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ABSTRACT Failure mode and effects analysis (FMEA) is a typical risk assessment and prevention
technology, in which different experts provide different assessments on the target system to identify the risk
grades of its components. Sometimes, the assessments contain conflict information. How to manage and
fuse the conflict assessment information is an open issue. We propose a triangular distribution-based basic
probability assignment (TDBPA) method to model and fuse the conflict risk level coming from different
experts’ assessments in the frame of Dempster-Shafer evidence theory. First, the subjective assessments of
risk analysis from domain experts are modeled with belief structure in Dempster-Shafer evidence theory.
Then, the assessments are transformed as the TDBPA function. Thirdly, the conflict risk assessments from
the FMEA team for failure analysis can be fused with Dempster rule of combination. After that, the modified
risk priority number (RPN) model based on fused assessment can be calculated for ranking of failure modes.
Finally, recommended actions should be taken for prevention of potential risk items.We verify the rationality
and efficiency of the proposed method with a case study in the blades of an aircraft turbine. In short,
the presented FMEA methodology procedure in this paper is well organized so that we can apply it in
a more simple and understandable way. Utilizing the character of triangular distribution, taking adjacent
values into account, TDBPA method can smooth the conflict assessment for information fusion. In addition,
the shortcoming of repeating values in classical RPN is eliminated in the proposed method, which improves
the ability for risk assessment of FMEA.

INDEX TERMS Failure mode and effects analysis (FMEA), Dempster-Shafer evidence theory, basic
probability assignment, triangular distribution, failure analysis, knowledge reasoning.

I. INTRODUCTION
Since it was introduced by NASA in 1960s [1], failure
mode and effects analysis (FMEA), as an analytical tool in
reliability, has been proved to be remarkably effective and
applied extensively in many fields such as risk evaluation [2],
decision making [3]–[5] and so on. In these piratical appli-
cations, FMEA is generally used for assuring that poten-
tial risks have been fully considered and processed properly
during the assessment process. A central part of this tech-
nology is risk priority number (RPN), the product occurrence
(O), severity (S), detection (D), i.e.RPN = S × O × D.
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Additionally, its most visible result is the documentation
of the collective knowledge of cross-functional teams [6].
In addition, FMEA can facilitate the identification of
potential failures in the design or process of products or
systems. FMEA method has been applied in diverse indus-
tries like medical domain [7], [8], software engineer [9],
enterprise [10], production process [11], [12], aviation
domain [13], emergency management [3], and so on [4],

In despite of its advantages, some weaknesses of FMEA
exists. The three risk factors are scaled by experts with an
integer number from 1 to 10 [1]. However, with the increasing
complexity of target system, the assessments implies great
uncertainty. Moreover, the conventional RPN model also is
criticized. To improve the efficiency of the traditional FMEA
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method, many hybrid intelligent methods based on FMEA
have been introduced. From the aspect of improving the
form of assessment distribution, the linguistic term sets are
used to improve the FMEA method in [5], [14]. Besides,
a consensus-based multiattribute group decision-making
approach in [5] is applied for FMEA in a linguistic context.
From the perspective of overcoming the shortcomings of
conventional RPN [15], perceptual computing (Per-C) is
incorporated into RPN model by analyzing the uncertainties
of in words given by experts [16]. In [17]–[19], fuzzy infer-
ence system (FIS) is adopted to construct models for decision
making using uncertain fuzzy rules. In other direction of
research into handling the uncertainty of risk assessments,
the cloud model and technique for order preference by simi-
larity to an ideal solution (TOPSIS) method are adopted to
improve the risk evaluation efficiency of FMEA in [2] while
the fault tree analysis is adopted for a similar purpose in [8].
Though a lot of practical models are introduced to enhance
the performance of conventional FMEA, how to model and
fuse the conflict assessments from experts is still a key and
an open issue.

Some previous works introduce D-S theory to address the
uncertain information in FMEA [20]. In [21], the risk levels of
risk factors aremodeled bymembership function in fuzzy sets
theory and then transformed as mass function, subsequently,
the mass function can be fused with Dempster combination
rule to get the final RPN values. To carefully address vague
and imprecise risk evaluations, the two-parts RPN values are
designed incorporation with D-S theory and belief entropy
method in [22].

Dempster-Shafer evidence theory (D-S theory) [23], [24]
is a typical tool for information reasoning under uncer-
tainty. It has been widely used in uncertainty modeling
and evidence combination because of its efficiency in
processing indeterminate information and aggregating the
multi-source feature information. In [25]–[27], new methods
are proposed in the framework of D-S theory for revealing the
data structure in clustering. Besides, a new saliency detec-
tion method is designed for image fusion and processing
in [28]. In [29], [30], D-S theory is adopted for improving
the reliability and efficiency in decision-making process.
Futhermore, D-S theory is also effective in classifica-
tion problems [31]–[33], sensor data fusion [34], [35],
decision-making [36], and so on [37]–[39]. After 40 years’
development, some open issues in D-S theory and its appli-
cations are still worth for paying more efforts [40], [41].
Recent researches on uncertainty measure and management
of mass function show a new perspective of developing the
theory itself [42]–[44], while the researches on the nega-
tion of mass function open a new research direction in D-S
theory [45].

Though D-S theory has advantages in decreasing inde-
terminacy by reserving the common information and fusing
multi-source estimation without prior weights, it also
has limitations. The open issues in D-S theory include

conflict evidence fusion [46]–[49], dependent evidence
fusion [50], [51], generation of mass function [52], belief
entropy for evidence evaluation [53], [54], decision-making
based on mass function [55], [56], incomplete information
processing in D-S theory framework [57], approximation
of mass function [58] and so on. In general, D-S theory
is effective in evidence modeling and uncertain information
fusion. Two categories of method are introduced for evidence
modeling and fusion. One is evidence preprocessing and
the other is modification of the Dempster combination rule.
In this paper, we focus on generation of basic probability
assignment (BPA) with respect to its application in risk anal-
ysis under experts’ subjective assessments.

