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ABSTRACT In this study, we propose and evaluate a novel learning-to-rank (L2R) approach that produces
results on par with those of the state-of-the-art L2R methods while being computationally effective. We start
by presenting a modified gradient boosted regression tree algorithm to generate unified term impact (UTI)
values at indexing time. Each unified term impact replaces several features with a single value in the
document index, thereby reducing the effort to compute the document scores at query processing time
because the system fetches and processes fewer values. The adoption of UTI values produces competitive
ranking results. However, the lack of features available only at query time might lead to accuracy loss.
To solve this problem, we propose a hybrid model that uses UTI values with query-dependent features.
We demonstrate that our hybrid methods can deliver high-quality results on par with those of the existing
state-of-the-art neural ranking models. Our methods can also reduce the computational costs for processing
queries, serving as an interesting alternative for L2R practical applications. Our best hybrid, HLamb-
daMART, achieves an NDCG@10 value of 0.495 using only 36 features at query processing time when
applied to the MQ2007 collection, while the best baseline achieves 0.490 using a larger set of features at
query processing time. The use of our hybrid framework reduces the time to run LambdaMART to about
35% of the time to run it without using our proposals. In summary, we present a competitive and lightweight
alternative L2R approach to be adopted in search systems.

INDEX TERMS Gradient boosting, indexing, LambdaMART, learning-to-rank, search engines.

I. INTRODUCTION
High-quality ranking results are fundamental for web search
engines. Users expect answers to their queries displayed on
the page and at the top of the list of search engines [1]. Mod-
ern search engines experience fast query processing times
regardless of the size of the datasets; however, any notice-
able increase in waiting time can dampen their perception of
the quality of the system, because computational efficiency
cannot be obtained at the cost of quality.

Quality is addressed through machine learning techniques
known as learning-to-rank (L2R) techniques. Fig. 1 shows
query processing performed through a two-step L2R-based
search engine [2]–[5]. In the first step, top-k ranking results
are retrieved using a low-cost ranking strategy, such as
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BM25 [6], referred to as a base ranker. The value of k
depends on the quality of the first ranking, because the goal
is to obtain a list that covers most of the potentially relevant
documents for the user. The choice of k also influences
computational costs because a higher k yields a higher cost
for processing queries [4]. In the second step, adopting an
L2R model referred to as a top ranker, the top-k documents
are reranked using a more sophisticated ranking method. This
step accesses an index that contains dozens or more than a
hundred features per document, to be combined into a final
score. The main goal is to offer the best final result to the user.

While other architectures could be adopted, such as
one that involves processing all documents with the L2R
method, the two-step approach described in Fig. 1 is men-
tioned and adopted in the literature as a solution to allow
for fast query processing since the top ranker needs to
process the features of only a few documents [2]–[5].
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FIGURE 1. Two-stage L2R query processing.

The approach is also useful to create L2R reference collec-
tions. For instance, it is adopted in learning to rank (LETOR)
collections MQ2007 and MQ2008 [7], where BM25 [6] is
adopted as a base ranker. While MQ2007 and MQ2008 were
created using GOV2 web page collection, which contains
about 25 million documents, these two L2R reference collec-
tions provide only the top answers of BM25 as the documents
to be processed and ranked by the experimented methods.

Using many distinct sources of relevance evidence to build
a L2Rmodel is an important aspect of modern search engines.
Collectively, these sources are combined to estimate the rel-
evance of a document to a query. Examples of these sources
are the frequencies of terms in the text; URLs, titles, and other
parts of the document; web link graph analysis; and query
log analysis [8]. These features are in the top ranker index
in Fig. 1.

In the top ranker, the ranking of the query results is com-
puted, fusing all sources of evidence into a single document
score, at the query processing time to produce a final doc-
ument ranking. In the past few decades, works on evidence
fusion have been carried out using L2R implementations [9],
such as genetic programming algorithms [10], [11], gradient
boosting methods [12], [13], and neural networks [14]–[17].
Thus, L2R methods use example queries and their respective
results to train supervised learning models. Then, these mod-
els determine the relative position of the documents from the
results of a new query and determine the final ranking. How-
ever, this approach increases the computational cost of query
processing, leading to a drop in query-time performance.

To mitigate this problem, Carvalho et al. [18] proposed
an alternative that fused evidences at indexing time named
UTI-GP, based on supervised genetic programming as the
underlying learning mechanism. UTI-GP generates a single
inverted index that contains unified entries representing all
sources of evidence, called unified term impact (UTI) values.
On the basis of a pretrained L2R model, each UTI value is
computed at indexing time. At query time, the search engine
obtains the score of each document by adding UTI values that
associate it to each of the query terms. Using this approach,
several features of the top ranker are substituted with a single

feature, i.e., a UTI value. This substitution makes the top
ranker extremely simple and lightweight when compared
with the traditional L2R strategies.

A limitation of this approach is that several features usually
available for search systems are not available at indexing
time. For instance, features that depend on the query set,
such as the BM25 [6] of the document given a query, are not
available at indexing time. Other examples of features that
would not be available include any personalized information
about the user who is typing the query or information about
the most-clicked documents given a query. Thus, UTI-based
methods have important limitations.

In the present study, we propose UTI-LambdaMART,
an adaptation of LambdaMART [12], [19], a gradient boost-
ing algorithm, to compute UTI values of each pair of docu-
ment and term during indexing. Compared to LambdaMART,
our method uses less resources and reduces the cost of query
processing, which is why we call it a lightweight method.
Fig. 2 illustrates the process of UTI index generation and how
the queries are processed using UTI values. At indexing time
(Fig. 2a), the available features are fused into a single index
that contains UTI values computed by UTI-LambdaMART.
Query processing is performed as depicted in Fig. 2b, where
queries are processed in a single step using only the index
containing UTI values. A simple ranking method is used,
in which the score of a document is the sum of UTI values
of each query term. Here, we also address the limitations of
UTI-based methods and discuss how to take advantage of
UTI-based methods by combining them with traditional L2R
methods.

Three main reasons are behind the choice to modify
LambdaMART in our research. First, according to experi-
ments presented in a recent survey about this area, Lamb-
daMART represents one of the best L2R methods avail-
able in the literature [20]. In addition to the high-quality
results produced by LambdaMART, it also has the property
of assigning numeric scores to each document given a query,
a property that is useful when converting the method to
generate UTI values, since they are numeric scores. Finally,
we consider it a fast algorithm, both when training a new
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FIGURE 2. Indexing and query processing when using UTI-LambdaMART.

L2R model and when processing queries with the generated
model.

The methods with performances better than that of Lamb-
daMART in the literature are based on neural networks
and can be taken in future work to generate UTI values.
We decided to not study this possibility here given that these
methods are considered expensive for online query process-
ing, although there are efforts to improve their performance
in the literature [21]. Furthermore, as we show in the exper-
iments, our model using LambdaMART is able to achieve
a quality of results on par with that of state-of-art neural
network models. The great performance of LambdaMART
led us to adopt it in our research to produce a high-quality
ranking using UTI values.

A. CONTRIBUTIONS AND RESEARCH QUESTIONS
We improve the proposal of Carvalho et al. in terms of four
aspects: first, we propose a new method for generating UTI
values, named UTI-LambdaMART, to significantly reduce
the required training comparedwithUTI-GPwhile improving
the quality of the search results. Second, we demonstrate
a method of using our proposed UTI-LambdaMART in a
hybrid model and combining it with other L2R methods.
The results achieved are on par with those of state-of-the-art
neural ranking methods, while still processing fewer features
at query processing times. Third, we show that our method
offers an extremely low computational effort. The experi-
ments presented indicate it is useful as a practical alternative
base ranker for search systems, as it produces a first ranking
close to the final result. Finally, using a simple compression
scheme, we reduce the space requirements of the inverted
index produced, achieving this reduction without significant
loss of search quality.

