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ABSTRACT The Internet of Things (IoT) is more and more a reality, and every day the number of connected
objects increases. The growth is practically exponential -there are currently about 8 billion and expected to
reach 21 billion in 2025. The applications of these devices are very diverse and range from home automation,
through traffic monitoring or pollution, to sensors to monitor our health or improve our performance. While
the potential of their applications seems to be unlimited, the cyber-security of these devices and their
communications is critical for a flourishing deployment. Random Number Generators (RNGs) are essential
to many security tasks such as seeds for key-generation or nonces used in authentication protocols. Till now,
True Random Number Generators (TRNGs) are mainly based on physical phenomena, but there is a new
trend that uses signals from our body (e.g., electrocardiograms) as an entropy source. Inspired by the last
wave, we propose a new TRNG based on gait data (six 3-axis gyroscopes and accelerometers sensors over
the subjects).We test both the quality of the entropic source (NIST SP800-90B) and the quality of the random
bits generated (ENT, DIEHARDER and NIST 800-22). From this in-depth analysis, we can conclude that:
1) the gait data is a good source of entropy for random bit generation; 2) our proposed TRNG outputs bits that
behave like a random variable. All this confirms the feasibility and the excellent properties of the proposed
generator.

INDEX TERMS True random number generator, Internet of Things, gait data, entropy, randomness.

I. INTRODUCTION
The ever-growing number of IoT devices paves the way to
become IoT technology an integral part of our lives soon [1],
[2]. Multiple applications are benefiting from this technology
ranging from industrial applications (e.g., Industry 4.0 [3]) to
consumer/commercial applications such as smart homes or
healthcare. Special attention deserves wearable devices that
can be an essential part of which is known as the Internet of
You [4], [5]. The Internet of You (IoY) is a new paradigm
where sensor-based devices allow us to collect environmental
data (e.g. temperature, location, etc.) and also biometric data
such as heart rate or oxygen saturation level. These data can
be combined to create more personal experiences, so the tech-
nology works for us, not the other way around. Nonetheless,
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the concerns about cybersecurity are a significant barrier and
are hindering the adoption of IoT technology in the domains
where sensitive data is at stake [6].

Securing this sensitive information in the IoT context is
facing today, several challenges stemming from the wireless
nature of the communication (insecure radio channel) and
the scarcity of resources (e.g., memory and computation) in
IoT devices. Hence, these constraints severely limit solutions
offered by conventional cryptographic primitives, which turn
too expensive to achieve in these resource-limited devices.
Because of this, a new generation of cyphers, hash func-
tions or true random number generators (TRNGs) devoted to
the IoT environment is flourishing [7], [8] . In this article,
we focus on the design of a TRNG that is a critical cryp-
tographic primitive typically used to generate session keys,
nonces or padding plain-texts. A TRNG usually is composed
of (i) an entropy source from which we extract randomness,
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(ii) a digitizer that transforms the entropy derived into a
digital value and (iii) a post-processing module that usually
unbiased the data [9]. The entropy source is the cornerstone
of a TRNG because it limits the amount of randomness of
the system and also affects the selection of the other TRNG’s
parts. Among themost used entropy sources for TRNGs stand
out the solutions that include different kinds of electrical
noise [10], [11], clock jitter and coherent sampling [12],
metastability [13], [14] and chaos [15], [16]. A new trend,
which exploits biosignals (vital information) as a source of
entropy, is emerging in the IoT context [17], [18].

Using wearable body sensors approaches for key gen-
eration helps to overcome the stringent power and area
constraints of the IoT environment. Deriving cryptographic
keys from Electrocardiogram signals (ECG) is the greatest
exponent of this trend [17], [19], [20]. Other alternatives
exploit different sensor information such as the Galvanic
Skin Response (GSR) [21], [22], the electroencephalogram
(EEG) signal [23], the blood volume pulse or respiration [24].
Nevertheless, some sensor sources of information remain
unexplored for key generation such as human gait data.
Human gait data has some interesting features to become
the noise source of a biometric random number generator.
According to [22], it offers the following features: (i) fast
sampling rate, (ii) simple data acquisition, (iii) high accuracy
of measurement and (iv) variability of biological data.