Thework in [13] introduces the Gaussian distribution func-
tion to improve the modeling of subjective assessment in [20]
by generating BPA more precisely. But, in practical engi-
neering, the Gaussian distribution seems to be more complex
than the method with fuzzy sets theory for technical engi-
neers in the field. Sometimes, the RPN values coming from
subjective assessments of different experts may be conflict
integer values. To inherit the advantage of fuzzy sets theory as
well as the precise model and fuse the subjective assessments
from experts, we propose an improved and simple method for
generation of BPA. In detail, we adopt the triangular distribu-
tion to model the conflict assessments for further information
fusion with Dempster combination rule. With the triangular
distribution-basedBPA (TDBPA)method, the conflict integer
values in risk level coming from subjective assessments of
FMEA experts can be modeled and fused for failure analysis
and prevention.

Some advantages and features in the TDBPA based-FMEA
method in the framework of D-S theory are listed as follows.
First of all, due to the values given by domain experts is
subjective, the triangular distribution is utilized to model such
inaccuracies in the assessment. Secondly, the triangular distri-
bution in the proposed method is constructed with less prior
data because the distribution curve is only determined by
the assessment values. Thirdly, after fusion of TDBPA-based
RPN values, the repeating values in classical RPN are elimi-
nated, which optimizes the ranking results of RPN. Last but
not least, the new TDBPA based-FMEA procedure is outlined
with simplicity and flexibility. Several numerical examples
are used to illustrate that the efficiency and availability of
TDBPA and its application in modeling of risk assessment.
A case study in the blades of an aircraft turbine is adopted to
verify the effectiveness of the new method.

The rest of this paper is organized as follows. Section II
shows a literature review on some related works concerning
how to improve FMEA. In Section III, D-S theory and trian-
gular distribution are briefly introduced. A novel genera-
tion method of BPA based on triangular distribution, named
TDBPA, is proposed in Section IV. Section V presents a
TDBPA-based FMEA method and its application in a prac-
tical engineering. Finally, conclusions and some possible
following work are provided in Section VI.
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II. LITERATURE REVIEW
A. TERMINOLOGY IN FMEA
Traditionally, during the application process of FMEA, deter-
mining the risk priorities of failure modes based on the risk
priority number (RPN) is a key step. A failure mode with a
higher RPN value is concerned to be more critical than that
with a lower RPN.
Definition 1: The RPN consists of three factors: the

severity of a failure effect (S), the probability of occurrence
of a failure mode (O) and the probability of a failure being
detected (D). RPN can be defined as follows:

RPN = O× S × D. (1)

Generally, each risk factor can be measured with 10 ranking
levels from 1 to 10. For instance, Table 1 shows the suggested
criteria of rating for the occurrence O of a failure in
FMEA. Similarly, the severity S of a failure effect and the
detectability D of a failure can be mapped to an integer from
1 to 10. More details can be founded in [20].

TABLE 1. Suggested criteria of rating for occurence of a failure in
FMEA [20].

In [1], the conventional RPN calculation method has
been considerably criticized. Considerable research has been
conducted to investigate the use of RPN in FMEA. The mean
value of RPN(MVRPN) proposed in [20] is an efficient and
we utilize it as a substitute to overcome the shortcomings of
traditional RPN.
Definition 2: Suppose the RPN value of the nth failure

mode has several ratings, which are represented as
(RPN 1

n ,RPN q
n ), and its corresponding belief value can be

described as (B(RPN 1
n ),B(RPN

q
n )). Then, the mean value of

RPN can be defined as follows:

MVRPNn = E(RPNn) =
∑
q

(RPN q
n ) · B(RPN

q
n ) (2)

B. EVIDENCE THEORY APPLIED IN FMEA
D-S theory, a powerful mathematical tool to reason with
uncertain information, is applicable to augment traditional
FMEA process, in which the experts’ assessments are
expressed with probability [59]. D-S theory is capable to
aggregate the different evaluation information by considering
multiple experts’ evaluation opinions. It is usually considered
as a proper mathematical framework, of which belief and

plausibility distribution are used to fuse different evalua-
tions to make them available for ranking failure modes [60].
To deal with the epistemic uncertainty often affecting the
input evaluation, the present paper propose the D-S theory
of evidence as a proper mathematical framework in [61].
In [60], a new aggregation method on the basis of D-S theory
is introduced to fuse various kind of evaluations, then use
the TOPSIS method to prioritize the failure modes. In [62],
Li and Chen propose a novel evidential FMEA integrating
fuzzy belief structure and grey relational projection method
(GRPM), in which they use a new method to transform the
experts’ fuzzy opinions into BPAs. Besides, a new evidential
FMEA using linguistic term is presented in [63]. It trans-
forms the experts’ linguistic judgments into BPAs and adopts
the Dempster combination rule for fusion. Note that, when
experts assign different but precise values to risk factors,
the basic probability assignment (BPA) constructed becomes
highly conflicting evidence, which cannot be fused by Demp-
ster combination rule andwill result in errors in FMEA. There
also are many researches focus on resolving this problem
in combination with other theories. In [64], Yuan and Deng
propose an improved combination rule considering both the
uncertainty of evidences and the conflict degree of the system.
Also, to address the combination issue, in [65], the evidence
distance function and the belief entropy are adopted to assign
weights to evidence, which contributes to modifying the
conflict evidence. Similarly, the Deng entropy and evidence
distance are utilized in [66]. Deng entropy is adopted for
uncertain degree modeling of FMEA experts in [67].