This work addresses four main research questions:

• RQ1: If we adapt LambdaMART to compute UTI
values, would it result in an effective method in terms
of the quality of the results? To address this question,
we demonstrate a method of using LambdaMART to

produce a term-based learning model and precompute
UTI values.

• RQ2: Because search systems rely on features not
available at indexing time, would the combination of
methods that compute UTI values with L2R meth-
ods at query processing time produce high-quality
results? Here, we investigate how to use UTI computa-
tion as one of the steps in a two-stage learning process,
proposing a hybrid approach that uses UTI values to sub-
stitute, at the query processing time, the set of features
available at indexing time.

• RQ3: Is UTI-LambdaMART a good alternative base
ranker? Since it produces a high-quality ranking and,
at the same time, is quite fast, UTI-LambdaMART can
be used as a strong base ranker; i.e., it can produce a
ranking closer to the final ranking with minimum com-
promise in terms of the time efficiency. When used as a
base ranker, we can reduce the number k of documents
analyzed at query processing time. We investigate this
hypothesis in the experiments.

• RQ4: In addition to quality issues, would the use of
UTI-LambdaMART produce a fast L2R alternative
solution ? This final question is about performance.
The methods proposed here have as one of their goals
reducing the query processing times.We thus investigate
the possible impact of the methods on the performance
of a search system.

The rest of the paper is organized as follows. In Section II,
we discuss related works. Section III presents background
information about L2R and UTI learning. Section IV presents
the proposed method by describing a method of using Lamb-
daMART to generate UTI scores at indexing time. Section V
presents our experimental setup, followed by a comparison
with current baselines. Section VI concludes the paper and
offers directions for future research.

II. RELATED WORK
In this section, we review the related works on precomputed
evidence fusion and document rank models.
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A. PRECOMPUTED EVIDENCE FUSION
Anh and Moffat [22] were the first to propose precomputed
term impacts on documents, which was further addressed in
two other followup articles [23], [24]. Their work aimed at
reducing the number of arithmetic computations performed
at query processing times using a fixed term impact compu-
tation strategy not based on machine learning. It is different
from our work because they propose an ad hoc method and do
not study the use of multiple features, as we and other authors
do. Carvalho et al. [18] proposed a method, referred to here
as UTI-GP, to learn UTI values using genetic programming
(GP), where the concept of UTI was first introduced.

Although the authors showed that computing UTI values
is a promising strategy, the longer time required to train the
evidence fusion model was a major drawback. We hereby
propose an adaptation of LambdaMART [12] to compute
UTI values.

As a result, we derived a hybrid method to reduce the
query time and to achieve quality results on par with the best
baselines found in the literature.

B. DOCUMENT RANK MODELS
Several authors have studied L2R methods in the
literature using different machine learning techni-
ques [10]–[13], [15]–[17]. Other examples and details of
the L2R methods can be found in the works of Liu [9] and
Tax et al. [25]. All methods mentioned in this session apply
the learning at query processing only, with none of them
studying the possibility of computing unified term impacts
or applying them in the L2R process.

Wei et al. [26] propose a novel learning-to-rank model on
the basis of the Markov decision process (MDP), referred to
as MDPRank. In the learning phase of MDPRank, the con-
struction of a document ranking is considered as a sequential
decision-making, each corresponding to an action of select-
ing a document for the corresponding position. The policy
gradient algorithm of REINFORCE is adopted to train the
model parameters. The evaluation measures calculated at
every ranking position are utilized as the immediate rewards
to the corresponding actions, which guide the learning algo-
rithm to adjust the model parameters so that the measure
is optimized. The authors compare their methods to several
baselines using the collection MQ2007 [7]; the results, how-
ever, are quite inferior to those achieved by the current state-
of-the-art methods.

Lucchese et al. [27] propose a framework called CLEaVER
to optimize L2R models based on ensembles of regression
trees. Their method first removes a subset of the trees in the
ensemble and then fine-tunes the weights of the remaining
trees according to a quality measure. Experiments performed
on two publicly available datasets show that CLEaVER can
prune up to 80% of the trees. In [28], the authors improved the
pruning strategies of CLEaVER and proposed the extension
model called X-CLEaVER. Again, their method is orthogo-
nal to the ones proposed here. Their pruning strategy can also

be applied when fusing evidence at indexing times, which
may reduce the computational training costs.

Issues related to the combination of the efficiency and
effectiveness in L2R methods have recently been addressed
in the literature. Chen et al. [29] explored the importance
of integrating feature costs into multistage L2R IR systems,
optimizing cascaded ranking models that offer a better bal-
ance between the efficiency and quality of ranking results.
The proposal in this study can be combined with the cascade
strategy because the approaches that compute UTI values
may be incorporated in any cascade ranking strategy.

Guo et al. [20] present a comprehensive survey about L2R
methods, comparing more than 20 methods available in the
literature, and show that deep neural networks, such as Deep-
Rank [15] and HiNT [16], are among the best L2R methods.
They show that HiNT is themethodwith the best performance
when applied to MQ2007, and DeepRank yields results close
to it. DeepRank [15] simulates the human judgment process
aggregating relevance signals from a query-centric context.
HiNT [16] is composed of two stacked components, namely,
the local matching layer and the global decision layer. The
local matching layer focuses on producing a set of local rele-
vance signals by modeling the semantic matching between a
query and each passage of the document. The global decision
layer accumulates local signals and uses them for the final
relevance score. The shortcoming of the high computational
cost is identified in these methods, which employ special
hardware and GPUs to run at a competitive time. Nonethe-
less, we adopted these methods owing to their high-quality
results. On the basis of the experimental results, our hybrid
can achieve quality results on par with those achieved by
these baselines, which use lightweight L2Rmodels and fewer
features at query processing times.

The research in the area is continuously evolving.
Yu et al. [30] recently presented a study specifically focused
on listwise methods, a specific type of L2R method, and
proposed the WassRank method. To validate the effective-
ness of WassRank, they conduct a series of experiments on
two benchmark collections and present results indicating that
their method produces results with a quality superior to that
of other listwise methods. We plan to investigate the possible
combination of their ideas to our UTI approach as future
work.

In another recent study, Xu et al. [17] show that the quality
of document features can affect the effectiveness of ranking
models and study methods to better model the relationship
between queries and documents. They perform their study
using deep neural network models to generate effective fea-
tures and incorporate autoencoders in the construction of
ranking models based on L2R. While the ideas presented
show a potential contribution to the area, their final results,
however, are not superior to those achieved by HiNT [16].
We consider as a future work using their ideas as a possible
alternative to improve the quality of features and produce
even better ranking results in our methods. As the quality
of results presented by the method is quite low compared to
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those of HiNT, we decided to not include this method in our
baselines.

Gallagher et al. [31] present a framework for learning an
end-to-end cascade of rankers using backpropagation. They
show that learning objectives at each stage can be chained
together and optimized jointly to achieve significantly bet-
ter tradeoffs globally. Their approach is another alternative
to improve the quality of results of L2R methods, such as
LambdaMART. As in X-CLEaVER, the work of Gallagher
is orthogonal to our research presented here.