In this work, we propose a novel TRNG based on human
gait data that can be used for generating cryptographic keys
for an Internet of You application. To that end, we will
make use of a public dataset containing human gait infor-
mation [25]. The contributions of this paper are innova-
tive in several ways. For the first time in the literature
(as far as we know), we propose the use of human gait
data to generate random numbers. Secondly, we work in a
transform domain via the Walsh-Hadamard for the random-
ness extraction and also offer lightweight post-processing.
Thirdly, we have experimentally analyzed the quality of
the generated random numbers by using the most exi-
gent randomness test batteries, and even we have exe-
cuted some other additional tests (e.g., NPCR and UACI
coefficients).

We organize the rest of this paper as follows. In Section II,
we introduce the dataset used in our experiments and
describe the algorithm used to generate the random numbers.
Section III presents the experimental results, including the
results related to the quality of the entropy source and the
quality of the random numbers generated. In Section IV
some interesting implementation features of our proposal are
described. Finally, some conclusions and recommendations
are drawn in Section V.

II. METHODS AND MATERIALS
In this section we describe the Gait database used to conduct
the experiments and the algorithm elaborated to extract the
randomness from the gait information.

FIGURE 1. Loaction of sensors. Boxes represent inertial sensors while
circles correspond to EMG sensors [25].

A. HUMAN GAIT DATABASE
Many gait databases are publicly accessible. These range
from databases collected from healthy people [25], [26] to
databases that contain gait data of patients affected with
Parkinsons’s disease [27], [28] or gait data collected after
surgeries [29]. For this work, we have selected the HuGaDB
because it provides human gait data in great detail compared
to other published datasets [25].

More specifically, this database was initially intended
for analysis and activity recognition. The information on
18 healthy participants (aged 23.67 ± 3.69) was recorded
while performing a combination of activities. The dataset
includes continuous recordings (around 10 hours in total) of
different activities such as sitting, walking, bicycling, etc. The
data provided has been obtained from six MPU9250 inertial
sensors and two electromyography (EMG) sensors whose
location is shown in Fig.1. Each inertial sensor provides
the information of three-axis accelerometers and three-axis
gyroscopes. In total, 38 signals per subject are accessible.

All the information provided by the sensors mentioned
above is necessary for the activity recognition pursued in
the original work. Note that the dependency between some
sensors can be high because of the kinematics of the human
motion itself. A high reliance can be a useful feature in some
security applications like the identification of sensors belong-
ing to the same host. On the contrary, entropy extraction can
be negatively affected by this dependency since it reduces the
freshness and non-predictability of the data.

About the quality of data input, on the one hand, gyroscope
sensors are precise, but often a drift appears in the measure-
ments. We can rid of this drift using a high-pass filter. On the
other hand, accelerometers do not present drift but are a bit
unstable. We need to pass these signals through a low-pass
filter to smooth the signal. We urge the reader to consult [25]
for details about pre-processing and characteristics of the
signals recorded. In our experiments, we do not deem neces-
sary do any extra pre-processing on the signals from HuDB
dataset since our proposal aims to extract randomness from
the captured data. Note that we could tolerate even small
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levels of noise, which would not be the case if the purpose
of our application was to determine the absolute orientation
(a complementary filter might be useful in this case).

Finally and concerning the type of subjects, the patients
do not have any pathology. Patients with pathologies such as
Parkinson’s (or any other movement disorder diseases) could
be engaging because the uncontrolled movements caused
by the disease can be useful (e.g., highly entropic) for ran-
domness extraction. However, in our study, we prefer to use
healthy patients since we can assume a similar behaviour (no-
bias) among all subjects.