The aforementioned methods do not put emphasis on
reconstructing the BPAs. To improve the modeling of subjec-
tive assessment in [20] by generating BPA more precisely,
the work in [13] introduces the Gaussian distribution func-
tion, while which seems to be more complex in practical
engineering. Furthermore, in a new D-S theory-based fault
diagnosis method proposed in [68], the BPAs are constructed
in the basis of the triangle fuzzy function of symptoms and
the relationship between symptoms and faults. Nevertheless,
the corresponding relation between the characteristic values
of symptom parameters and the failure modes are difficult
to attained with the increasing complexity of target system.
In short, the limitation in these research that motivates us to
propose a TDBPA method to address the problems remains
in FMEA method regarding D-S theory framework.

III. PRELIMINARIES
In this section, the basic concepts of the D-S theory are
triangular distribution are introduced.

A. DEMPSTER-SHAFER EVIDENCE THEORY
D-S theory originated in the work of Dempster using proba-
bilities with upper and lower bounds [23] and Shafer estab-
lished the basic probability assignment function (BPA) on
the framework of discernment [24]. Developing on the foun-
dation of the Bayesian theory of probabilities, D-S theory
can represent and process uncertain information effectively.
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Reasoning and decision-making can be carried out with
incomplete or conflicting pieces of evidence even if there is
lack of prior information [69]. Formally, the definitions in
D-S theory are provided as follows.
Definition 3: Let � be a set of mutually exclusive and

collectively exhaustive elements Hi, indicated by

� = {H1,H2, . . . ,Hi, . . . ,HN } (3)

The power set of � composed with 2N propositions is called
the Frame of Discernment (FOD), denoted as 2�:

2�
=

{
∅, {H1} , {H2} , . . . , {HN } , {H1,H2} ,

. . . , {H1,H2, . . . ,Hi} , . . . , �

}
, (4)

where each element is a proposition and ∅ is an empty set.
In addition, each single set that contains only one element in
FOD is called singleton.
Definition 4: A basic probability assignment (BPA) (also

called mass function) is a mapping for elements in 2� to the
interval [0,1], formally defined by:

m : 2�
→ [0, 1] , (5)

which satisfies the following conditions:

m (∅) = 0,
∑
A∈�

m (A) = 1, (6)

where ‘‘A’’ symbolizes any subset of �, which is A ⊆ �.
If A 6= ∅, the BPA function m(A) represents how strongly the
evidence supports the hypothesis A. If m(A) > 0, the A in the
frame of discernment is called a focal element and the set of
all the focal elements is named a body of evidence (BOE).
Definition 5: A BPA m can also be represented by the

belief function Bel or the plausibility function Pl, defined as
follows:

Bel (A) =
∑
∅6=B⊆A

m (B), Pl (A) =
∑

B∩A 6=∅

m (B). (7)

Definition 6: Two pieces of evidence in the frame of
discernment � indicated as m1 and m2. A focal elements of
m1 is described as B and that of m2 is presented as C . The
Dempster’s combination rule can be defined as follows:

m1,2(A) = m1(B)⊕ m2(C)

=

∑
B,C∈�,B∩C=Am1(B)× m2(C)

1−
∑

B,C∈�,B∩C=∅ m1(B)× m2(C)
(8)

where a coefficient K is defined as follows:

K =
∑

B,C∈�,B∩C=∅

m1(B)× m2(C), (9)

sometimes, the K is defined as a conflict coefficient between
two BOEs.

B. TRIANGULAR DISTRIBUTION
Fuzzy logic technique is commonly used in computer science
such as software engineering [70], [71]. As a typical and
simple tool, fuzzy triangular distribution is often used as an
elementary example of a probability model [72]. Triangular
distribution has been used in many fields, such as program
evaluation [73] and review techniquemodels [74], [75]. In the
case of being absence of data, a triangular distribution is
a promising alternative to some of the standard probability
distributions [76].
Definition 7: Given the parameters: a = minimum,

c = most likely value, b = maximum, the triangular distri-
bution is a continuous probability distribution with a low
limit a, a medium value c and the upper limit b. The prob-
ability density function of triangular distribution is defined
as follows:

f (x|a, b, c) =


2(x − a)

(b− a)(c− a)
, for a ≤ x ≤ c,

2(b− x)
(b− a)(b− c)

, for c < x ≤ b.
(10)

For ∀x ∈ [a, b], there always exists f (x) ∈ [0, 1].

IV. TDBPA FOR SUBJECTIVE ASSESSMENT MODELING
A. PROBLEM DESCRIPTION
In practical engineering, it is common that experts may have
different assessments on the same object. The decision will be
based on data fusion theory and method. How to model the
conflict information or inconsistent opinion for the following
data fusion process and subsequently the decision making is
still an open issue. Taking the following case as an illustrative
example. Example 1 gives a problem in fusing subjective
assessment with hard partition based on D-S theory.
Example 1: Two experts give subjective assessments on the

risk factor ‘‘severity of a failure effect (S)’’ of failure mode 1
in the framework of D-S theory, the belief structure is shown
as follows.
• Expert 1: m1

S1(6) = 1,
• Expert 2: m1

S2(7) = 1.
According to the statement for criteria of rating in severity

of a failure effect, ‘‘6’’ is equivalent to ‘‘Significant’’, which
means ‘‘operation of system or product is continued and
performance of system or product is degraded’’. The opinion
of expert 1 can be represented symbolically as S1(6, 100%),
the BPA is m1

S1(6) = 1. Additionally, ‘‘7’’ equates with
‘‘Major’’, which means ‘‘operation of the system or product
may be continued but performance of system or product is
affected’’. The evaluation result of expert 2 can be represented
as S2(7, 100%). The BPA is m1

S2(7) = 1. According to
Eq.(9), there is no intersection between the two given esti-
mated value, which can be presented as

∑
S1∩S2=∅ m1(6) ×

m2(7) = 1, so these two BPAs are highly conflicting evidence
and the denominator of the Eq.(8) is 0. In this case, data fusion
with Dempster’s combination rule is unavailable.