Ji et al. [21] discuss the high computational costs of
recently proposed L2R methods based on the neural network
and investigate a method for the fast approximation of three
interaction-based L2R neural network ranking algorithms
using locality sensitive hashing (LSH). Their method acceler-
ates the query-document interaction computation by using a
runtime cache with precomputed term vectors and speeds up
the kernel calculation by taking advantage of the limited inte-
ger similarity values. Zamani et al. [32] propose a standalone
ranking model (SNRM) using an indexing method for neural
representation. While their ideas reduce the computational
costs related to L2R neural network, the high computational
costs of these methods, compared to other L2R approaches,
are still an important issue to be addressed in the literature.

III. BACKGROUND
In this section, we further explain the main differences
between learning-to-rank and UTI learning. We also summa-
rize the LambdaMART model.

In the past, ranking models were usually created without
learning techniques, adopting a specific formula based on a
reasoning regarding how to represent queries, documents and
the similarity scores between them. An example of ranking
models is the probabilistic model that was used to propose
the BM25 [6] score function. BM25 provides a formula to
compute the similarity score to estimate how relevant a doc-
ument is to a given query, and this score function is adopted
to compute the ranking results in search systems.

Solutions employing machine learning techniques to auto-
matically construct ranking models have emerged in the liter-
ature in the past few decades.Motivations include the increas-
ing complexity of modern search systems, which now use
several sources of relevance evidence, also know as features.
For instance, systems currently include information on the
user clicks in past occurrences of a query, personalized infor-
mation about the users, such as geographic information, and
so on. In this context, the use of machine learning techniques
has become almost a standard solution for automatically
producing high-quality models in search systems.

A. LEARNING-TO-RANK
We start by defining a supervised learning-to-rank approach
in the two-step L2R-based search engine. The L2R task
can be divided into a learning system and a ranking
system [33]. To explain the learning system, we first need
to define the training data used to create a ranking model.

LetQ = {q(1), q(2), q(3),. . . ,q(m)} denotes a set of queries. For
each query q(i) ⊂ Q, there is an associated set of k resulting
documents Di = {d

(i)
1 , d

(i)
2 . . . , d (i)k }. Each query document

pair (q(i), d (i)j ), with q(i) being a query and d (i)j ∈ Di being

a document, has an associated feature set fs(q(i), d (i)j ) con-

taining n related features fs(q(i), d (i)j ) = {f1(i,j) ,f2(i,j) , . . . , fn(i,j)}
and its respective document relevance judgment r(i, j), repre-
senting the relevance score of document d (i)j as a result for
query q(i).
The training data are the input used to learn a ranking

model, or ranking function. In some methods, the ranking
model assigns scores to each document in the answer set
for a query. In these cases, it can be defined as a function
F(x), x = (q(i), d (i)j , fs(q

(i), d (i)j )), withF being a function that
assigns a numerical score to each document given a query,
using the feature set associated with them to compute this
score. In the ranking system, a rank model learned is used
to predict the rank of documents for a new query, given as
input documents not seen during the training and their related
features.

We may find small variants of this general model. For
instance, other methods produce a ranking model that
requires the whole set of documents and features as input
when processing queries. This is the case, for instance, for
SVMRank [34], which compares all pairs of documents in
the answer and ranks them according to the number of times
a document is better than other documents in the answer. This
approach is known as pairwise L2R. In SVMRank, the whole
set of results for a query should be analyzed at query process-
ing time to produce the score of each document in the results
set since it does not produce a function F that depends only
on the pair of a given document and query, always requiring
the whole set of results to produce the ranking.

Some pairwise methods perform pairwise comparisons
only when learning the model and produce as the result a
function that assigns the scores for a given document and
query based only on the feature set associated with them,
without comparing them to other results to produce this score.
For instance, this is the case of LambdaMART, which is also
a pairwise method, but one that produces a function F as
described above.

1) LambdaMART RANK MODEL
LambdaMART is a combination of MART [35], an L2R
method that adopts a boosted tree model, and
LambdaRank [36], a neural network model.

LambdaMART constructs a ranking model F that maps
each set of features of instance x into a numerical score F(x).
Each instance x = (q, d, fs(d, q)) is a tuple composed of a
query q, a document d and a set of feature values related
to document d and query q, fs(d, q). The model constructs
a function that maximizes the quality of the ranking in the
training set, using information on the relevance level of each
document d with respect to query q, r(d,q), to compute the
quality of the results. LambdaMART generates a tree ensem-
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FIGURE 3. General steps for constructing a LambdaMART model for a
ranking problem.

ble model. Mapping occurs by traversing a regression tree,
where the direction to be followed (left or right) is defined
using the value of each feature. Each leaf γl,n of the tree has
a value learned in the training, 1 ≤ l ≤ L and 1 ≤ n ≤ N ,
where N is the number of trees and L is the number of leaves.
The mapping is 1:1; i.e., for each instance, it is assigned a
score.

Fig. 3 shows the general steps used by LambdaMART to
build a rank model. Refer to the original method [12] for
further details of all steps. It is important for this study to
understand the model inputs (instances used in the learning
process): step 2.1, namely, how the scores are updated, and
step 2.2, namely, how the gradient is computed, from the
original LambdaMART model.

B. LEARNING UTI VALUES
In this work, we study a problem slightly different from the
L2R problem.We need to learn a score for each document and
term pair present in the collection, named as UTI. It should
summarize the importance of the term to the document by
fusing, at indexing times, a set of features that relate the term
to a document, the feature set associated with the document
and term pair. Thus, the main difference relative to other L2R

approaches is that we learn a function that assigns a score to
a document given a term, instead of assigning a score to a
document given a query.

As it is used to produce an index before the queries arrive at
the search system, features that are not available at indexing
time cannot be used by models that compute UTI values.
For instance, at indexing time, it is not possible to know the
BM25 score of the query since it is a feature that depends
on the set of query terms present in each query, instead of
depending on an isolated term. Another example of a feature
that would be unavailable at indexing time is the current
geographical location of a user when typing a query. This
is information that may change each time the user types the
query. Thus, UTI models can adopt only a subset of the
features usually available in L2R collections.

In addition to the important difference stated above,
the process of learning UTI values is quite similar to the
process of L2R. Our main goal is to find a score function
that maps each term and document pair to a numeric score.
After learning this mapping function, it is then applied in the
indexing to generate UTI values and store them in the search
engine indexing. Note that the generation of UTI values is
performed offline at indexing time.

Fig. 4 shows how to learn a UTI model. In the process
of learning UTI values, the inputs are query term-by-term
instances, whereas each instance x is a set of term-document
features (all features of the term and the document available
only at indexing time, such as, the term frequency in the body
of the document, first occurrence position of the term in the
document and document length) and the relevance judgment
regarding the whole query.

The algorithm learns the patterns to compute UTI values
using the queries in the learning process, as depicted in Fig. 4.
The learning process searches for a function that produces
UTI values that optimize the quality of ranking results for
the training set. The ranking of UTI values to be optimized is
always computed by adding the UTI values of all query terms
for each document analyzed.

The result of the learning process is a model that maps the
provided values of term-document features to a single numer-
ical value, namely, the UTI. The index processing consists of
applying the UTI model, taking as input the term-document
features; thus, this model can compute UTI for words not seen
in the learning process or that do not exist in the document.