B. METHODS
The purpose of the proposed method is to extract randomness
of the inertial sensors. In Algorithm 1, we summarise our
proposed procedure. The algorithm is split into two main
procedures 1)GetEntropy(·) and 2)GetRandomness(·), which
are explain below.1

Algorithm 1 GAIT-TRNG

1: procedure GETENTROPY(Gaitcleaned )
2: Delete bad channels of Gaitcleaned

3: for each Gait-observation do
4: Error magnification between consecutive

channels:
5: Gaitmagchanneli = |chaneli − chanel i+1|
6: Concatenation : Gaitmag

=

[
Gaitmagchannel1

, · · · ,GaitchannelK
]

7: Split Gaitmag into windows consisting on N
samples

8: for each Gyro-window
(
x(j)(t)

)
do

9: Hadamard Transform:
10: γ

(j)
W (n) = abs

(
FWHT

(
x(j)(t)

)
(n = 1, · · ·N )

11: Quantization algorithm:
12: G(j)

(0,...,7)(n) = uint8

×

((
uint32

(
abs

(
Y (j)(n)
W ∗

105
π

)))
>> 24

)
13: Output the random bit stream G
14: procedure GETRANDOMNESS(Grand )
15: Segment the long Grand input into vectors:W (j)

16: for each W (j) data chunk: do
17: Split W (j) into two matrices:W1 and W2
18: Extract Entropy:
19: R(i, j) = (W1(i, j)⊕ ((W1(i, j) < (j mod 8))

⊕W2(i, j)
20: Split R into two matrices: R1 and R2
21: Final output:
22: O(i, j) = (R1(i, j)⊕ ((R1(i, j) < (j mod 8))

⊕R2(i, j)
23: Convert the matrix (O) into a vector and

output
24: the values

1The source code is available at: https://
lightweightcryptography.com/?p=712

In our proposal, we focus on the 3-axis accelerometer and
3-axis gyroscope sensors; each pair constitutes an inertial
sensor. We have six pairs of those sensors, that is, a total
of 36 data channels. Note that in our experiments (TRNG
analysis), we employ all the available channels since we need
to generate moderately large files for the analysis. Neverthe-
less, the proposal is also feasible with a reduced set of sensors.
In the GenEntropy procedure, the first step is the elimination
of the bad channels that are those who present a high cor-
relation between them. We have performed an intercorrela-
tion analysis and eliminated those channels whose average
correlation between channels is less than a threshold γ (i.e.,
γ = 10−1 in our experiments). From this, we have eliminated
the following list of channels: {5, 6, 11, 12, 17, 18, 29, 30}.
After this, we have magnified the non-deterministic noise
by computing differences (absolute value) between channels.
At this point, we have concatenated all the good channels,
and split the resulting data stream into windows (x(j)(t)) of
N -samples (N = 100 in our proposal). For the entropy
extraction, we work in the Hadamard domain due to its com-
pression capabilities and its low computational requirements.
Using the fast Walsh-Hadamard transform, we only need to
compute additions and subtractions, and its complexity is
O(n log n), being n the length of the data input [30]. Besides,
it is a well-known approach for dealing with physiological
signals [31], [32]. In our case, we truncate the output of
the Hadamard transform to the first hundred coefficients.
Then, for pulling out highly entropic bytes, we have used a
quantifier. In particular, we use the eight Least Significant
Bits (LBSs) of each Hadamard coefficient. Previous works,
with other physiological signals [33], have inspired us for
the usage of the LSBs, and we have confirmed their viability
by experimentation. Mathematically, the procedure followed
with each data window is described as below:

Y (j)
W (n)= abs(FWHT (x(j)(t)) (n = {1, · · ·N }) (1)

G(j)
(0,...,7)(n)= uint8((uint32(abs(Y

(j)(n)
W ∗

105

π
)))� 24) (2)

Besides, it is frequent to use a post-processing algorithm
to eliminate or reduce the statistical deficiencies of random
bitstreams. In the case of stationary TRNGs that produce
statistically independent bits with a constant bias, one of the
most extended post-processing mechanisms consists of using
an XOR compressor [34]. However, in [34] Ditch presented
the H function, which is also a lightweight post-processing
algorithm (16 XOR gates with two inputs) than in compari-
son to the XOR offers better performance (extracting higher
entropy) for cases with high bias (see Fig.2). The H function
uses XOR operations and circular left rotations, as shown
below:

H (x1, x2) = (x1 ⊕ (x1 < 1)⊕ x2 (3)

where ‘‘⊕’’ symbolizes the bitwise XOR operation and ‘‘<’’
represents left circular shift rotation.

