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ABSTRACT Recently, CNN-based image denoising has been investigated and shows better performance
than conventional vision based techniques. However, there are still a couple of limits that are weak partly
in restoring image details like textured regions or produce other artifacts. In this paper, we introduce
noise-separable orthogonal transform features into a neural denoising framework. We specifically choose
wavelet and PCA as an orthogonal transform, which achieved a good denoising performance conventionally.
In addition to spatial image signals, the orthogonal transform features (OTFs) are fed into a denoising
network. For the guide of the denoising process, we also concatenate OTFs from the image denoised by
the existing method. This can play a role of prior for learning a denoising process. It has been confirmed
that our proposed multi-input network can achieve better denoising performance than other single-input
networks.

INDEX TERMS Image denoising, deep learning for image denoising, orthogonal transform, multi-input
network, PCA, wavelet transform.

I. INTRODUCTION
Image denoising is a classical method required for vari-
ous vision fields, which restores a noisy image to its orig-
inal version with the least loss. For this goal, there have
been proposed many methods of image denoising [19], [20].
Recently, CNN-basedmethods have been widely investigated
and shows better performance than conventional vision based
techniques. However, there are still a couple of limits in that
they are weak partly in restoring image details like textured
regions or produce other artifacts through the noise reduction
process.

Most of those previous image restoration methods based
on deep learning primarily work on spatial domain. Some
research works [1], [2], [21] proposed denoising algo-
rithms running on various domains such as Fourier [22],
wavelet [23], edge, and etc. Those domains have been already
used popularly as a tool of solving the problem of image
restoration [13]–[17]. And there has been also proposed a
method that decomposes image signals into cartoon and
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texture components and they are fused after independent
processing for multi-modality image restoration [42].

In particular, orthogonal transform such as wavelet,
DCT [25] and PCA [24] is beneficial in that it can divide an
input noisy image into its original and additive noise roughly.
Its separable ability enables noise to be removed easily. For
example, if a noisy image is transformed into PCA domain,
noise can be separated from the original information to some
extent, and it can be reduced by simply thresholding PCA
coefficients.

Motivated by this observation, we introduce orthogonal
transforms into a neural denoising framework. Noise removal
behaviors are learned on noise-separable transform domain
as well as spatial one. Unlike the existing methods on either
spatial or transform domain, both domains are simultane-
ously used. We specifically choose wavelet and PCA as
an orthogonal transform, which achieved a good denoising
performance conventionally. In addition to spatial image sig-
nals, the orthogonal transform features (OTFs) are fed into
a denoising network for learning noise characteristics more
accurately. There are two sorts of OTFs to be put into the net-
work. One is the feature extracted from a noisy input image
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FIGURE 1. The proposed multiple inputs to deep network for image
denoising. (Deep OTF means our proposed two networks, OTF-WT and
OTF-PCA.)

itself, and it still includes some important information like
image details as well as separated noises. For the guide of the
denoising process, we also concatenate OTFs from the image
denoised by the existing method. Using the smoothed fea-
tures, the previous knowledge of image denoising is reflected
to the neural network as prior information [10]. As illustrated
in Fig. 1, the existing denoising network is extended from a
single spatial input to include two additional OTFs. In other
words, the proposed denoising network includes multiple
inputs, and it is designed to efficiently learn to remove noise
on the noise-separable orthogonal transform domain. It has
been confirmed that our proposed multi-input network can
achieve better denoising performance than other single-input
networks throughout numerous experiments.

Multiple inputs to the deep network have been recently
studied in literature for further performance improve-
ment [6], [18]. However, the problem is which direction a
single input is extended to. Namely, what information should
be put into the input of the network additionally? In this paper,
the extension is made in two ways as shown in Fig. 1. One
is transform domain and the other is the existing denoising
method to provide an example of denoising. In summary,
the main contributions of the paper are summarized as
• The existing denoising network is extended from a
single spatial input to multiple inputs. We propose a

new multi-input denoising network which includes the
orthogonal transform features of both an input noisy
image and its denoised version.