IV. THE UTI-LambdaMART MODEL
Our main goal is to construct a UTI model that will be
applied during the indexing process for efficient query pro-
cessing. We used the LambdaMART algorithm [12] to imple-
ment our model. To adapt LambdaMART to generate UTI
values, we modified it to (i) obtain information about the
query terms, instead of information about the entire queries,
as input, and (ii) compute the lambda of each individual
term-document considering how good the query term is in
the final position of the document. The modified algorithm is
explained below.
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FIGURE 4. The process used to generate a UTI value computation model,
the learning process, described in the upper part of the figure, and the
indexing process, which takes the model and pairs of terms and
documents to produce UTI values.

A. MODIFIED LambdaMART ALGORITHM
UTI-LambdaMART uses gradient boosted decision trees
using NDCG@N, N being a constant, as a cost function
to learn UTI values given labeled queries. Based on Lamb-
daMART, our approach computes a model Ft that produces
UTI scores for each term and document pair, instead of
a model that computes scores for each query and docu-
ment pair. In our case, each instance x = (q, d, fs(d,q)) is
decomposed into |q| training instances in the form xt =
(t, d, fs(d,t))), where t ∈ q and fs(d,t) denote a set of feature
values related to the document d and term t . The sum of
scores

∑
∀t∈q Ft(xt ) is used in the training to produce rank-

ings and evaluate the quality of the function Ft by using
the information on the relevance of the documents, r(d,q).
During the training, the document-term impact is computed
considering the query-term impact. The sum of UTI values of
a query term is taken whenever it is necessary to compute the
score of the document given a labeled query. The model Ft
is trained and then applied to compute UTI values stored at
indexing time, in a process detailed below in Algorithm 1.

Succinctly, UTI-LambdaMART works as follows: the pro-
cess starts with the model’s initialization (lines 1–5). In the
iteration to create N trees (lines 6–31), we start by com-
puting a score for each document-query pair (scores[d, q],
lines 7–11). This score consists of summing each term’s
individual UTI, using themodelFtn−1, computed so far by the
algorithm. Using the computed scores to sort the documents
in descending order, we can estimate the difference in NDCG
obtained by switching the order of every pair of documents
(dj, dk ) in a query results list (1NDCG, lines 12–23). This is
performed when the relevance score for dj is greater than the
relevance score for dk . 1NDCG is then used to compute the
λ and w values associated with each term-document-query
triple (λ[t, d, q] and w[t, d, q], respectively, lines 16–21).
Note that since the judgment of relevance is over the entire

query, the values calculated here are divided by the number
of query terms. Finally, on lines 24–30, the original Lamb-
daMART steps for fitting the regression trees and updating
the model are executed, and the model Ftn is updated. The
regression trees map terms and documents features, and the
computed UTI value is a linear combination of all created
trees. During the learning process, after each interaction,
the next regression tree is fitted based on the lambda force,
which increases the term impact or reduces its impact. This
force considers how good the term is for a given query and
the impact of its absence in the document.

The UTI-LambdaMART algorithm generalizes over terms
not seen in the query set because the final score obtained is
not word-dependent; thus, the term-document feature values
define the UTI value. Fig. 5 shows an example using the
UTI-LambdaMART algorithm for indexing and query pro-
cessing. At the end of the interactions (in the illustration,
when n = 3), the model is generated. In the indexing time,
for the document ‘‘GX000-14-11495597’’, given a new term
‘‘reheat’’, the UTI value produced is the linear combination
of all regression trees and thus the sum of the terminal nodes
reached by its feature values (f 11, f 16, and f 17). In the query
processing, given a query, the document score is the sum of
UTI values of each query term.

Fig. 6 presents further practical examples of UTI values
produced by our model. Note that UTI values are independent
of the query, being unique for each term and document pair.
For instance, the terms ‘‘food’’ and ‘‘temperature’’ have the
same UTI values when present in queries 8688 and 9513.

A benefit of UTI-LambdaMART, compared to the original
LambdaMART is that we can now model individual term
features not available in the original model. For instance,
we can now include the individual TF and inverse document
frequency(IDF) weight of terms in isolation, whereas in tradi-
tional L2R methods, this information exists only as an aggre-
gated value, such as the sum of all TF values.Moreover, a lack
of information at query processing time, such as BM25 scores
or user profiles, may lead to a loss of quality. We performed
experiments to examine the final balance between the positive
and negative aspects of using UTIs as the only source of infor-
mation for computing the final ranking. Nevertheless, we also
propose a hybrid approach that overcomes the disadvantages
of using only UTI values for the ranking.

B. COMBINING UTIs WITH QUERY-TIME FEATURES
We propose two alternative approaches to adopt UTIs in an
L2R framework and address the lack of query-time informa-
tion that occurs when using UTIs. Both alternatives combine
UTI values computed using our method with traditional L2R
methods.

1) USING UTI VALUES AS A QUERY-TIME FEATURE
The idea is to run the UTI-LambdaMART algorithm to
obtain UTI values. In the following, we use a standard L2R
approach. However, we substitute all features adopted to
generate UTI values by the UTI value itself, complementing
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Algorithm 1 Algorithm LambdaMART for Precomputing UTI
input : number of trees N , set of training instances M, number of leaves per tree L, learning rate η

 The score of each query and
document pair is the sum
of all term-document UTI

output: Model to compute UTI values Ft

 Assign λ and w for
each term-document

1 foreach (q, d, r(d,q)) ∈M do
2 foreach t ∈ q do
3 Ft0((t, d, fs(d,t)))← 0
4 end
5 end
6 for n← 1 to N do
7 foreach (q, d, r(d,q)) ∈M do
8 scores[d, q]← 0;
9 foreach t ∈ q do scores[d, q]← scores[d, q]+ Ftn−1(t, d, fs(d,t)) ;
10 ;
11 end
12 foreach Query q ∈M and each pair of documents (dj, dk ) resulting of q do
13 if r(dj,q) > r(dk ,q) then

14 1λ←

(
1NDCG(dj, dk , q, scores)/(1+ e(scores[dj,q]−scores[dk ,q])

)
;

15 1w← 1λ × (1− (1+ e(scores[dj,q]−scores[dk ,q]))) ;
16 foreach t ∈ q do
17 λ[t, dj, q]← λ[t, dj, q]+1λ/|q|;
18 λ[t, dk , q]← λ[t, dk , q]−1λ/|q|;
19 w[t, dj, q]← w[t, dj, q]+1w/|q|;
20 w[t, dk , q]← w[t, dk , q]+1w/|q|;
21 end
22 end
23 end
24 Create L leaf tree {Rln}Ll=1 on {∀(q, d, r(d,q)) ∈M, and ∀t ∈ q|(t, d, fs(d,t)), λ[t, d, q]};
25 Assign leaf values to {Rln}Ll=1 using the calculated λ and w based on Newton step;
26 foreach x = (q, d, r(d,q)) ∈M do
27 foreach t ∈ q do
28 Update the model Ftn(t, d, fs(d,t)) using parameter η and {Rln}Ll=1
29 end
30 end
31 end
32 ;

it with the remaining features available at query process-
ing time. As a result, the number of features fetched and
processed at query time becomes smaller. The amount of
reduction depends on the number of features at indexing time
and on the project decision regarding features encoded in UTI
values. We show examples in the experimental section.

Fig. 7 shows the complete query processing steps when
using our proposed hybrid approach, highlighting the differ-
ences from Fig. 1 in blue. The first step is similar to that
in any traditional L2R approach—a simple base ranker is
applied to obtain a list of k potentially relevant documents.
In the second step, UTI value, learned as described in Fig. 2b,
is taken as one of the features used by the L2R top ranker as a
substitute for the features adopted to generate the UTI values.
UTI values of query terms are summed up and combined with
the remaining query-dependent features. Note that with this
change, we reduce the number of features to be processed

and fetched by the hybrid approach compared to the approach
described in Fig. 1.