The GetRandomness procedure represents our proposed
post-processing algorithm, and the output (G) of the
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FIGURE 2. The entropy of post-processing functions.

GetEntropy procedure is its random input. For speeding the
calculations, we split this long bit stream input into vectors
(1×105), which are then reshaped into matricesW (j) of P×Q
(103 × 102 in our experiments) bytes. We divide each matrix
into two halves (W1 and W2 with P/2 rows and Q columns
respectively), and thereupon compute the H function over
the elements of both matrices in the same position (row-i
and column-j). The particularity in our proposal is that the
positions rotate in the circular shift are set by the column j at
play (i.e., j mod 8). Mathematically,

R(i, j) = (W1(i, j)⊕ ((W1(i, j) < (j mod 8))⊕W2(i, j)

(4)

Then, and being somewhat conservative, and to guarantee
an utterly random output without bias, we have repeated the
previous process with the R matrix. Finally, this matrix is
converted into a vector that represents the random bytes gen-
erated by our proposed TRNG. For testing the quality of our
proposal, we have produced a file of 3.75 MB and analyzed
the occurrence of each value. In detail, the probability of
ones and zeros is 0.499924 and 0.500076, and the entropy
is 1,0 (per bit )and 7.9999985 (per byte). Therefore, post-
processing works appropriately. That is, the bits generated by
our proposal are indistinguishable from those that would pro-
duce a perfect RNG. For completeness in Figure 2, we show
the entropy of a file (16 MB in our experiments) for a set
of probabilities of ones (and zeros) and under different post-
processing algorithms (XOR, H function, our proposal). It is
clear how our approach slightly outperforms the H function,
which in turn surpasses the XOR.

III. RESULTS
We have subjected the True Random Number Generator to
a thorough analysis. On the one hand, we assess the quality
of the Gait data as a good source of entropy using the NIST
SP 800-90B recommendation [35], [36]. On the other hand,
and after post-processing, we analyze the randomness quality

FIGURE 3. Entropy source and randomness output analysis.

of the proposed TRNG using well-established randomness
battery of tests like DIEHARDER [37] or NIST 800-22 [38],
[39]. Figure 3 sum ups the process and outlines the test
suites used and each step. The tests mentioned above are
very data demanding, so for testing purposes and verifying
the feasibility of our design, we have created several large
files from the HugaDB to perform an in-depth analysis of the
proposed TRNG.

A. NIST SP 800-90B RECOMMENDATION: SOURCE
ENTROPY ANALYSIS
Traditionally, the entropy source consisted of an analogue
source of noise, for instance, the thermal noise of a diode
Zenner. In our case, our analogue signal comes from six gyro-
scopes and six accelerometers (raw data ‘‘R’’ in Figure 3),
and the ‘‘non-deterministic noise’’ has been magnified via
computing differences between channels. Then, we compress
the signal via Hadamard Transform. Finally, we extract bits
using a quantization algorithm. The three above mentioned
steps are part of the GetEntropy procedure, and we analysis
its output ‘‘G’’ using the NIST SP 800-90B recommendation.

The probability that an adversary disclose a secret value at
the first trial is linked with the min-entropy. Mathematically,
assume X a discrete random variable that takes values defined
in the set {x1, x2, . . . , xk} with probability P(X = xi) = pi
(i = 1, 2, . . . , k), the min-entropy is defined as:

H = min1≤i≤k (−log2(pi)) (5)

The NIST SP 800-90B recommendation computes ten
entropy estimators:1) The Most Common Value Estimate;
2) The Collision Estimate; 3) The Markov Estimate; 4) The
Compression Estimate; 5) The t-Tuple Estimate; 6) The
Longest Repeated Substring (LRS) Estimate; 7) The Multi
Most Common in Window Prediction Estimate; 8) The Lag
Prediction Estimate; 9) The MultiMMC Prediction Estimate;
and 10) The LZ78Y Prediction Estimate. Finally, the min-
entropy represents the minimum value of these ten values.

