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ABSTRACT One of the most important issues with HVDC systems are the occurrence of various faults
that can lead to considerable electrical power losses, serious damage to expensive equipment and huge
financial losses. Hence, it is highly required to design an accurate and automatic fault location method in
HVDC systems for maintaining uninterrupted supply of energy and protecting sensitive equipment such as
rectifiers and inverters. Accordingly, this paper proposes a new hybrid system based on adaptive neuro-fuzzy
inference system (ANFIS) with optimal parameters and Hilbert-Huang (HH) transform for fault location in
voltage sourced converter-HVDC (VSC-HVDC) systems. The proposed fault location method consists of
three major sections. In the first section, HH transform is applied to extract new features from current signal.
In the second part, ANFIS uses the extracted features to estimate the fault location in transmission lines.
Learning algorithm determines the accuracy and efficiency of each machine-learning algorithm. In the third
section of the developed system, enhanced version of particle swarm optimization (PSO) algorithm named
chaotic dynamicweight PSO (CDWPSO) algorithm is implemented as learning algorithm to train theANFIS.
The developed fault detection and location system was tested on a VSC-HVDC system with 250 km length
and the obtained results using MATLAB simulations have shown that combination of new features, and
CDWPSO-based ANFIS has high accuracy in fault detection and location in VSC-HVDC systems. High
fault location accuracy, robust performance of neuro-fuzzy system, optimal training of ANFIS, extraction of
novel effective features from current signal and fault location only with six features are the main contribution
of the developed system.

INDEX TERMS HVDC transmission, feature extraction, fault location, fuzzy neural networks, Particle
swarm optimization.

I. INTRODUCTION
High-voltage direct current transmission lines or HVDC sys-
tems are an effective option for transmission of huge amounts
of electrical energy from power plants that are located in
remote areas such as offshore wind farms [1], [2]. These
systems have crucial function in modern power grids due
to their potential of long distance transmission and large
capacity [3]–[5]. Over the past few decades, the appearance
of semiconductor-based power devices, especially insulated-
gate bipolar transistors (IGBT), have led to the development
of voltage source converters (VSC) for transmission of elec-
trical power.
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The VSC-based HVDC system (VSC-HVDC) has couple
of advantages compared to common HVDC systems such as
self-reliant control of reactive and active power, reversal of
direction of power with no need for changing the polarity
that is very beneficial in multi-terminal DC systems, voltage
support at the converter node that is very advantageous for
stability improvement, and no demands or fast communica-
tion between converter terminals [6].

The VSC-HVDC systems have widespread applications in
the fields of modern power networks such as offshore wind
farms, renewal of urban power networks, and island electric
power supply and many other applications [7]. Power loss,
serious damage to expensive and sensitive equipment such
as converters and rectifiers, and huge financial losses are
some destructive consequences of an undetected fault within
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the VSC-HVDC systems. Due to long transmission lines,
varied topography, and harsh environmental condition, fault
location in VSC-HVDC systems become an extremely tough
task for electrical engineers and experts. Thus, it is of utmost
importance to design and develop an accurate and automatics
fault location schemes for VSC-HVDC systems [8].

Given the importance of the issue, several studies have
been conducted in recent years by researchers. Schemes
based on differential protection are frequently utilized for
fault location and HDVC systems protection. Generally, dif-
ferential protection based approaches offer a swift response
time and a precise operation. Furthermore, there is no need
for any particular hardware for signal sampling with high
sampling rate. However, needing for communication link
between sending/receiving terminals makes these methods
more expensive and less dependable as their accuracy rely
on the communication media [9]–[12].

Fault detection and location schemes which exploit the
travelling wave are the most popular approach that has
been investigated by researchers [13]–[20]. Travelling wave-
based methods, by knowing the wave velocity and wave-head
arrival time seen from the contrary terminal, the fault location
can be assessed with high accuracy. Themost important bene-
fits of travelling wave-based methods are their high accuracy
and swift response time. In travelling wave-based methods,
the discriminative characteristics of the these waves could
be extracted from the current signal (I) and voltage signal
(V) by using different feature extraction techniques such as
singular value decomposition (SVD), wavelet decomposition
transform (WDT), fast Fourier transform (FFT), and autore-
gressive method (ARM). The extracted features can used as
the input of machine learning algorithms such as support
vector machine (SVM) with different kernel functions, mul-
tilayer Perceptron neural networks (MLPNN), support vector
regression (SVR), fuzzy logic systems (FLS), radial basis
function neural network (RBFNN), random forest (RF), and
other machine learning algorithms. In general, these features
can be grouped into frequency domain and time domain
features [21], [22].

According to published research works regarding the fault
location in VSC-HVDC systems, effective feature extraction
method and proper type of machine learning algorithm have
huge impact on fault location accuracy. In this article, appli-
cation of adaptive neuro-fuzzy inference system (ANFIS)
with optimal parameters and effective time-frequency-energy
domain features achieved by Hilbert-Huang (HH) transform
is proposed for fault location purpose in VSC-HVDC sys-
tems. The HH transform is a novel non-stationary signal
analysis method, which employs the concept of instantaneous
frequency and can capture informative and effective features
from frequency and time domain during fault occurrence.
ANFIS employ a combination of linguistic knowledge and
numeric information to analyze a process. The ANFIS has
several advantages such as robust performance, ability to cap-
ture the nonlinear structure of a process, adaptation capability,
and fast learning capacity. The ANFIS has been successfully

implemented for fault detection, function approximation,
time series forecasting, control, and nonlinear processesmod-
elling [23]–[27].