UTI values can encode information not available to tra-
ditional L2R methods because they learn weights for the
individual term entries, whereas traditional methods address
only aggregate query-level features. As a consequence, our
hybrid approach can improve the overall quality of results.
Using two L2R collections, we performed experiments to
validate this hypothesis in the experimental section.

2) USING UTI-LambdaMART AS A BASE RANKER
Another method for creating a hybrid approach is to take
advantage of UTI values in the first step of the query pro-
cessing base ranker. Base rankers are simple methods with
a low computational cost for computing query results [3].
When processing queries with UTI values, the final score for
each document is computed as a simple sum of UTI values for
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FIGURE 5. An example of the UTI-LambdaMART model output for indexing and query processing.

FIGURE 6. Examples of UTI values of terms present in two different
queries. Note that given a term and a document, we always take the
same UTI value, regardless of what the other query terms are.

the documents in the inverted lists of their query terms. This
lowers the computational effort, common in L2R methods
and even traditional IR methods, such as BM25. Thus, our
UTI-based approach fits perfectly as a base ranker.

We illustrate this idea in Fig. 8 The differences from the
architecture described in Fig. 1 are highlighted in blue and
consist of (i) changing the base ranker to use UTI values
and (ii) using the hybrid approach described in Fig. 7. The
goal here is not so much to yield improvements in the ranking
quality but rather to reduce the number of top-k documents
retrieved in the first step of the query processing, thereby
reducing the overall cost of producing the final ranking.

V. EXPERIMENTS
We now present our experimental setup, followed by an
experimental evaluation of the proposed approaches.

A. DATASETS
For our experiments, we used two LETOR 4.0 bench-
mark datasets [7]: Million Query Track 2007(MQ2007) and

Million Query Track 2008(MQ2008). The LETOR collection
was extracted from the GOV2 collection, a document col-
lection containing about 25 million web pages. The three
main reasons for choosing these two datasets are as fol-
lows. First, they are largely adopted in other L2R-related
works [15]–[17], [30]. Second, their meta feature files are
available. Thus, it is possible to extract individual features
and relate terms of documents, which is information that is
required for UTI-LambdaMART.

Third, the document content is available for this collection,
allowing for the extraction of features from the document,
which are useful in the experiments with our method and also
are required by the best baselines we found [15].

LETOR was created by using BM25 [6] as the base ranker
to select an initial set of documents that can be good answers
for each query. Then, L2R methods reorder this initial set of
ranked documents by applying the entire set of features avail-
able to generate the final ranking [37]. Every query-document
pair in the MQ2007 and MQ2008 datasets is represented by
a 46-feature vector that maps the query to documents. All the
features of LETOR are numeric values. Recent studies [16]
introduced 9 extra features related to positional information
of the term queries in passages of the documents. We adopt
this expanded set of features in our experiments. All of these
9 extra features are also numeric values.

Following a procedure adopted in previous works, because
the number of terms in MQ2008 is small for train-
ing, we merged MQ2007 and MQ2008 when processing
MQ2008 such that our training sets became larger. This
procedure was adopted by recent research articles [15], [16]
to increase the training set when using neural networks.
We repeated the same procedure for a fair comparison
of the methods. The validation and test sets remained
unchanged. In total, there are 1,692 queries, 2,727 terms,
69,623 query-document pairs, and 236,774 term-document-
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FIGURE 7. Query processing using a hybrid approach that adopts UTI values to substitute all features
available at indexing times. The L2R model combines UTI values with the remaining features.
Differences from the architecture described in Fig. 1 are highlighted in blue.

FIGURE 8. Query processing using the hybrid approach and adopting a UTI both as a feature of the
L2R process and as a base ranker. Differences from the architecture described in Fig. 1 are
highlighted in blue.

query triples inMQ2007. MQ2008, after the merger, contains
2,477 queries, 2,909 terms, 84,834 query-document pairs,
and 300,442 term-document-query triples.

The LETOR collections were originally created by just
providing feature values for the top-ranked documents to each
query. We here are interested in adding new term features
and are also interested in performing experiments to evaluate
the indexing and query processing times when applying the
experimented L2R methods to these collections. To do so,
we extracted the content of all mentioned documents in the
collectionsMQ2007 andMQ2008. As a result of this process,
the total number of documents in MQ2007 is 65,216, with
a size of 935.2MB of plain text, and the total number of
documents in MQ2008 is 78,593 documents, with a total
of 1100MB of plain text. The total number of posting lists to
represent the frequency of the query terms in the documents
is 7,454,889 in MQ2007 and 9,145,089 in MQ2008.

Table 1 reports a complete list of the features available.
Some of these features are extracted from the TF, IDF, and
TF×IDF values of the terms in the document. These fea-
tures naturally map terms of documents and can be used in
UTI-LambdaMART. In the original LETOR, the sum of the
values for the query terms maps queries to documents. For
instance, LETOR represents as a feature the sum of the TF
values of query terms instead of each individual TF value.

The document length (DL, expressed as the number of terms)
is also computed as a query-independent feature. Each of
these values is computed as a single value for all query terms
from different areas in the document — the body of the text,
the anchor text, the title, the URL, and the entire document—
thereby generating a total of 20 features. Six other features
are derived from the link structure and URL — PageR-
ank, InLink Count, OutLink Count, Number of Slashes in
the URL, Length of the URL, and Number of Child Pages.

Finally, the remaining original LETOR features are
the similarity scores between the documents and queries.
Although features such as the TF can be used to map terms of
documents, these query similarity features are nonusable by
UTI methods because they represent maps between queries
and documents. These features include the BM25 score and
three variations of language model-based (LMIR) functions,
all applied to the same five different areas of the document.
Although we can decompose these values into term to doc-
ument scores, they are still intrinsically related to queries.
This study [7] provides a detailed description of the LETOR
features.

In addition to the 46 original LETOR features, we have
also adopted the nine passage-based features described
by the authors of DeepRank [15]. They divide docu-
ments into smaller portions, named passages, and calculate

VOLUME 8, 2020 70429



S. D. N. Silva et al.: Effective Lightweight L2R Method Using UTIs

TABLE 1. Original features (from 1 to 46) of MQ2007 and MQ2008, plus a set of nine features related to the positions of query terms, used in the baseline
L2R methods.

the TF-IDF, BM25 and language model (LM) scores for each
query-passage pair, picking the maximum, minimum, and
average scores across passages as the nine new features for
the L2R process [15].

When examining the list of features in Table 1, LETOR
features represent maps between queries and documents,
assigning one feature value for each document and query pair.
We divide these features into three distinct groups. First, some
of these features are more related to terms than to queries.
We refer to these as term-related features. This is the case for
the TF and IDF values, which are individual properties of
terms. In this first group, we include features 1-15 of LETOR,
features more related to the queries, such as BM25 scores
or LMIR scores, named query-related or query-dependent
features. We include in the second group features from 21-
40. The third group of features is composed of document
properties that do not depend on the query or the query terms.
This is the case for features 41-46. The nine passage-based
features are also divided into query-related and term-related
groups.

B. BASELINE METHODS
We work with three types of baseline methods for compari-
son: UTI methods, L2R methods and hybrid methods.

1) UTI METHODS
The baseline adopted to comparewith ourUTI-LambdaMART
is the UTI-GP method, which applies genetic programming
to produce UTI values at indexing times. This method was
proposed by [18] and was included for completeness in the
experiments.