• The proposed architecture paired with OTF adopts
depth-wise convolutional layers [9] before feature fusion
for independent learning among multiple inputs. This is
because two OTF inputs are orthogonal to each other.

• Any existing denoising method can be flexibly used to
obtain the smoothed OTF, and its denoising behaviors
can be easily reflected to the learning process for supe-
rior denoising performance. This can play a role of prior
for learning denoising.

• The proposed network architecture can be easily
extended to other image restoration tasks such as image
super-resolution [27], [31] and deblurring [26]. It is a
general framework for neural image restoration.

The rest of the paper is organized as follows. We proceed by
explaining related works, followed by describing how OTFs
are generated using principal component analysis (PCA) and
wavelet transform. Then, we describe a new network architec-
ture including depth-wise convolutional blocks. We highlight
better performance for both PCA and wavelet features as
OTFs. Finally, the paper is concluded.

II. RELATED WORK
Image denoising has been popularly studied on orthogonal
domain [2], [38], [39]. Because orthogonal transform can
separate noises from a noisy image to some extent. Noises
commonly tend to be distributed in high frequency regions
on orthogonal domain, and they can be removed by carefully
thresholding high frequency components (e.g., HH band in
wavelet transform and low-priority coefficients in PCA). Pre-
vious works have concentrated on how to threshold transform
coefficients on orthogonal domain in the fields of image
processing and computer vision. In this paper, the denoising
principle to exploit orthogonal transform has been reflected
to the deep learning approach.

A. DENOISING ON ORTHOGONAL DOMAIN
Wavelet transform is an orthogonal transformation which
integrates frequency and spatial information. It decomposes
input data into four frequency bands (i.e., LL, LH, HL, and
HH). It has been popularly used for image denosing due
to its separable capability of noises. By soft-thresholding
wavelet coefficients of high frequency bands, image noises
can be removed [2]. In [6], it was demonstrated that Haar
wavelet [28] is excellent in image denoising and a single
image super-resolution, in particular in preserving image
details such as texture and edge. Motivated by the superiority
of wavelet transform in previous works, the proposed method
chooses wavelet domain features for deep denoising network.

PCA (Principal Components Analysis) is also an orthog-
onal transformation which uses correlation matrix of input
data, and it divides input data into a couple of orthogo-
nal principal axes. Similar to wavelet transform, it is also
good at separating image noises from original information on
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transform domain. It has been popularly exploited for image
denosing by thresholding PCA coefficients with less priority,
which are probably expected to contain noises.

One of the representative PCA denoising methods is
LPGPCA [1], which applies PCA to a local patch group
and denoising is done by updating the noise level iteratively.
It accomplished decent denoising performance by spatially
adaptive denoising. But it has limitation in the points that the
noise level must be known in advance and that overfitting can
occur due to the limited number of samples resulting from the
selection of similar patches in a local region [40]. Another
representative PCA denoising method is PGPCA, which
thresholds the PCA coefficients in a global manner [40]. But
it has limitation on the performance because less similarity
among patches. With the growth of deep learning, features
through PCA filters were used to help neural networks to
learn classification works in PCANet [11]. So, the features
of PCA filters were proved to be effective for deep neural
networks.

In this paper, we design a method using CNN that does not
require the manual thresholding of PCA coefficients and does
not have a potential risk of overfitting due to the selection of
similar patches in a local region because the importance of
each PCA coefficient is determined using the multiple OTFs
(Noisy and smoothed OTFs).

B. DEEP LEARNING BASED DENOISING
Recently, there have been so many methods to handle a noise
reduction problem, based on deep neural networks. Deep
learning based denoising methods have been popularly pro-
posed in literature, and they have some advantages, compared
to the traditional vision based approach as follows. (1) They
do not need optimization methods for the test phase, (2) Less
need for configuring parameters manually, (3) Flexibility for
architectures [36]. However, most of the state-of-the-art deep
learning based methods only take a single spatial image as an
input, and thus, there exists limitation in the feature extrac-
tion on high frequency domain. As a result, high frequency
components like textures and edges in the output image can
be damaged.

