since the Rodrigues transfor-
mation was recommended to map a vector to an angle for
both the head-pose and the gaze targets, the samemethod was
followed in all experiments.

In terms of the EYEDIAP dataset, four videos were cho-
sen, which included continuous screen targets and floating
3D targets videos, for both the stationary and the movable
head-poses from each participant. The mid-point of both
eye targets was chosen as the ground truth vector, and the
eye patches were made by using the perspective warping
technique used in III-A. We kept the same ratio of training
and validation for the EYEDIAP dataset as well. Since the
head positions were given for both datasets, they were used
in these experiments.

C. EXPERIMENTAL DETAILS
The proposed framework was trained on a Linux system
that has a NVIDIA GTX GForce 1070 GPU with python
3.6 and pytorch 1.0.1. The model was trained from scratch
for 100 epochs with a batch size of 256. The weights
of all the layers of the proposed network were initialized
using the Kaiming He initialization [53]. Weight sharing was
not used, because it decreased the performance. An Adam
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FIGURE 7. Sample 3D estimated gaze angle (green) and ground truth annotations (red) using the proposed method for the MPIIGaze dataset (left) and
the EYEDIAP dataset (right), respectively.

optimizer [54] was used as an estimator with a learning rate
of 0.01, a momentum 0.9, and weight decay.

D. EVALUATION METRICS
For gaze estimation the loss function was calculated by esti-
mating the Euclidean distance between the predicted and
ground truth gaze angle as shown in (6).

Led =
N∑
i=1

∥∥ĝi − gi∥∥2 (6)

where N is the total number of images, ĝi is the predicted
regression angle of ith image, gi is the actual ground truth of
the ith image. Led is the averaged loss between the actual and
predicted angle.

E. EVALUATION
The performance of this framework was evaluated using two
standard eye gaze datasets, such as the MPIIGaze and the
EYEDIAP datasets. A leave-one-out validation approach was
used for MPIIGaze dataset. Since both eyes were used as
input, two eye patches were extracted from the full-face
image. The result was obtained by averaging all 15 par-
ticipants. Given that the best state-of-the-art accuracy was
3.64 degrees [18], there was an improvement of 0.84 degrees
since ours was 2.8 degrees. In addition, when data fusion
technique described in Section IV-F was applied to this
dataset, there was an additional improvement as shown
in Table 3.
For the EYEDIAP dataset, the screen target sessions

were used, as discussed in Section IV-A. The eye images
were cropped using the same method as the MPIIGaze
dataset.With a similar configuration to theMPIIGaze dataset,
the EYEDIAP dataset was divided into 5-folds by splitting
the 14 participants randomly into 5 groups. The initial accu-
racy was 3.77 degrees and yet it was further improved to
3.05 degrees by introducing the data fusion technique as
described in Section IV-F, compared to the previous state-of-
the-art, which was 3.23 degrees [40] on the EYEDIAP dataset
(see Table 4).

TABLE 3. Comparison of the results with the state-of-the-art methods on
the MPIIGaze dataset.

TABLE 4. Comparison of the results with the state-of-the-art methods on
the EYEDIAP dataset.

Our dual spatial weight mechanism-based multi-stream
CNN network was compared with the previous state-of-
the-art methods, such as a single face method, a face
with spatial weight mechanism architecture [16], a recur-
rent based method that used both eye patches and the facial
landmark [40], a deep ensemble network that used eye
patches separately along with the head-position [41], and a
multi-region method that employed both eyes, the face, and
the face grid as the input [17]. Note that our method achieved
the best result compared to all the previous methods by using
just the eye patches and the head position, which is illustrated
in Fig. 7.