The authors provided the UTI-GP implementation; the
methodology and parameter settings adopted follow those
proposed in their article. More specifically, we used
40 generations, a population size of 1000, a tree depth of 17,

a tournament size of 6, a crossover rate of 0.85, a mutation
rate of 0.05 and a reproduction rate of 0.10 to perform 10 runs
with distinct random seeds.

When learning to produce single UTI values for each term,
we are interested in the term-related features. To perform
this task, we use the related features as values associated
with pairs of terms and documents instead of queries and
documents. Thus, we produced the required information term
by term to use in the learning process of UTI-LambdaMART
and UTI-GP. The passage-based extra features of LETOR
are also query-dependent. To replace them as term-document
maps, we included information about the first and second
positions of each term in each document. These two features
represent the positional information available to generate UTI
values and were defined after we observed that even varying
the number of positions from 2 to 10 resulted in no change in
the quality.

The features related to documents can be easily adopted
by associating them with terms or queries. In the experiment,
we investigated their use at both indexing and query process-
ing times. For instance, PageRank [38] can be encoded as a
feature when computing UTI values and as a feature available
to the top ranker when processing queries.

Table 2 summarizes the term-document features that we
adopted. Features 16-17 were adopted to represent the posi-
tions of terms in documents, playing the same role as features
47-55 presented in Table 1. These two features are extracted
from the original documents from the GOV2 collection.
We also investigated if the first term occurrence position
could improve other L2R methods, adding it as an additional
feature. However, we concluded that it would not have a
significant impact on the final performance of the other L2R
methods when passage-based information was adopted.

When producing UTI values with UTI-LambdaMART and
UTI-GP, we adopted features 1-17 mentioned in Table 2 and
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TABLE 2. MQ2007 and MQ2008 term-related versions of features 1-15 available in MQ2007 and MQ2008, i.e. features mapping terms to documents.

combined them with the remaining query-independent fea-
tures available at indexing time. We included features 16-20
in Table 1, producing a total of 22 features available to com-
pute UTI values. These features are exploited only at indexing
time. The stop-words were removed using the INQUERY
stop-words list [39] before extracting these features. It con-
tains 429 words.

2) L2R METHODS
We chose methods from studies that have achieved the best
scores in the existing L2R methods to serve as baselines,
namely, DeepRank [15] and the hierarchical neural matching
model (HiNT ) [16], the best baselines found in the literature
that uses neural network learning methods [20]; the listwise
linear feature-based model coordinate ascent (CA) [40]; and
the original LambdaMART [12]. We use QuickRank [3] to
implement LambdaMART and CA. CA was trained using 21
samples, a window size of 10, and a reduction factor of 25.
All LambdaMART-based models, including our own
UTI-LambdaMART,were trained using 100 trees (N = 100),
with a learning rate of 0.1 (η = 0.1) and number of leaves
of 10 (L = 10). During training, we optimized the average
NDCG with a cutoff of 10 results.

For HiNT and DeepRank, we collected the results reported
by the authors using the MQ2007 and MQ2008 collections
(described in the following section). In addition to LETOR
(MQ2007 and MQ2008) features, HiNT and DeepRank
also extract other features, such as text passages, from the
GOV2 collection (the collection used to create LETOR). The
authors make these features available for a fair comparison
with other methods. We also adopt these extra features in our
experiments.

The traditional L2R methods adopted in LambdaMART
and CA were tested using the full expanded set of 55 LETOR
features mentioned in 1. The deep matching models Deep-
Rank and HiNT adopt passage-level information during
learning. DeepRank obtained better experimental results
with resources automatically learned from the classification
texts and all handcrafted resources (46 standard features in
LETOR). The set of features adopted byDeepRank andHiNT
is similar to the set adopted by the baselines, although their
model does not have an explicit set of features [16].

3) HYBRID METHODS
The experiments combining methods that compute UTI val-
ues with query-dependent features were conducted using

TABLE 3. Number of features adopted by each method at indexing times
and at query processing times. The HiNT and DeepRank methods learn
from the raw text inputs (features equivalent to the 55 adopted by the
other methods).

CA and LambdaMART, referred to as HCA and HLamb-
daMART. When implementing our hybrid approach, we first
produced UTI values using features 1-17 in Table2 and fea-
tures 16-20 in Table 1. The six document features related to
LETOR features (41-46 in Table 1) could be applied both at
indexing time to produce UTI values and at query processing
time. From the observation, they performed better at query
processing, despite being excluded when computing UTI
values in the hybrid approach. As a consequence, in addition
to UTI values, we have features 21-55 in Table 1 at query
processing times of the hybrid approach. Thus, in our hybrid
approach, 22 features are adopted at indexing times and
36 at query processing times. This combination produced
high-quality ranking results.

Table 3 summarizes the features adopted by each method,
describing whether the features are adopted at indexing or
at query processing time. All methods were compared fairly
with the information allotted to them being the same, respect-
ing the restrictions and settings of each method. We also
performed an embedded feature selection, taking the subset
that optimized the results in training [41] for each of the tested
methods. Thus, we selected the best result for each method
and each feature set tested.

4) EVALUATION MEASURES
To evaluate the methods, we adopted MAP, P@N and
NDCG@N. These three evaluation metrics [42] are com-
monly adopted when evaluating the quality of results pro-
duced by search systems [8]. Their values vary from 0,
the worst possible result, to 1, the best possible result. We fur-
ther explain the metrics bellow:

MAP is the mean average precision. It is a metric that
is useful to compare the overall ranking provided by the
systems. The MAP of a set of query results QR, with each
element qri ∈ QR being a list of ranked documents provided
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as a result of a system for a specific query qi in the set of
queries Q, is defined as follows:

MAP(QR) =

∑|QR|
i=1 AvPel(qri)

|QR|
(1)

where AvPel(qri) is the average precision of query result qri.
When examining the list of results for a system, whenever we
find a relevant document, we say that we improve the recall,
and may compute the precision by dividing the number of
relevant documents found so far by the number of examined
results so far. We compute the precision for all positions in qri
at which we find a relevant answer. We assign a precision of
zero for recall levels not reached by the system. For instance,
a system that gives 3 of 7 relevant results in a list of results will
have 3 non-zero precision values and 4 zero precision values.
The average precision takes the average precision at all recall
levels. It is important to say that AvPel(qri) is not defined if
qi has no relevant answer, since there are zero possible recall
levels in this case. For these situations, most of the authors
assign average precision of zero.We follow this strategy here.
P@N is the average value of precision achieved by the sys-

tem when considering the precision when inspecting exactly
N results for each query. The precision for a specific query
when inspecting N results is the number of relevant results
found at the top N results divided by N . P@N presented in
our results is the average for all queries. It is usually adopted
in experiments related to web search, being useful to compare
the quality of the systems at the top of the ranking.
NDCG@N is the average of normalized discounted cumu-

lative gain computed for all queries at the top N results of the
ranking. For each query, NDCG@N is computed as

NDCG@N (QR,REL) =

∑|QR|
i=1

DCG@N (qri)
IDCG@N (reli)

|QR|
(2)

where QR is a set of result lists, qri ∈ QR is the list of results
of the system for query i and is sorted by in decreasing order
of relevance score, REL is also a set of lists, and reli ∈ REL
is the list of relevant results for query i sorted in decreasing
order of score.
DCG@N (qri) is the discounted cumulative gain achieved

by the system for the results of query i (qri) and is computed
as

DCG@N (qri) =
N∑
j=1

2relScore(qri,j) − 1
log2 (j+ 1)

(3)

where qri represents the list of query results provided by the
system to the query i, j is the j-th position of the list and
relScore(qri, j) is the relevance score of the j-th element of
the list qri. In the MQ2007 and MQ2008 collections, the rel-
evance score varies from 0 (non-relevant) to 1 (relevant).