To address the aforementioned conflict information fusion,
it is necessary to take the subjectivity of experts when they are
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FIGURE 1. Generation of BPA based on the triangular distribution.

giving a precise (with integer) assessment value into consid-
eration.When different assessment with precise values for the
risk evaluation factors are given by different experts, we adopt
the triangular distribution for constructing basic probability
assignment of conflict assessment to make the boundaries
become smooth. With fuzzy boundary, there will be no
hard partition, consequently, we can solve the combination
problem of conflicting evidence coming from integer assess-
ment value. Generally speaking, there is rarely large differ-
ence in the estimated values of risk factor given by domain
experts. In other words, the risk evaluation opinions of
domain experts are usually in neighboring position [13], [20].

B. TDBPA
To smooth the conflict assessment for information fusion,
the adjacent value of a risk level is taken into consideration.
We construct the BPA by which the situation can be described
based on the triangular distribution function.
Definition 8: Assume thatm(X ) expresses the belief given

by an expert on the proposition X , and R denotes the level
of failure risk ranging from 1 to 10. If X is a single poten-
tial rating of the ith risk factor for the nth failure mode,
then the triangular distribution-based BPA (TDBPA) can be
constructed as follows:

m(R) = f (X | (R− 1.5) ,R, (R+ 1.5))

=


2(2X − 2R+ 3)

9
, for (R− 1.5) ≤ X ≤ R,

2(2R− 2X + 3)
9

, forR < X ≤ (R+ 1.5) ,


(11)

where m(∅) = 0. The construction of TDBPA is illus-
trated in Fig. 1. The range of R could be simplified from
(R − 1.5) to (R + 1.5) and the discernment frame is[
minX |X⊆�n

i
− 1,maxX |X⊆�n

i
+ 1

]
, where i = O, S,D;

n = 1, 2, 3 . . . ,N
There are basically three reasons about why the range of R

is simplified as [R− 1.5,R+ 1.5] instead of [R− 1,R+ 1]:
(1) In triangular distribution, as shown in Fig. 1, the minimum
and maximum values create sharp boundaries at the edge,

which is not allowed, sowe enlarge the range of value. (2) The
probability density of the central rating far outweighs the
ones on both sides. (3) Sometimes, the sum of the probability
densities of the three adjacent ratings is not exactly equal
to 1, as a normalization strategy, we transform the values of
probability density at R and (R + 1) directly to TDBPA and
the belief value at (R− 1) point is defined as follows:

m(X − 1) = 1− m(X )− m(X + 1). (12)

C. APPLY TDBPA IN D-S THEORY
The process of applying TDBPA in framework of D-S theory
is depicted in Fig. 2. First, develop a deep understanding for
target system or service in order to identify risk items thatmay
occur failure, i.e, item1, item2, . . . , itemn. Second, assemble
a team of domain experts, i.e., Expertl|l=1,...,L , to provide
assessments on these risk items. These assessments that are
denoted as BPA and some of them that are precise inte-
gers, which may become conflict assessments. In this case,
we adopt the triangular distribution to construct TDBPA so
that data fusion with Dempster combination rule is available.
Eventually, fused TDBPAs are obtained for each risk item.

D. NUMERICAL EXAMPLES IN FAILURE MODE ANALYSIS
The following numerical examples in failure analysis are used
to illustrate the calculation process of the proposed TDBPA
method. To simplify the calculation process, in the following
example, according to Eq. (6), Eq.(11), Eq.(12) and Fig. 1,
the construction of TDBPA can be reduced to a much simpler
form, shown as follows:

m(X ) = 0.67, m(X − 1) = 0.11, m(X + 1) = 0.22. (13)

where m(∅) = 0, X is the precise proposition that is equal to
numeric R. The specific values can be calculated by Eq.(11),
Eq.(12).
Example 2: Two experts give their assessments on the

risk factor ‘‘severity of a failure effect(S)’’ of a failure
mode 1. Based on prior knowledge in FMEA, ‘‘6’’ is equiv-
alent to ‘‘Significant’’, which means ‘‘operation of system or
product is continued and performance of system or product
is degraded’’, and ‘‘7’’ equates with ‘‘Major’’, which means
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FIGURE 2. Applying the TDBPA method in framework of D-S theory for multiple risk items.

‘‘operation of the system or product may be continued but
performance of system or product is affected’’. In this case,
the FOD of assessments can be constructed as

�1
S = (5, 6, 7, 8),

and the TDBPA function for each expert can be attained by
using Eq.(13):
• Expert 1:

m1
S1(5) = 0.11, m1

S1(6) = 0.67, m1
S1(7) = 0.22,

• Expert 2:

m1
S2(6) = 0.11, m1

S2(7) = 0.67, m1
S2(8) = 0.22.