F. DATA FUSION
Our experiment was further extended by involving data fusion
of both datasets. First, both datasets were combined 1 and then

1The original MPIIGaze dataset was utilized instead of augmented data to
make a fair comparison for data fusion
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tested the trained model on the EYEDIAP dataset. Similar
to previous experiments, the data were divided into similar
fashion. During training, complete data were divided fur-
ther into 90% and 10% for training and validation, respec-
tively. The model converged and tested on the new data from
the EYEDIAP dataset, it was noted that the angular error
decreased further to 3.05 degrees, as described in Table 5.

Similarly, to analyze the results on the MPIIGaze dataset,
another experiment was conducted keeping the same ratio of
training and validation sets. Final results were produced by
taking the mean value of the k-fold cross-validation as shown
in Table 5.

TABLE 5. Model performance comparison with and without data fusion.

G. COMPARATIVE ANALYSIS
The experiments were conducted to compare a single and a
dual spatial layer mechanism and the effect of the dual spatial
layer on themodel accuracy. In Fig. 8, it was observed that the
models overall accuracy increased by introducing two spatial
layers. We conducted the experiments using a single eye
patch with a spatial layer and a head pose and evaluated the
model on the MPIIGaze and the EYEDIAP datasets. Single
spatial layer (single eye) results were compared with top
models from [48] in Table 6. The results from the EYEDIAP
dataset were worse than the MPIIGaze dataset due to the low
resolution, and the high head pose variations of the EYEDIAP
images.

FIGURE 8. Comparative analysis between single spatial layer and dual
spatial layer in our framework.

H. TIME COMPLEXITY ANALYSIS
The detail about processing speed for 3D gaze estima-
tion is given in Table 7. These results were obtained by

TABLE 6. Angular error (degree) using a single eye on MPIIGaze and
EYEDIAP datasets. L, R, Avg denote the left, right eyes and the average of
them, respectively.

processing 6500 images and computing the average run-time.
In Table 7, a comparison is given between a single and a batch
of 256 images. The CPU is an Intel(R) Core(M) i7-4770 with
eight kernels and 3.40GHz per kernel. The GPU is an Nvidia
GForce GTX 1070. The program was written in Python and
Pytorch. Note that the Pytorch process data is parallel to the
GPU, which gave the best results for a batch of 256 images.

TABLE 7. Processing speed (ms) of the proposed framework for 3D gaze
estimation.

V. DISCUSSION
Estimating gaze direction accurately from an image acquired
with a mobile camera typically under the unstable illumina-
tion condition is not an easy task, given that the traditional
way of estimating a human gaze was to gear up a massive
eye movement setup, which was inconvenient and expensive.
Of course, recent development of deep neural network makes
it possible to estimate a reasonably accurate gaze direction
from natural images.What the present study is trying to prove
from our experimental results is that it is useful to employ
a data science perspective in dealing with eye gaze datasets
from data augmentation to data fusion.

The other important issue would be the image resolution of
the gaze dataset. For instance, it seems that accuracy discrep-
ancy between MPIIGaze and EYEDIAP (see Table 3 and 4)
comes from the different image resolution within each eye
patch, as observable from Fig 7. This suggests that the accu-
racy of gaze estimation by deep neural network could be
further improved if there is any dataset that has more pixels
within each eye patch.

VI. CONCLUSION
Detecting a human gaze during the interaction between peo-
ple can play an essential role in social survival because
one can understand what the other person intends during a
conversation. Modern computer vision techniques with deep
neural networks provide a new way to estimate a human gaze
direction without gearing up such equipment.

In this work, we proposed a new 3D gaze estimation
method from a natural face image taken with a desk-top com-
puter that used a dual-channel convolutional neural network.
The extensive evaluation was conducted with two standard
gaze datasets. Our system has a spatial weight that is based
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on a shallow network that outperformed all previous 3D
gaze estimation methods. By using our method, we achieved
an accuracy of 2.60 for MPIIGaze and 3.05 degrees for
EYEDIAP, respectively. The improvement was 28% for the
former and 4% for the latter over the state-of-the-art methods.
Result suggests that our method is robust for any extreme
head positions, gaze directions, and illumination conditions.
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