The work in [4] tried to solve a denoising problem by
exploiting anMLP (multi-layer perceptron) [29] architecture.
It was the first work to use an artificial neural network for
image denoising. After that, with the growth of CNN, [5]
proposed a CNN based residual learning architecture (so
called DnCNN). Instead of generating a denoised image at
the output, it tries to estimate noise signals. Motivated by
DnCNN, [6] also proposed residual CNN based denoising on
wavelet domain instead of spatial. It showed that topologi-
cally simple manifold of data improves the learning process
of deep neural network. The work in [7] added a generative
model [30] to blind denoising problems. Using the generative
adversarial network, it attempts to estimate noise levels from
observed noisy images. It accomplished high PSNR [33]
results comparable to DnCNN [5].

Unlike the previous works mentioned above, we feed a
pair of the OTFs to the denoising network. This is meaning-
ful from the following perspectives. The smoothed OTF is
roughly noise-separable, and is compared to the noisy one by
concatenating them. From their comparison, we can learn the
transition process from the noisy OTF to the clean.

III. ORTHOGONAL TRANSFORM FEATURE
Orthogonal transform has been popularly studied for image
denoising due to its separable capability between the orig-
inal information and noise. The conventional approach in
image processing and computer vision typically thresholds
high-frequency components on orthogonal domain. In this
paper, we propose a deep learning method which works on
orthogonal transform domain unlike the conventional spatial
one. The proposed network can learn the complex denois-
ing process easily by comparing noisy signals with their
smoothed version on frequency domain.

FIGURE 2. Orthogonal features of Haar wavelet transform and PCA
(Multiplied by 5 for visibility except for the LL band of Wavelet domain
and 1st component of PCA).

A. WAVELET TRANSFORM FEATURE
Wavelet transform (WT) has shown that it is an effective
tool to reduce Gaussian noise from an image. It decomposes
spatial signals into multi-levels of different time-frequency
components. Especially, Haar filters are used to decompose
a noisy image on discrete wavelet transform domain, and
as a consequence, we can obtain four wavelet transform
features (WTFs) such as LL, LH, HL, HH (L and H indicate
low and high frequency components, respectively and the
first letter represents horizontal component while the second
does vertical) as illustrated in Fig. 2. The smoothed image
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FIGURE 3. The architecture of OTF-WT for image denoising. From a noisy image y, the noisy OTFs and smoothed OTFs are extracted
and trained independently. After the channel-wise learning, the trained features are fused and restored with the aim of estimating
the original OTFs. Finally, the estimated features are inverse-transformed into the estimated image on spatial domain.

which is noise-reduced by the existing denoising method
is also partitioned into four wavelet bands in an identical
way.

If a noisy image is compared with its smoothed version on
wavelet domain, it can be observed that the LL band includes
less noise surely, and relatively preserves most of important
structure information. On the other hand, we can see the
outstanding difference between the noisy and smoothed HH
bands, which contain high frequency components on both
horizontal and vertical directions. The strong noise in HH
can prevent the neural network learning the denoising process
correctly. This is the reason that the smoothed WTFs are put
into the network additionally. The smoothed features provide
the network with the overall important information about the
original image. Also, they are meaningful in introducing a
good example of denoising, inducing the network to learn
correct denoising behaviors.

B. PCA FEATURE
PCA has been an effective technique to decompose input
signals into orthogonal components, and it is typically used
in pattern recognition and dimensionality reduction. By trans-
forming a noisy image into PCA domain and preserving only
the most significant principal components, the noise can be
removed easily from a noisy image. Similar to wavelet trans-
form feature in previous subsection, the multiple PCA coeffi-
cients can be alternatively used as an OTF as shown in Fig. 2.
By applying PCA to a noisy image, we obtain 25 PCA coeffi-
cients and eigenvectors every a 5× 5 target image patch. The
coefficients form the orthogonal PCA feature. The size of
the patch is appropriately decided through experiments. Also,
the smoothed PCA coefficients are calculated, and they are
concatenated with the noisy PCA features, identical to WTF.
This can help the network to converge more optimally.