In our experiments, we have generated a file of around
30 Mbit to conduct the analysis. In the Table 1 we summarize
the obtained results. We can observe how the entropy for the
majority of the tests is over 0.95 and in the worst case (LZ78Y
prediction in which a dictionary with a maximum capacity
of 65,536 words is built) is still a high entropy value (0.913).
Therefore, the bits generated using the proposed GetEntropy
procedure are suitable for cryptography.
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TABLE 1. Min-entropy results (NIST SP 800-90B suite).

The entropy (HI ) calculated over a single and long
sequence of 1s and 0s can produce an overestimated value.
If the adversary has the chance to observe data sequences
after restarts conditions, it could be beneficial to predict
sequences after a new restart condition. The NITS recom-
mendation defines a restart test to assess this issue. It requires
1000 restart conditions and 1000 values are stored each time.
Then, all these values are concatenated, and the test checks
if the estimated entropy is less than half of the min-entropy
HI obtained previously with a long sequence (0.9127 in our
case). If so, the test is successful. If not, the validation fails.
In our experiments, we simulate each reset condition by
exposing the subject to an activity condition different from
that of the current moment (e.g., sitting → walking). As
shown, in Table 2, to have more certainty about the restart
analysis, we have repeated the experiment five times. The
results indicate that an adversary has no advantage by forcing
a restart condition in the system.

TABLE 2. Restart tests (NIST SP 800-90B suite).

B. RANDOMNESS BATTERY OF TESTS: OUTPUT
RANDOM ANALYSIS
Once we have verified that the proposed GetEntropy proce-
dure produces a highly entropic output, we need to evaluate
the randomness quality of the bits (‘‘O’’ output in Figure 3)
generated by the GetRandomness procedure. In a nutshell,
this procedure is based on 1) bitwise XOR operations
between matrices; and 2) bitwise circular shift operations
over each element (byte) of a matrix (as described in Equa-
tion 4). As explained in Section II-B, the design of the post-
processing procedure is inspired by the use of the H function
due to its excellent properties to correct biased outputs.

As a very preliminary analysis, as display in Figure 4,
we generate some bytes using our proposed TRNG

FIGURE 4. Random numbers generated by the proposed Gait-TRNG.

TABLE 3. ENT results.

and display these bytes using a scatter plot image
(128 × 128 bytes). From visual inspection, we do not detect
any anomaly and the picture looks like the one from a random
variable.

Then, we have scrutinized the proposed TRNG using
well-known batteries of tests to assess randomness. For
this, we have generated a large file of around 15 MBytes.
We started using the ENT suite [40] since although it is
not very exacting, it allows to discard bad/weak designs that
commonly fails the Chi-square test. We summarise the results
in Table 3 and all of them are almost perfect. For instance,
the entropy is optimal, the correlation between values is
minimal, there is no bias, and the chi-square test is successful
(there is no suspicion of not being random).

As far as bias is concerned, we have performed an
additional verification. In this test, we have evaluated the
behaviour of the random numbers generated individually by
each subject in the dataset. For this purpose, for each indi-
vidual and each of her session recordings, we have generated
a binary file. We have tested each file with the ENT suite.
In Figure 5, we display the values obtained for the Chi-square
test. Fortunately, there are no rare conditions, and the vast
majority of the tests are between themean value (255) and one
(65% of the values) or two (resting 45%) standard deviations.
It means that the quality of the random numbers generated is
independent of the subject(s) used for the generation. That is,
the subjects, and more particularly, the signals acquired from
each subject behave similarly –in the sense that all of them
looks like a random variable.
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FIGURE 5. Bias analysis.