The combined BPA of Expert 1 and Expert 2 can be obtained
by using Eq.(8) and the result is shown as follows:

m1
S,12(5)=m

1
S1 ⊕ m

1
S2

=

∑
X∩Y=5,∀X ,Y⊆�1

S
m1
S1(X )×m

1
S2(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
S
m1
S1(X )×m

1
S2(Y )

= 0,

m1
S,12(6)=m

1
S1 ⊕ m

1
S2

=

∑
X∩Y=6,∀X ,Y⊆�1

S
m1
S1(X )×m

1
S2(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
S
m1
S1(X )×m

1
S2(Y )

=0.33,

m1
S,12(7)=m

1
S1 ⊕ m

1
S2

=

∑
X∩Y=7,∀X ,Y⊆�1

s
m1
S1(X )×m

1
S2(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
S
m1
S1(X )×m

1
S2(Y )

=0.67,

m1
S,12(8)=m

1
S1 ⊕ m

1
S2

=

∑
X∩Y=8,∀X ,Y⊆�1

S
m1
S1(X )× m

1
S2(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
S
m1
S1(X )×m

1
S2(Y )

=0.

The fusion result shows that a higher belief will assigned to
the risk level ‘7’, which is helpful for failure risk preven-
tion. The numerical example also verifies the validity of the
proposed method.
Example 3:The evaluation results of two experts on the risk

factor ‘‘detection of a failure (D)’’ of the failure mode 1 can
be expressed as follows. According to [20], ‘‘6’’ is equiv-
alent to ‘‘Low’’, which means ‘‘the possibility of detecting
the potential occurring of failure mode is low’’; ‘‘8’’ means
‘‘Remote’’, which means ‘‘The possibility of detecting the
potential occurring of failure mode is remote’’. The results of
symbolization are D1(6, 100%), D2(8, 100%). In this case,
the FOD of assessments can be constructed as

�1
D = (5, 6, 7, 8, 9),

consequently, the TDBPA function for each expert can be
obtained by using Eq.(13):
• Expert 1:

m1
D2(5) = 0.11, m1

D2(6) = 0.67, m1
D2(7) = 0.22
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• Expert 2:

m1
D2(7) = 0.11, m1

D2(8) = 0.67, m1
D2(9) = 0.22

The combined BPA function of Expert 1 and Expert 2 can be
obtained by using Eq.(8), the result is shown as follows:

m1
D,12(5)=m

1
D1 ⊕ m

1
D2

=

∑
X∩Y=5,∀X ,Y⊆�1

D
m1
D1(X )×m

1
D2(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
D
m1
D1(X )×m

1
D2(Y )

=0,

m1
D,12(6)=m

1
D1 ⊕ m

1
D2

=

∑
X∩Y=6,∀X ,Y⊆�1

D
m1
D1(X )×m

1
D2(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
D
m1
D1(X )×m

1
D2(Y )

=0,

m1
D,12(7)=m

1
D1 ⊕ m

1
D2

=

∑
X∩Y=7,∀X ,Y⊆�1

D
m1
D1(X )×m

1
D2(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
D
m1
D1(X )×m

1
D2(Y )

=1,

m1
D,12(8)=m

1
D1 ⊕ m

1
D2

=

∑
X∩Y=8,∀X ,Y⊆�1

D
m1
D1(X )×m

1
D2(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
D
m1
D1(X )×m

1
D2(Y )

=0.

As we can see from Example 2 and 3, the TDBPA method
can solve the conflict brought by different integer values in
the risk evaluation factor given by different experts. Utilizing
the triangular distribution, the constructed TDBPAs can be
fused by the Dempster’s combination rule. The fusion result
is consistent with reality.
Example 4: Three experts assess on the risk factor

‘‘severity of a failure (S)’’ for failuremode 1with S(7, 100%),
which means that the three experts estimated the corre-
sponding failure risk as the ‘‘Major’’ level and ‘‘operation of
system or product is continued and performance of system
or product is degraded’’. The FOD of assessments can be
constructed as

�1
S = (6, 7, 8),

and the TDBPA function for the expert can be calculated by
utilizing Eq.(13):
• Expert k:

m1
Sk (6) = 0.11, m1

Sk (7) = 0.67, m1
Sk (8) = 0.22,

where k = 1, 2, 3. The combined BPA of Expert 1 and Expert
2 can be obtained by using Eq.(8) and the result is shown as
follows:

m1
S,12(6)=m

1
S1 ⊕ m

1
S2

=

∑
X∩Y=6,∀X ,Y⊆�1

S
m1
S1(X )×m

1
S2(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
S
m1
S1(X )×m

1
S2(Y )

=0.024,

m1
S,12(7)=m

1
S1 ⊕ m

1
S2

=

∑
X∩Y=7,∀X ,Y⊆�1

S
m1
S1(X )×m

1
S2(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
S
m1
S1(X )×m

1
S2(Y )

=0.88,

m1
S,12(8)=m

1
S1 ⊕ m

1
S2

=

∑
X∩Y=8,∀X ,Y⊆�1

S
m1
S1(X )×m

1
S2(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
S
m1
S1(X )×m

1
S2(Y )

=0.096.

Subsequently, the final fusing result can be obtained by
involving in the assessment from Expert 3, the result is shown
as follows:

m1
S,123(6) = m1

S,12 ⊕ m
1
S3

=

∑
X∩Y=6,∀X ,Y⊆�1

S
m1
S,12(X )×m

1
S3(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
S
m1
S,12(X )×m

1
S3(Y )

= 0.0043,

m1
S,123(7) = m1

S,12 ⊕ m
1
S3

=

∑
X∩Y=7,∀X ,Y⊆�1

S
m1
S,12(X )×m

1
S3(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
S
m1
S,12(X )×m

1
S3(Y )

= 0.9600,

m1
S,123(8) = m1

S,12 ⊕ m
1
S3

=

∑
X∩Y=8,∀X ,Y⊆�1

S
m1
S,12(X )×m

1
S3(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
S
m1
S,12(X )×m

1
S3(Y )

= 0.0357.