C. COMPARISON BETWEEN BOTH FEATURES
When the WTF is compared with the PCA feature, both
OTFs are common in that noise is partitioned to some
extent from the original image information. However, there
is quite distinction between two orthogonal transforms. For
decomposition, wavelet transform uses pre-defined filters,
which are uniformly applied to both a noisy image and its
smoothed version. For PCA, basis vectors (or PCA eigen-
vectors) for decomposition are derived adaptively to a target
image patch. Because the original image is not available at the
task of denoising, the basis vectors are commonly calculated
from a noisy image, and they are also used for the smoothed
one. The eigenvectors of the original image may be different
from those of its noisy and smoothed ones, depending on the
amount of noise. Therefore, the proposed network with PCA
features is designed to directly generate a denoised image at
its output due to unavailable eigenvectors for reconstruction
as shown in Fig. 4. Meanwhile, forWTFs the network outputs
wavelet transformed signals as shown in Fig. 3, and they are
inverse-transformed with wavelet filters as a post-processing.
This is a key difference between WTFs and PCA features
for the proposed network. The core network architecture is
shared for both WTFs and PCA features except for input and
output.

IV. THE PROPOSED METHOD
In previous section, we have described how to generate two
types of OTFs using wavelet transform and PCA. In this
section, we show how to construct a CNN-based network to
perform deep sub-band learning on orthogonal domain.

A. ADDITIONAL OTF INPUTS
A noisy image y can be separated into an original clean image
x and noise signal v, and is given by y = x + v, where the

VOLUME 8, 2020 66901



Y.-H. Shin et al.: Deep OTF for Image Denoising

FIGURE 4. The architecture of OTF-PCA. The network adds a noisy image
to the input of the network and targets at the original image on spatial
domain instead of orthogonal domain of OTF- WT.

noise signal v is additive white Gaussian noise (AWGN) with
standard deviation. To further improve the existing network,
we propose to additionally feed OTFs from a noisy image y
to the deep convolutional network. In addition to noisy OTFs,
the smoothed features from the denoised image are also
concatenated with the noisy ones to regularize the recovery
ability. It is worth noting that the denoising is performed
with conventional competitive methods. This means that the
denoising behaviors of the existingmethod become a prior for
deep learning, and they guide the network to learn denoising
process correctly. Compared with a noisy image on spatial
domain, two types of orthogonal transform features such as
WT and PCA are more informative about subtle details of
the original image such as texture and edge. Also, noises to
be distributed globally on spatial domain are intensively gath-
ered on high frequency bands of OTFs. Therefore, we develop
a deep orthogonal transform feature network which learns on
OTFs as well as a spatial noisy image. For wavelet transform,
OTFs are formed by concatenating 4 noisy features with the
associated smoothed ones, leading to 8 inputs to the network.
In a similar way, input features consist of 25 noisy and the
corresponding smoothed features for the case of PCA, leading
to 51 inputs in total (including a spatial noisy image). Then
we train the network with those multiple inputs to predict the
full details of the original image.

B. CHANNEL-WISE LEARNING
We train deep orthogonal transform feature networks for
image denoising. The network is constructed based on the
two important assumptions. First, as described in previous
section, orthogonal transform features benefit the recovery of
the original image details. Second, those orthogonal features
need to be trained in an independent way as the individual
feature in OTFs is orthogonal to each other. It is worth noting

that the OTFs are generated from either wavelet transform
or PCA, which corresponds to orthogonal decomposition.
At the first stage of the deep network, it would be efficient
to train the features independently, and thus, this is realized
by depth-wise convolutional blocks as shown in Fig. 3. Using
these depth-wise convolutions, each channel is trained sepa-
rately so that each orthogonal feature should not be mixed
with the other ones. For channel-wise learning, a depth-wise
convolution block is constructed by the combination of a
depth-wise convolutional layer, a batch normalization layer
and a residual layer [12]. After the channel-wise learning
processes, their output features are combined with the input
ones by dense connections [8]. With residual blocks and
two dense connections (one concatenates the initial inputs to
the feature maps after the channel-wise learning and another
concatenates the feature maps after the channel-wise learn-
ing to the 3th block of the channel fusion and restoration),
the deep network which includes 33 layers in total can be
trained without any degradation or vanishing gradient prob-
lems. Particularly, channel-wise learning process contains
10 convolution blocks that consist of C-B-R-C-B-, and the
number of feature maps in these blocks are set to 8 and
51 for OTF-WT and OTF-PCA, respectively. (C: Convolu-
tion, B: Batch-normalization, R: Relu). In Fig. 3, the differ-
ence between the light-blue and the yellow blocks is simply
the number of convolution layers. Also, the dark-blue block
adopts depth-wise convolution while the blue one uses nor-
mal convolution.