In 1995, Marsaglia proposed a battery of statistical test
called DIEHARD to assess the quality of a random num-
ber generator. Later, Brown revised and extended the suite
(named DIEHARDER [37]). The battery is composed of sev-
enteen tests, and a p-value summarises each one of the tests.
In detail, the software uses aKolmogorov-Smirnov test to ver-
ify the uniformity in the interval [0,1] when several p-values
are obtained in one of the tests. Assuming an extremely
conservative criterion and in linewith [37], a test ismarked as
‘‘pass’’ if the p-value is within the interval [0.0050 - 0.9950],
being 1% the significance level. Since many p-values are
computed is not uncommon for some p-values to be out
of this range: in our case, only two tests are marked as
‘‘weak’’ and the others are within the confidence interval
(see Table 4a).

Finally, and to clear up any doubt about the random-
ness of the values generated, we have tested the binary file
with the NIST 800-22 suite. Note that the NIST tests are
very demanding and we can check the randomness quality
of cryptography RNGs. The suite consists of fifteen tests,
and several sequences are tested for each one. As shown
in Table 4b, an overall p-value summarises each test. It also
includes the number of sequences that successfully pass the
test. In Figure 6, we display the minimum proportion of
tests that should be got for various significance levels. For
instance, 96 is the threshold for 100 sequences assuming a
1% of the significance level. We can verify that all the tests
are over the required limit, and p-values are between 0.0050
and 0.9950 (α = 0.01).
As a final check of all the tests, we have verified using

a Kolmogorov-Smirnov test that all p-values (DIEHARDER
and NIST results) are uniformly distributed (the overall p-
value is 0.10446). From all this, we can conclude that the
analyzed file looks like binary data generated by a random
variable.

TABLE 4. DIEHARD and NIST tests. (a) Diehard results. (b) NIST results.

C. ADDITIONAL TESTS
Although there is no uncertainty about the excellent
behaviour of our proposed RNG, we have conducted two
extra tests inspired by previous works [20], [41]. Firstly,
we have studiedwhether there exits some correlation between
the random numbers generated by each subject. Note that
the goal is that the inter-correlation between individuals is
zero (or close to zero). If not, the attacker could exploit
the knowledge of a user-X to predict the random numbers
produced by another user-Y . We have grouped the binary
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FIGURE 6. Proportion of sequences passing a test: NIST 800-22.

FIGURE 7. Hamming distance distribution.

data of each file (subject) into words, and then we compare
the words between files via the hamming distance. Ideally,
if the adversary has a zero advantage the hamming-distance
between users has to follow a binomial distribution (B(n, p)),
withmean n×p and variance n×p×(1−p), where n represents
the size word and p = 1/2 assuming the same probability for
1s and 0s. In Figure 7, we display the histogram for 8, 16,
32 and 64 bits word lengths. We can conclude that the advan-
tage for an adversary is zero since the probability distributions
are almost perfect with mean values of 3.99, 7.99, 15.99 and
31.99 respectively.

Finally, we have checked of the generated random bits
as a keystream (K ). Image a one-time pad cypher in which
the cypher text C is computed by XORing the message M
and the key K . Empirically, we display this procedure in

FIGURE 8. Original and encrypted statistical histograms.

Figure 8 in which the message M represents an image
(256 x 256 greyscale image) randomly picked from the Inter-
net. Particular, we display the histograms of the original
image and the ciphered image (i.e., M ⊕ K ). As expected,
the encryption makes the histogram uniform since K follows
a uniform distribution (independent and random variable) and
C is computed by XORing M and K . That is, an adversary
does not stand a chance to extract information from the
encrypted image. Formally, we regularly use NPCR (number
of pixels change rate), and UACI (uniform average change
intensity) tests to evaluate the proper behaviour of image
encryption cyphers regarding differential attacks [42]. For
computing these two tests, we encrypt two images that in
plain-text only differs by one-pixel. The resulting encrypted
images, C1 and C2 are used to computed both coefficients.
Shortly, NPCR represents an average value of the pixels that
change, and UACI is an average value of intensity changes
(in both cases between C1 and C2). We have randomly taken
five images from the Internet and calculated NPCR andUACI
coefficients for each one as displayed in Table 5. We can
conclude that in all the cases, the two tests pass successfully
at the 0.01 significance level (taking into consideration the
thresholds suggested in [43]).