According to the fusion result, if two or more experts
give the same estimated values, the proposed method can
contribute to a convergency result on the belief incorporation
with Dempster rule of combination, which is helpful for
decision-making in practical engineering.
Example 5: Three experts give their opinions on the

risk factor ‘‘severity of a failure (S)’’ of a failure mode 1.
According to the statement for criteria of rating in severity
of a failure effect, ‘‘6’’ is equivalent to ‘‘Significant’’;
‘‘7’’ equates with ‘‘Major’’; ‘‘8’’ means ‘‘Extreme’’. Then,
the evaluation results can be symbolized as S1((6, 7), 100%),
S2(8, 100%), S3(7, 30%; 8, 70%). The FOD of assessments
can be constructed as

�1
S = (6, 7, 8, 9),

and the TDBPA function for each expert can be obtained by
using Eq.(13):

• Expert 1:

m1
S1(6, 7) = 1,

• Expert 2:

m1
S2(7) = 0.11, m1

S2(8) = 0.67, m1
S2(9) = 0.22,

• Expert 3:

m1
S3(7) = 0.3, m1

S3(8) = 0.7.
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The fusion result for Expert 1 and 2 can be attained by using
Eq.(8), shown as follows:

m1
S,12(6)=m

1
S1 ⊕ m

1
S2

=

∑
X∩Y=6,∀X ,Y⊆�1

S
m1
S1(X )×m

1
S2(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
S
m1
S1(X )×m

1
S2(Y )

=0,

m1
S,12(7)=m

1
S1 ⊕ m

1
S2

=

∑
X∩Y=7,∀X ,Y⊆�1

S
m1
S1(X )×m

1
S2(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
S
m1
S1(X )×m

1
S2(Y )

=1,

m1
S,12(8)=m

1
S1 ⊕ m

1
S2

=

∑
X∩Y=8,∀X ,Y⊆�1

S
m1
S1(X )×m

1
S2(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
S
m1
S1(X )×m

1
S2(Y )

=0,

m1
S,12(9)=m

1
S1 ⊕ m

1
S2

=

∑
X∩Y=9,∀X ,Y⊆�1

S
m1
S1(X )×m

1
S2(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
S
m1
S1(X )×m

1
S2(Y )

=0.

Subsequently, the final fusion result can be obtained by
involving the assessment from Expert 3, the calculation result
is shown as follows:

m1
S,123(7)=m

1
S,12 ⊕ m

1
S3

=

∑
X∩Y=7,∀X ,Y⊆�1

S
m1
S,12(X )×m

1
S3(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
S
m1
S,12(X )×m

1
S3(Y )

=1,

m1
S,123(8)=m

1
S,12 ⊕ m

1
S3

=

∑
X∩Y=8,∀X ,Y⊆�1

S
m1
S,12(X )×m

1
S3(Y )

1−
∑

X∩Y=∅,∀X ,Y⊆�1
S
m1
S,12(X )×m

1
S3(Y )

=0.

Example 2 to 5 shows the validity and practicability of
TDBPA. The conflict assessment from different experts can
be fused with Dempster rule of combination after prepro-
cessing with TDBPA method.

E. DISCUSSION
The triangular distribution is practical in statistic and themost
likely outcome can often be estimated without the prior data
such as the mean and standard deviation. Compared with
the probability values generated by the normal distribution
function, the result produced by triangular distribution is
asymmetric, because it assigns a higher probability to the
larger integer rating, which can be regarded as a pessimistic
strategy for a strict prevention on failure risks. Correspond-
ingly, the result gained by normal distribution is symmetric,
which is a neutral strategy.

Three desirable features of TDBPA can be concluded
as follows. Firstly, adjacent values of the assessed precise
integer are utilized to smooth the conflict assessments for
information fusion. Secondly, TDBPA only relates to corre-
sponding original BPA values. Essentially, the triangular
distribution in the proposed method is constructed with less
prior data because it is determined by the assessment values.
Last but not least, the calculation of triangular distribution is

simple for practical application in engineering in comparison
with other distribution function.

V. AN IMPROVED FMEA METHOD BASED ON TDBPA
A. TDBPA-BASED FMEA METHOD
Many theories have been applied to FMEA to make it
more effective in failure analysis of practical engineering.
However, how to address the conflict assessments from
different FMEA experts is still an open issue. To manage
the conflict among different risk levels assessed by different
experts, we propose an improved FMEA method based on
TDBPA in the framework of D-S theory. The TDBPA is
adopted to model the difference and uncertainty of evaluation
information received from multiple experts, subsequently,
the Dempster rule of combination is used to combine the
TDBPA.

In the proposed method, a simplified FOD is applied
according to the practical application. In addition, MVRPN
is used to determine the risk priority order of multiple failure
modes. The flowchart in Fig.2 shows the novel approach for
the evidential FMEA process incorporating TDBPA-based
conflict management method. The main process for carrying
out this novel FMEAmethod can be divided into several steps
which are briefly explained as follows:
• Step 1. To utilize FMEA, a specific methodology, esti-
mate a system or service effectively, it is essential to
investigate target system or service for ways of failure
occurrence. Then potential failure modes can be deter-
mined as soon as possible.

• Step 2. Determine the effect of each failure according
to experts’ personal experience or historical data. Note
that the amount of effect depends.

• Step 3. Recognize operational and environmental
stresses that contribute to the failure of some compo-
nents of target system or service and categorise them.

• Step 4. After advance preparation, an expert team
should be built to estimate the possible failure items.
In addition, express these estimations as BPA for further
processing.