C. BAND-WISE CHANNEL ATTENTION
After learning orthogonal sub-band images, we consider
the inter-dependencies between the noisy and the smoothed
images on each sub-band. Channel attention is conducted
to acquire their inter-dependent relationship [37]. It is
implemented by the squeeze-and-excitation operation which
consists of a squeeze operation that summarizes global infor-
mation of each feature map and an excitation operation that
scales each feature map’s importance.

First, the global information of each feature map
is extracted through the global average pooling. The
inter-dependent relationship between feature maps are
learned through the fully connected layers that use the global
information. Finally, the outputs of the fully connected layers
go through the sigmoid function and each value from the
sigmoid function is multiplied to each feature map element-
wisely. Through the channel attention, we can get the weights
that model the inter-dependencies between the noisy and the
smoothed images. The weights are multiplied to the feature
maps, which are transferred to the next layer with an initial
input concatenated. Fig. 5 shows the process of the channel
attention.

D. CHANNEL FUSION AND RESTORATION
In sub-band based orthogonal decomposition such as wavelet
transform, low-frequency and high-frequency components
are extracted at different bands in a hierarchical way.
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FIGURE 5. Process of channel attention. The weights acquired from the
squeeze and excitation operation are multiplied to each feature map
element-wisely.

For PCA, orthogonal eigenvectors are determined in a
descending eigenvalue order. To train the input OTFs in a
channel-independent way, the first stage of the denoising
network is intentionally designed to be channel-wise using
depth-wise convolutional blocks as shown in Fig. 3. After
the channel-wise learning, the denoised features are fused
together at the second stage of the network, and a noisy input
image is finally restored to the original ground truth.

Particularly, channel fusion and restoration process con-
tain 7 convolution blocks that consist of 13 convolution layers
as shown in Fig. 3. For wavelet transform, the OTFs can
be perfectly inverse-transformed into the original image on
spatial domain without any data loss. Thus, the denoising
network is designed to generate the wavelet OTFs of the
denoised image at its output. On the other hand, for PCA,
the OTFs correspond to PCA coefficients, which require the
corresponding eigenvectors in order to be perfectly restored
into the original spatial image. However, the eigenvectors are
unknown because the original clean image is not available.
They can be alternatively calculated from a noisy image, but
may be quite different from the original eigenvectors, depend-
ing on the amount of noise. Therefore, as shown in Fig. 4,
the network is designed to directly generate a target image on
spatial domain, not PCA OTFs unlike wavelet transform.

E. TRAINING
Let G(•) represent the trained network to restore the original
clean image x from the noisy featuresyN and the smoothed
features yS . Let us define m as the number of total OTFs,
i.e., 4 in wavelet transform and 25 in PCA. (For PCA, the 2D
feature described in Section III is aligned to a vector form fed
as the network’s input.) All OTFs including both the noisy and
smoothed ones are represented by

2 = {yN ,1, .., yN ,m, yS,1, .., yS,m} (1)

Given n pairs of noisy and clean images for training, a mean
squared error (MSE) cost function is formulated to train the
network and it is differently defined according to the type of
the OTF. For wavelet transform and PCA, it is given by

LWT (2) =
1
n

n∑
i=1

m∑
j=1

∥∥Gj(2i)− xF,i,j
∥∥2 (2)

FIGURE 6. PSNR comparisons according to gaussian noise level for
various denoising methods.