IV. OUR PROPOSAL IN THE IoY CONTEXT
In the previous sections, we study the suitability of human
gait data and that of the proposed algorithm for generating
random numbers. In this section, we describe the features of
our proposal that make it suitable for the IoY environment.

First of all, the scarcity of resources in the IoY context is
one of the critical aspects of the technology. In that sense,
our proposal offers a lightweight solution in terms of compu-
tational resources. As we stated before, we intend to use the
sensors integrated on wearable devices so that these sensors
are already present in the system, and no extra-hardware
is necessary for them. Likewise, the GetEntropy procedure
involving the use of the Hadamard transformation is also a
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TABLE 5. NPCR and UACI randomness tests. (a) NPCR tests. (b) UACI
randomness tests.

lightweight solution that consumes very few resources. Note
that this transformation has been used widely as an efficient
alternative to the Fast-Fourier-Transform in several fields
such as communications or spectral analysis [44]. Notably,
in the context of IoT, we can find implementations opti-
mised explicitly for these environments. [45]. Concerning
the GetRandomness procedure, we use a modification of the
H -function. As stated in section II.B, bitwise XOR operations
between matrices and bitwise circular shift operations over
each element of a matrix are the operations computed for
its calculation. These two operations are among the most
lightweight computations commonly used in lightweight
cryptography [13], [46].

Power consumption is also one of the critical features of
IoY solutions. To obtain an accurate estimation of the power
consumption used by our proposal, we have implemented
it in an Artix-7 C7A35T FPGA. This board is a low-cost
low-power FPGA. We can program it using the Vivado Tool
that integrates a very accurate power consumption estimator.
At a nominal temperature of 25oC and a clock frequency
of 100 MHz, the algorithm consumes 2,3 µJ.
Finally, another critical aspect of any TRNG is its through-

put. The application in which we utilise the TRNG deter-
mines how demanding is the bit rate required. Note that our
proposal is very efficient since we generate 1 byte (without
post-processing) and 2 bits (final output of GetRandomness
procedure) per each captured sample. Under the settings of
HuGaDB in which the same sampling frequency is 60 Hz,
it implies that we can generate 120 bits/sec. In Table 6,
we provide a throughput comparison between some existing
TRNGs based on biometric data and our proposal. Our pro-
posal offers a slightly moderate-high rate. It is two orders
of magnitude higher than the bitrate offered by ECG based

TABLE 6. Throughput comparison of RNG based on biometric data.

TRNGs [19], [20]. Even it is more than six times the through-
put provided by the novel TRNG proposed by Tuncer and
Kaya, and that applies to a wide variety of biological signals
including EEG, blood pressure or GSR [24].

V. CONCLUSION
There is a vast amalgam of applications in which IoT devices
are useful or will use shortly. The incorporation (preferably
by-design) of security services is mandatory to prune security
incidents and to avoid continuous and frequent use of security
patches. The random numbers used in security applications
must comply with exigent batteries of tests. In the past, even
well-know cryptographic protocols like OpenSSL or success-
ful commercial products like the PlayStation 3 put at risk their
security due to the usage of weak random-numbers. Moti-
vated by this, we propose a new and robust TRNG based on
Gait data. In the past, TRNGs were mainly built on a physical
phenomenon (e.g. thermal noise or decay of a nuclear source).
Still, recently solutions based on data acquired by sensors
(especially when those are in or over our body) have gained
fervour. In our case, we use gait data, andmore particular data
captured from six accelerometers and six gyroscopes (both
capturing data in the standard three axes: x, y and z).
Finally, it is worth mentioning the novelty of our proposal.

Instead of using a classical approach based on a physical
phenomenon of nature, we build our TRNG on sensors that
are over our body. It means that we are a fruitful source of
entropy while going through our daily activities. For this,
we use gyroscope and accelerometer data which are included
in a wide variety of IoT devices such as smartwatches or even
smart socks for runners.We have tested the generated random
number with several batteries of tests. For this extensive anal-
ysis, we can conclude that the output bits look like the ones
produced by a random variable. We hope this contribution
helps tomakemore secure IoT devices since random numbers
are critical in security services and mechanisms.
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