• Step 5. Transform original BPAs to TDBPAs for conflict
information fusion. In the first place, simplify the FOD
for failure risk. Generally, assume that there are L
experts (E1, . . . ,EL) in a FMEA team, and N failure
modes (F1, . . . ,FN ) are considered. The FOD �n

i of the
nth failure mode with respect to the ith risk factor can be
expressed as:

�n
i = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10),

i = O, S,D; n = 1, 2, 3, . . . ,N . (14)

While in practical application, the FOD can be simpli-
fied as:

�n
i = (minX |X⊆�n

i
,minX |X⊆�n

i
+ 1, . . . ,maxX |X⊆�n

i
)

(15)

where i = O, S,D, n = 1, 2, . . . ,N . minX |X⊆�n
i
and

maxX |X⊆�n
i
are the minimum and maximum rank of
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FIGURE 3. The flowchart of the proposed TDBPA based-FMEA method.

the nth failure mode with respect to the ith risk factor
(O, S, D) from the evaluation of the L experts, respec-
tively. After that, process some assessments denoted as
BPA that are precise integers with Eq. 11 and Eq. 12 to
generate respective TDBPAs.

• Step 6. Aggregate different assessments from experts
on S,O,D with Dempster combination rule.

• Step 7. Compute the MVRPN proposed in [20] with
fused results on S,O,D.

• Step 8. Prioritize failure modes by MVRPNs. Actions
on FMEA items with the priorities should be taken for
risk prevention.

B. APPLICATION AND EXPERIMENTAL RESULT
Rotor blades, classified into two categories: compressor rotor
blades and turbo rotor blades, are the major components of
an aircraft turbine. They work for energy conversion. Since
they are thin-form and they rotate in a high speed, rotor
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TABLE 2. Original evaluation information on the three aspects of 17 failure modes.

blades are regarded as one of the components of the highest
failure rates in aircraft turbines. A single failure may be fatal.
Therefore, in order to ensure their operating status is under
control and prevent failures, risk analysis is prerequisite in
their design [20].

To demonstrate the effectiveness of improved FMEA
method, the application analysis for the rotor blades of an
aircraft turbine is adopted. In the case study, there are nine
potential failure modes in the turbo rotor blades and eight
failure modes of the compressor rotor blades [20].

The original evaluated values on the three aspects
of 17 failure modes are given by three experts in Table 2.

Take the first FMEA item (denoted as item1) as example,
of which the calculation process will be displayed in detail.
From the original data shown in Table 2, three experts gave
precise integer values for S,D. In order to solve the combi-
nation problem of conflicting evidence coming from integer
assessment value, we process them with Eq.11 as follows.

Expert 1, Expert 2, Expert3 all evaluate that the risk
level of item1 in aspect of two risk factors, S,D, are 7 and
2 with 100% confirmation subjectively. According to Eq.11,
assume R correspondingly equals to 7 and 2, TDBPAs can be
constructed as:

f (X |5.5, 7, 8.5) =


2(2X − 11)

9
, 5.5 ≤ X ≤ 7,

2(17− 2X )
9

, 7 < X ≤ 8.5.
(16)

f (X |0.5, 2, 3.5) =


2(2X − 1)

9
, 0.5 ≤ X ≤ 2,

2(7− 2X )
9

, 2 < X ≤ 3.5.
(17)

Then, we transform the values of probability density at 7, 8
and 2, 3 directly to TDBPA and attain the belief value at 6 and
1 by Eq.12. Therefore, the TDBPA generated of three experts
for item1 are

m1
S1(6) = 0.11, m1

S1(7) = 0.67, m1
S1(8) = 0.22,

m1
D1(1) = 0.11, m1

D1(2) = 0.67, m1
D1(3) = 0.22.

Similarly, with Eq.11 and Eq.12, the TDBPAs for other
experts and FMEA items can be calculated respetively.
The management of conflict information constructed as
TDBPAs is shown in Table 4. Then, aggregate the TDBPAs
from Expert1,Expert 2,Expert3 on S,O,D with Dempster
combination rule. First, fusion results with Dempster combi-
nation rule for Expert1,Expert2 in item1 according to Eq. 8
are denoted as:

m1
O,12(3)=

0.4×0.9
0.4×0.9+0.6×0.1

=0.8571,

m1
O,12(4)=

0.6×0.1
0.4×0.9+0.6×0.1

=0.1429.

m1
S,12(6)=

0.11×0.11
0.11×0.11+0.67×0.67+0.22×0.22

=0.0237,

m1
S,12(7)=

0.67×0.67
0.11×0.11+0.67×0.67+0.22×0.22

=0.8812,
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TABLE 3. Fused TDBPAs for three risk factors in 17 FMEA items.

m1
S,12(8)=

0.22×0.22
0.11×0.11+0.67×0.67+0.22×0.22

=0.095.

m1
D,12(1)=

0.11×0.11
0.11×0.11+0.67×0.67+0.22×0.22

=0.0237,

m1
D,12(2)=

0.67×0.67
0.11×0.11+0.67×0.67+0.22×0.22

=0.8812,

m1
D,12(3)=

0.22×0.22
0.11×0.11+0.67×0.67+0.22×0.22

=0.095.

Then, fusion results with Dempster combination rule for
Expert1,Expert 2,Expert3 in item1 according to Eq. 8 are
as follows:

m1
O,123(3)=

0.8571×0.8
0.8571×0.8+0.1429×0.2

=0.96,

m1
O,123(4)=

0.1429×0.2
0.8571×0.8+0.1429×0.2

=0.04.

m1
S,123(6)=

0.0237×0.11
0.0237×0.11+0.8812×0.67+0.095×0.22
= 0.0042,

m1
S,123(7)=

0.8812×0.67
0.0237×0.11+0.8812×0.67+0.095×0.22
= 0.9617,

m1
S,123(8)=

0.095×0.22
0.0237×0.11+0.8812×0.67+0.095×0.22
= 0.034.

m1
D,123(1)=

0.0237×0.11
0.0237×0.11+0.8812×0.67+0.095×0.22
= 0.0042,

m1
D,123(2)=

0.8812×0.67
0.0237×0.11+0.8812×0.67+0.095×0.22
= 0.9617,

m1
D,123(3)=

0.095×0.22
0.0237×0.11+0.8812×0.67+0.095×0.22
= 0.034.