FIGURE 7. Comparison of the convergence speed for OTF-WT, OTF-WT
without depth-wise convolution, FFDNet and DnCNN. The proposed
OTF-WT is converged more quickly and optimally than OTF-WT without
depth-wise convolution and other methods.

and

LPCA(2) =
1
n

n∑
i=1

‖G(2)− xi‖2, (3)

respectively.
OTF-WT is trained to reduce the MSE (mean square error)

between the ground truth image and the corresponding output
on wavelet domain, and OTF-PCA is trained to reduce the
MSE between the ground truth image and the correspond-
ing output on spatial domain. Indeed, the overall structures
of OTF-WT and OTF-PCA are kept identical, except for
two points, the number of inputs and outputs. Note that for
OTF-WT, the outputs are four wavelet domain images while
for OTF-PCA, the output is only one spatial image.

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETTING
After we conducted a couple of careful experiments, we used
the same dataset and parameters for patch extraction with that
of DnCNN, which we used as our network’s initial denoising
method.
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FIGURE 8. Comparison among initial denoising methods, DnCNN (OTF-WT-D), BM3D (OTF-WT-B), LPGPCA (OTF-WT-L).

FIGURE 9. Denoising performance comparison in Cameraman. Gaussian noises with σ = 30 are added.

To train the network, we use 400 images of size 180× 180
and crop them into 40 × 40 patches. Using stride 10 and
four types of scale (1, 0.9, 0.8 and 0.7), the patches are
extracted from the train images, leading to the total number
of the patches, 128 × 1600. We consider two noise levels
(i.e., Gaussian standard deviation is set to 20 and 30). For
the test, we used two datasets. One is a Set68 (Berkeley
segmentation dataset) [41], and the other is Set12 which is
used widely in the field of image restoration. The learning

rate is set to 0.0001 and decayed by 0.9 every 10 epochs.
The batch size is 64 and the patch size of a noisy input is
fixed to 40× 40 during training. For each batch, one of eight
data augmentation modes (rotation / flip / mix) is applied for
training pairs. The OTF network is trained with 300 epochs.
It was implemented with Pytorch. We used an Nvidia GTX
1080ti graphic processor and i7-8700 CPU. DnCNN is used
to obtain the smoothed features of a noisy input as initial
denoising.
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FIGURE 10. Denoising performance comparison in Parrot. Gaussian noises with σ = 30 are added.

TABLE 1. Performance comparisons in terms of PSNR/SSIM for Set12/ Set68. Note that OTF-PCA and OTF-WT represent the proposed method with PCA
and WT as OTF, respectively.

TABLE 2. Performance comparisons in terms of PSNR/SSIM for Set12/ Set68 on σ = 20. Note that OTF-WT-L, B, D means the network using the each
initial denoising method LPGPCA, BM3D and DnCNN.

B. VISUAL COMPARISON
For the quantitative comparison of the denoising perfor-
mance, we used the objective measures such as the peak sig-
nal to noise ratio (PSNR) [33] and SSIM [34]. Table 1 shows
that the proposed networks, i.e., OTF-PCA and OTF-WT,
outperform the state-of-the-art denoising methods in terms

of PSNR and SSIM for datasets Set12, Set68, except for the
case of σ = 10, in which we achieved almost same with
DnCNN for OTF-WT and slightly lower for OTF-PCA. But
when the denoised image is compared to that of the DnCNN,
the proposed method accomplished the better visual quality
removing the artifacts that exist in the denoised image of
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FIGURE 11. Wavelet domain comparison in Cameraman. Gaussian noises with σ = 20 are added and each image’s pixel
values except for LL band are multiplied by 5 for visibility. (a) Original, (b) LPGPCA, (c) BM3D, (d) DnCNN, (e) OTF-WT.

DnCNN as shown in Fig. 12. Especially, for the image with
regular patterns, we accomplished better performance than
the other denoising methods. Fig. 9 and Fig. 10 show the

denoising examples of Cameraman andParrot. The proposed
method accomplishes the best visual quality subjectively
as well as objectively, particularly in the textured regions.
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FIGURE 12. Visual quality comparison between DnCNN (Smoothed input for our network) and OTF-WT. Gaussian noises with σ = 10 are added.