The IDCG(reli) is the ideal discounted cumulative gain,
and is computed as

IDCG@N (reli) =
N∑
j=1

2relScore(reli,j) − 1
log2 (j+ 1)

(4)

where reli is the list of relevant results for query i, sorted in
decreasing order of scores, j is the j-th position of the list and
relScore(reli, j) is the relevance score of the j-th element of
the list. NDCG is a metric broadly adopted when comparing
ranking results of search systems. It gives better values for
systems that provide relevant results closer to the top of the
ranking.

We conducted a two-sided paired t-test for statistical sig-
nificance tests, with a p-value ≤ 0.05. The t-test is the most
adopted and studied statistical test when comparing rankings
of search results [43]–[45].

C. RESULTS
The experimental results are reported according to the
research questions (RQs) presented by us.

1) RQ1: IF WE ADAPT LambdaMART TO COMPUTE UTI
VALUES, WOULD IT RESULT IN AN EFFECTIVE METHOD IN
TERMS OF THE QUALITY OF THE RESULTS ?
The first question references the possibility of modifying
LambdaMART to produce a competitive model to gener-
ate UTI values, applying the learning process at indexing
time to learn weights associated with terms instead of rank
queries. Table 4 reports the results of the MQ2007 and
MQ2008 datasets. Interestingly, when comparing the
UTI-LambdaMART results to those of the original Lamb-
daMART, the results of UTI-LambdaMART are quite close
to those of the original method. A lower computational
cost when ranking at the query processing time is another
benefit of this version. A further investigation reveals that
UTI-LambdaMART takes advantage of themore fine-grained
features owing to a lack of query-dependent features. More-
over, LETOR contains a small set of features available at the
query processing time. Thus, information such as clicks and
other personalized user information could be adopted to offer
more advantages to the original method when compared to
the UTI-LambdaMART version.

Another interesting observation is the quality of results
achieved by UTI-LambdaMART, being superior to that
achieved by UTI-GP. The differences in the results of the
two methods are statistically significant in terms of all met-
rics reported. In addition to the quality of results, it is also
important to report the time required to train the models in
both UTI alternatives. The time required for the training of
UTI-LambdaMART is far less than the time required for
the training of UTI-GP. In our experiments, the UTI-GP
model took approximately three training hours [18], whereas
UTI-LambdaMART took only 5 minutes, just about 2.8% of
the training time required for UTI-GP.

Regarding the questions of how to adapt LambdaMART
to produce UTI values, we need to address the problem
of generating UTI values that produce an index that can
be compressed, since compression is a common practice in
search engines, being applied to improve the time and space
efficiency [8]. A compressed index will take less storage
space and require less I/O operations, generally yielding
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TABLE 4. Performance of UTI-LambdaMART compared to that of UTI-GP (the previous UTI method available in the literature) and to that of the original
LambdaMART. UTI methods apply the learning process at indexing time and use a limited set of features, while the original LambdaMART method
performs the learning at query processing time and uses the full set of features available in the collection.

TABLE 5. Impact on NDCG@10 of UTI-LambdaMART and HLambdaMART when varying the number of decimal places per entry when computing UTI
values on MQ2007.

a gain in performance. In our proposal, we exploited
UTI-LambdaMART to achieve a much smaller index with
low impact in terms of its construction time. Our approach
still allows for the complementary application of standard
compression methods, yielding even greater gains.

Our proposal for index size reduction consists of truncating
the decimal places when computing UTI values. We investi-
gate whether it is most profitable to reduce the size of the UTI
values representation during or after the training. During the
training, in Algorithm 1, every time the function Ftn is evalu-
ated, only the first α decimal places are considered. A smaller
value for α means fewer bytes required for storage per UTI
value.When the reduction occurs after the training, we simply
truncate the final UTI score. The final result analysis of the
quality shows that the second approach is superior with not
only lower quality loss but also lower implementation cost.

Table 5 reports the compression rates achieved with the
number of digits truncated in when computing UTI val-
ues. We report only the results for MQ2007, because the
conclusions and results for MQ2008 are similar. We also
compressed the truncated UTI values using the commonly
used technique of Elias Delta coding [46]. The results are
expressed as the number of bits per entry. In reference to
the amount of compression, each original UTI value (i.e.,
nontruncated) would be represented as a 32-bit floating point
number; thus, a 3-bit representation is equivalent to a 90%
compression rate.

From the results, a small tradeoff between quality and com-
pression rate is observed as we vary the number of truncated
decimal point values. Nevertheless, the results of truncating

UTI values to only one decimal digit yield virtually no reduc-
tion in NDCG@10, thereby achieving a compression rate of
approximately 79%. When truncating to zero decimal digits,
we observed a clear negative impact on the NDCG@10 val-
ues, indicating that the best tradeoff was achieved when
setting the system to use just 1 decimal place. In conclusion,
we may say that the experiments with compression indicate
the possibility of reducing the average number of bits required
to store each UTI value from 18 to 6 bits, without significant
loss in the quality of the results.

2) RQ2: WOULD THE COMBINATION OF UTI METHODS AND
L2R METHODS AT QUERY PROCESSING TIME PRODUCE
HIGH-QUALITY RESULTS ?
As previously discussed, UTI models are not able to handle
features that are available only at query processing times.
This limitation raises questions about how to take advan-
tage of them in practical systems. One of the solutions
is to use UTI values in the hybrid architecture proposed
in Section IV-B. We here perform experiments to evaluate the
quality of results provided by this combination.

When considering the results of the methods presented
in Tables 4 and 6, we can see that when comparing
UTI-LambdaMART to the best baselines found in the lit-
erature, both DeepRank and HiNT produce better results,
superior of both of the collections and in terms of all met-
rics considered. However, Table 6 shows that our hybrid
HLambdaMART produces scores results superior to or on
par with those of the best baselines, according to the metric
and collection tested. HLambdaMART was superior to HiNT
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TABLE 6. Performances of CA,LambdaMART, DeepRank, HiNT and the hybrid methods, combining UTI-LambdaMART with CA (HCA) and LambdaMART
(HLambdaMART). A significant performance degradation of HLambdaMART is denoted as (O).

in NDCG@1 and P@1 on MQ2007, with statistically sig-
nificant differences in the results and improvements of 4.9%
and 4.5%, respectively. For the remaining comparisons, there
were no statistically significant differences. For instance,
onMQ2007, the NDCG@10 for HLambdaMARTwas 0.495,
whereas it was 0.490 for HiNT. Differences between HiNT
andHLambdaMARTwere not statistically significant, except
for NDCG@1 and P@1 onMQ2007, where HLambdaMART
outperforms HiNT.

For MQ2007 and MQ2008, the hybrid models outperform
their respective traditional models LambdaMART and CA,
which indicates the superiority of our hybrid approach. For
instance, on MQ2007, the NDCG@10 for HLambdaMART
was 7.8% higher than the one achieved by LambdaMART,
and the NDCG@10 for HCA was 11.6% higher than the
one achieved by CA. In both cases, the improvements are
statistically significant.