And other fused TDBPAs for three risk factors in 17 FMEA
items are list in Table 3.

Next, the rating values of integrated FMEA item assess-
ments for each risk factor, i.e.Si,Oi,Di, can be attained as
follows:

Oi =
maxX∑

R=minX

Rm(Si),

Si =
maxX∑

R=minX

Rm(Oi),

Di =
maxX∑

R=minX

Rm(Di) (18)

where minX and maxX are defined in simplified FOD.
Besides, R is the relative rating value as defined in Eq. 15
i.e.(minX ,R, . . . ,maxX ). Compute the rating values of
S,O,D and utilize Eq. 2 to attain MVRPN for item1:

O1 = 3× 0.96+ 4× 0.04 = 3.04

S1 = 6× 0.0042+ 7× 0.9617+ 8× 0.034

= 7.0291

D1 = 1× 0.0042+ 2× 0.9617+ 3× 0.034

= 2.0296

MVRPN1 = 3.04× 7.0291× 2.0296 = 43.42

Similarly, the MVRPN values of other FMEA items are listed
in Table 5.

In [20], a method, including the modified D-S and a simpli-
fied discernment frame, is used to deal with the risk priority
evaluation of the failure modes of rotor blades of an aircraft
turbine based on multiple sources of evaluation information.
Moreover, Su et al. present an improved method to aggregate
different risk evaluations given by multiple experts as a modi-
fication of Yang et al.’s method [20] in [13]. Note that, three
papers focus on overcoming the shortcomings of traditional
FMEA in piratical engineering and use the same data set to
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TABLE 4. The constructed TDBPA basing on the evaluation information of 17 failure modes in the rotor blades of an aircraft turbine.

verify the efficiency of proposed method. Thus, The RPN
values obtained by TDBPA-based FMEA method as well as
the methods in [13], [20] are presented in Fig.3.

Observing the RPN values of the TDBPA-based FMEA
method in Table 5, failuremode 2 gains the largest mean value
of RPN among the failure modes of compressor rotor blades
and failure mode 5 gains the smallest value. The larger the

RPNmean value is, the higher the corresponding risk priority
should be. So, analyzing the failure modes of compressor,
the priorities of failure modes are sorted from high to low,
shown as follows: failure mode 2 � failure mode 6 � failure
mode 1 � failure mode 3 � failure mode 7 � failure mode 4
� failure mode 8 � failure mode 5, where � means a higher
priority. Similarly, among the failure modes for the engine
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TABLE 5. MVRPN of 17 failure modes.

FIGURE 4. The RPN values of failure modes based on the TDBPA-based RPN and other methods.

rotor blades, the priorities of failure modes are sorted as
follows: failure mode 9 � failure mode 14 � failure mode
10 � failure mode 11 � failure mode 12 � failure mode 13
� failure mode 15 � failure mode 17 � failure mode 16.

From the Fig. 3 basing on Table 5, we can see that
the shortcomings of repetitive RPN values in Yang et al.’s
method and Su et al.’s method have been overcome with
the TDBPA-based FMEA method. The three RPN values
in 13th and 17th items of FMEA, marked with red boxes,
exist an unignorable difference. The RPN vaules attained by
Yang et al.’s method are higher than the other two, which
are incorrect reported according to [13]. While the proposed
method has a similar tendency with Su et al.’s method, which
shows the validity and practicability of the proposed method.
RPN values are used for ranking of failure modes. However6,
the repetitive RPN value is one of the key shortcomings in
classical FMEAmethod because it assigns a repeated priority
to corresponding failure modes rather than a distinguishable
ranking result. In addition, each RPN value calculated by the
proposed method is larger in some degree than that obtained
by Su et al.’s method, which shows that the proposed method
is a pessimistic strategy in comparison with Su et al.’s method
while Su et al.’s method seems to be a neutral strategy.

VI. CONCLUSION
In this paper, in the framework of D-S theory, triangular
distribution is adopted to construct the BPA for conflict

management of risk levels with different precise integer
values. The TDBPA method can smooth the conflict assess-
ment for information fusion by taking into consideration of
the adjacent value of a risk level assessed by an expert.
Therefore, it can model the assessed data in the form of belief
function for further information fusion by using Dempster
rule of combination. The improved FMEA incorporating
TDBPA method is then validated to be efficient in the blades
of an aircraft turbine. Meanwhile, three desirable features
of presented FMEA approach are worth noticing. Firstly,
the overall ranking result of failure modes based on the
proposed method is consistent with other methods. Further-
more, the experiment result shows a higher value of RPN
value in comparison with the literature, which shows that
the proposed method may be a pessimistic strategy for risk
analysis in some cases. More importantly, the TDBPA-based
MVRPN eliminates the repeating values in classical RPN,
which optimizes the ranking results of RPN. Last, the calcu-
lation of TDBPA-based MVRPN is more simple for practical
application in engineering.

For further work, inspired by the studies on synthesizing
clustering and visualization with FMEA, more attention
should be paid on these methods [77], [78]. Since evolving
tree (ET) and fuzzy adaptive resonance theory (ART) are
proved to be effective in addressing uncertainty, more related
visualization and intelligent technologies such as complex
network [79], neural network [80] will be investigated.
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