The results of Camera man are also compared on wavelet
domain in Fig. 11. We can see that the proposed OTF-WT
restores high frequency components better than the existing
methods in HL and HH bands. How the noise level (standard
deviation of gaussian noises) affects the denoising perfor-
mance is shown in Fig. 6.

C. EFFECT OF SMOOTHED FEATURE
Additional experiments are performed in order to find the
effect of the smoothed features among OTFs on the over-
all learning performance. For the case of wavelet trans-
form, the network is trained for three combinations of inputs
(i.e., the original OTF-WT, OTF-WT without the smoothed
features and OTF-WT without the noisy features) with
noise standard deviation. Without the smoothed features,
the network can be trained but the output image quality of

TABLE 3. PSNR comparisons between OTF-WT and OTF-WT without the
smoothed features.

the network is very poor as listed in Table 3. On the other
hand, the network without the noisy features is not trained
well and new artifacts are observed in the output image.
We can see from the observation of those experiments that
the smoothed features play an important role by correctly
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guiding denoising, and consequently, they enable the network
to be learned stably. Finally, by concatenating the smoothed
features additionally, the learning for denoising is boosted
significantly.

D. EFFECT OF CHANNEL-WISE LEARNING
To evaluate the effect of depth-wise convolutions, a network
is also constructed using only convolutional blocks. In Fig. 7,
the convergence behaviors of the original OTF-WT and the
OTF-WTwith only convolutional blocks are compared. Even
though the number of parameters in OTF WT is much less
than the convolutional version, we can find that the learning
ability of OTF-WT is much faster than OTF-WT with only
convolutional blocks. Using depth-wise convolutions enables
the network to achieve superior computational efficiency and
provides better network architecture for independent OTF
feature learning.

E. COMPUTATIONAL EFFICIENCY
Our OTF-WT network is better than other existing methods
in terms of the computational efficiency as well as the perfor-
mance. We evaluated the computational efficiency in terms
of two criteria, the number of the network parameters and the
convergence speed. Fig. 7 and Table 4 show the results of the
comparisons. We can see that the proposed method is better
than other methods in both criteria.

TABLE 4. Comparison of the number of the network parameters for
DnCNN, FFDNet and OTF-WT.

F. CO-EXISTENCE WITH EXISTING METHODS
In this paper, we attempt to develop the efficient learn-
ing of complex denoising process by referring to the
denoising capability of existing excellent methods. Thus, our
method can friendly work with any other denoising meth-
ods. Fig. 8 compares the results of initial denoising with
LPGPCA, BM3D and DnCNN. OTF-WT-L, OTF-WT-B,
OTF-WT-D means using the each initial denoising method
LPGPCA, BM3D and DnCNN. OTF-WT based on BM3D
(OTF-WT- B) generates more clean results at grid-shaped
patterns than OTF-D and OTF-WT-L. In comparison,
OTF-WT based on DnCNN (OTF-WT-D) shows better
restoration in complex texture regions as shown in Fig. 8.

VI. CONCLUSION
In this paper, we proposed a novel orthogonal transform
feature such as wavelet transform and PCA for deep image
denoising. Wavelet transform and PCA have been popularly
investigated for image denoising due to their capability to

separate noises from a noisy image. Inspired by this obser-
vation, we add orthogonal transform features to the image
denoising network in addition to a spatial noisy image input.
We also guide the network to correctly learn a denoising
process by providing a pair of denoising examples using a
competitive existing method. In order to reflect the prior
experience of the existing denoising method to the learning
process, we feed a pair of noisy orthogonal features and
its smoothed version to the network together. It would be
easier to identify noises on orthogonal transform domain
rather than spatial one. It is expected that this could help
the network to learn the denoising process optimally and
stably. The proposed orthogonal transform features have
been thoroughly evaluated with a variety of test images.
Experimental results show that they can accomplish superior
visual quality to the existing CNN and non-CNN denoising
methods.

As a future work, our network will be extended to other
image restoration applications such as image super-resolution
and deblurring. Also, we try to find a more optimal network
architecture to train OTFs. We may construct a fully orthog-
onal network without the original convolutional layers which
prevent the orthogonality of input data.
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