3) RQ3: IS UTI-LambdaMART METHOD A GOOD
ALTERNATIVE BASE RANKER ?
UTI-LambdaMART is useful for compiling a large set of
initial features and producing a first cut ranking result to
be used at query processing times by other L2R methods,
which may be included in our HLambdaMART. In these
cases, UTI-LambdaMART is used as a base ranker. We per-
formed experiments to verify the impact of this alternative to
compare with BM25, the base ranker adopted to create the
MQ2007 and MQ2008 datasets. Fig. 9 presents the results of
MQ2007. We do not present the results of MQ2008 because
the conclusions and results are similar to those of MQ2007.

In Fig. 9, UTI-LambdaMART outperforms BM25 as a base
ranker. For example, from the top-10 results to be processed,
UTI-LambdaMART achieves a higher NDCG@10 score than
that of BM25 for the top-20 results. This result shows that
UTI-LambdaMART is effective as a base ranker in web

FIGURE 9. Quality of results achieved by HLambdaMART when using
UTI-LambdaMART and BM25 as base rankers of MQ2007 for distinct sizes
of the top-k results transferred from the base ranker to HLambdaMART.

search, since we can use it to obtain the same quality
by processing fewer results in the top ranker. The com-
bined advantages of our method are discussed in the next
experiment.

4) RQ4: IN ADDITION TO QUALITY ISSUES, WOULD THE USE
OF UTI-LambdaMART PRODUCE A FAST L2R ALTERNATIVE
SOLUTION ?
To make it easier to understand the advantages and disadvan-
tages of adopting HLambdaMART, we compare the time per-
formance of our method to that of the original LambdaMART
method, comparing a system that adopts the architecture
presented in Fig. 1 to our proposal presented in Fig. 8, thus
using UTI values to produce the base ranker and our proposed
hybrid method that combines UTI values with features not
available at indexing times. The time performance experi-
ment presented here was executed using a machine with an
Intel Core i5-4200U 1.6-GHz CPU, and 8 GB of memory.
The time performance experiment described here adopts the
indexing and searching systems provided by Daoud et al [4],
using BMW as the query processing algorithm.

We start by comparing the time and space required by each
method when indexing the collections. For LambdaMART,
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TABLE 7. LambdaMART and HLambdaMART time (seconds) to index and
space (MB) when applied to MQ2007 and MQ2008.

we need to store the frequency of the term in the collection,
which is used by the base ranker and by the top ranker, and
the maximum, minimum and average frequencies of each
term in the document passages in the collection, information
required to compute passage-based features from 47-55 of
Table 1. Features from 16-20 and 41 to 46 require a smaller
storage space that is proportional to the number of indexed
documents. The remaining features can either be computed
at query processing time or have a storage space proportional
to the vocabulary of the collection, such as the IDF values in
features 6-10 of Table 1.

For HLambdaMART, it is necessary to add the index of
UTI values, which has a number of entries equal to the
number of frequency posting lists in the collection. Table 7
presents the space required by the index of MQ2007 and
MQ2008. The HLambdaMART required an index that is
approximately 27% greater both in MQ2007 and MQ2008.
This is the additional cost of using this method. Regarding
the time for indexing, HLambdaMART required 15% extra
time when indexing MQ2007 and approximately 18% extra
time for indexing MQ2008. UTI index is generated by taking
the indexes already built to process queries, which reduces
the overhead to create it.

Table 8 presents the average time for processing queries
in the base ranker and top ranker in both collections. When
looking to the results at the top ranker, we see that the time
needed to run HLambdaMART was approximately 38% the
time required by LambdaMART on MQ2007 and 35% of
the time on MQ2008. The performance gain is a natural
consequence of (i) the reduction in the number of docu-
ments that are inspected by the system, since our approach
using UTI method as the base ranker reduces the number
of documents inspected to half the number inspected when
using BM25, and (ii) the reduction in the number of features
processed since HLambdaMART fetches and processes only
36 features, while the original LambdaMART method pro-
cesses 55 features. We thus note that the input size given to
HLambdaMART was approximately 32% the input given to
LambdaMART, which explains the gain in performance. This
experiment illustrates the potential gain in time performance
at query processing time achieved when using our proposed
ideas, results that are achieved with a gain in the quality of
results compared to those of the original LambdaMART.

When looking to the times achieved by the base ranker,
HLambdaMARTwas 38% faster for MQ2007 and 37% faster
for MQ2008. The base ranker of HLambdaMART is faster
because it: i) computes a simple ranking function that adds

TABLE 8. LambdaMART and HLambdaMART average times,
in milliseconds, to run base ranker (base) and top ranker (top) on
MQ2007 and MQ2008.

only UTI values, whereas BM25 requires math operations to
compute the ranking, and ii) it requires a smaller number of
top results to produce the final ranking, as shown in Fig. 9.

A comparison of our method to the baselines HiNT and
DeepRank other methods based on neural networks recently
proposed in the literature, would be not only a difficult task
but also unfair. First, these two methods use the raw text and
data from the collection as the input to the L2R process at
query processing time; this simple procedure slows down the
performance of the methods compared to methods that take
explicitly precomputed feature values, as discussed recently
by Ji et al. [21]. Adding the raw text to the L2R process opens
the possibility of improving the quality of results, with the
two methods being among the state-of-the-art L2R methods
when considering the quality of results, but it also makes
the methods expensive, since the neural network adopted by
them needs to process the raw data at query processing time.
A second important factor is that neural network methods
require specialized hardware to run, which makes a time
comparison difficult to perform.

If we compare the methods using the same hardware,
without specialized hardware with GPUs, the neural network
methods would become extremely slow, since these meth-
ods take advantage of massive parallel operations and use
the parallelism of GPUs to accelerate the query processing.
From these observations, we limit ourselves and say only that
LambdaMART is known to be a fast L2Rmethod and requires
less computational resources than current methods based on
neural networks, such as HiNT and DeepRank. By obtaining
a quality of results similar to that of these methods, we con-
clude that our proposal is a competitive alternative solution
for L2R.

VI. CONCLUSION AND FUTURE WORK
In this work, we propose UTI-LambdaMART, a modi-
fied LambdaMART ranking algorithm designed to gen-
erate UTI scores for each term and document pair at
indexing time. We also propose hybrid methods that combine
UTI-LambdaMARTwith other L2Rmethods, producing new
L2Rmethods named HCA and HLambdaMART. Our experi-
mental results show that HCA and HLambdaMART produce
results on par with those of the state-of-the-art L2R method
HiNT, which adopts a neural network model. Furthermore,
our architecture resulted in a reduction in the time needed to
process queries, which is an important property for real-world
search systems.
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As a future work, we plan to investigate a combination
of HiNT and our hybrid approach. The idea is to study a
hybrid approach where HiNT would be used as a top ranker.
We also intend to investigate the relationships between the
different rankings as an additional feature in our hybrid
approach. In this case, the final ranking would be computed
by combining results produced by a set of other ranking
methods.

As another important future direction, we plan to com-
bine our proposal with other optimization methods related
to L2R, which can further improve either the quality of the
results or the performance of the L2R methods. For instance,
we plan to explore the possible combination of the methods
proposed here with the cascade methods proposed in the
literature [28], [29], [31].

We also plan to study the effect of methods developed
to produce more stable rankings, namely, risk-sensitive L2R
methods, and study their impact when applied to UTI meth-
ods. Risk-sensitivity is a subarea of L2R that tries to learn
models that are good on average while at the same time
reducing the risk of performing poorly in a few but important
queries (e.g., medical or legal queries) [5]. Their usage when
combined with UTI values represents a challenge, since when
computing UTI values, the learning is performed at indexing
times.
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