The efficient design of ANFIS-based schemes for fault
location in VSC-HVDC systems need for accurate parameter
training for further accuracy and strengthen performance.
Combination of least squares (LS) method and back prop-
agation (BP) is the commonly utilized learning algorithm
for ANFIS. Both of LS and BP are derivative-based meth-
ods, which have weak performance in ANFIS training [28],
[29]. In the developed method, we used enhanced version of
particle swarm optimization (PSO) algorithm named chaotic
dynamic weight PSO (CDWPSO) algorithm as learning algo-
rithm. The CDWPSO is a newmetaheuristic algorithm that its
high accuracy in solving complicated and nonlinear optimiza-
tion problems has been proved [30].

II. BASCI CONCEPTS
In the proposed method, combination of HH transform,
ANFIS and CDWPSO algorithm are utilized. In this section,
these algorithms are introduced.

A. ANFIS
ANFIS is a powerful machine-learning algorithm that com-
bines artificial neural networks concept with fuzzy logic.
ANFIS is consisted of five main layers. The second layer
parameters known as Antecedent parameters and parame-
ters between third and fourth layer known as Conclusion
parameters determine the performance of ANFIS. Standard
ANFIS uses combination of LS and BP learning algorithm
for tuning these parameters [33]. ANFIS utilizes K-Means
clustering algorithm for fuzzy rules extraction. According
to computed cluster centers for input data and Euclidean
distance of input samples from cluster centers, fuzzy rules
are obtained automatically.

B. OPTIMIZATION ALGORITHM
PSO is a nature-based stochastic optimization algorithm that
is motivated from social behavior of fishes and birds in a big
group. The PSO algorithm is very popular because of its sim-
plicity, easy implementation and acceptable accuracy. How-
ever, this algorithm has some basic weaknesses especially
in local search phase. In order to overcome this drawback,
CDWPSO algorithm is presented in [30]. In the CDWPSO
algorithm, a dynamic weight and a chaotic map are utilized
to modify the global and local search capabilities. More detail
regrading CDWPSO algorithm can be found in [30].

C. HH TRANSFORM
The study and decomposition of nonstationary and nonlin-
ear signals into orthogonal constituent is a problem regard-
ing distinct fields of the electrical engineering. The wavelet
and Fourier analysis represent traditional decomposition
approaches which have been applied to nonstationary and
nonlinear signals processing with success. Recently, a new
adaptive method for time-frequency analysis known as HH
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FIGURE 1. The main structure of the developed fault location method.

transform has been introduced. The HH transform is able
to compute the instantaneous amplitude and frequency of
nonstationary and nonlinear signals like current and voltage
signals of HVDC systems. Unlike WDT and FFT, the HH
transform does not involve the concept of frequency resolu-
tion or time resolution, but introduces the concept of instan-
taneous frequency. More details regarding HH transform can
be found in [32], [33].

III. PROPOSED METHOD
This study puts forward a hybrid method for fault locating
in VSC-HVDC transmission line using one terminal current
signal and optimized neuro-fuzzy system. The proposed fault
location system consists of three major modules as shown
by Figure 1. The proposed fault location system makes full
exploit of the time, frequency and energy information to grab
the fault’s main attributes. In the second module, ANFIS uses
the extracted features to estimate the fault location in trans-
mission lines. Learning algorithm determines the accuracy
and efficiency of each machine-learning algorithm. In the
third module of the proposed method, CDWPSO algorithm
is used as learning algorithm to train the ANFIS with highest
accuracy.

In Figure 2, a VSC-HVDC system and its main parts
including converter station, HVDC system pole, AC and DC
filter, smoothing reactor, DC capacitor, converter reactor,
reactive power source, converter transformers, DC transmis-
sion lines etc. are illustrated. The faults that happen in h-j
section are external faults, and faults that occur in j-k section
are internal faults. In the AC section, decoupling of signals
and computing zero-mode and aerial-mode are required for
fault location purpose. The different modes of current signal,

FIGURE 2. VSC-HVDC transmission system.

including 0-mode and 1-mode, could be computed in term of
Ip and In using Eq. (1):
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In Eq. (1), I0, I1, Ip and In indicate the 0-mode current,
1-mode current, positive pole current and negative pole cur-
rent respectively.

In the simulations, the propagation coefficient γi and surge
impedance Zi are expressed by Eq. (2) and (3):

Zi =

√
Ri + jωLi
Gi + jωCi

(2)

γi = αi+jβi (3)

In Eq. (2), i indicates i-th mode, Ri shows resistance, Li
indicates inductance, Ci is capacitance and Gi indicates the
conductance. In Eq. (3), αi and βi are attenuation and dis-
tortion constants respectively. In addition, traveling wave
velocity can be calculated using following equation:

νi =
ω

βi
(4)

For our VSC-HVDC test system with 250 km length, β0 is
0.0431and β1 is 0.0143. When we compare β0 and β1, it can
be seen that ν1 is substantially higher than ν0. In order to
enhance the vividness of the stated formulas, Figure 3 shows
the extension of each mode (I0 and I1) component during a
fault occurrence.

In VSC-HVDC transmission lines, the amount of natural
frequency is only connected to velocity of traveling wave and
distance of fault. In real VSC-HVDC systems, huge shunt
capacitors are installed on both terminals of the DC lines. As a
result, the fault distance can be stated as follow:

l =
ν

2f1
(5)

In Eq. (5), l represents the fault distance and f1 indicates the
primary natural frequency constituent. Precisely extraction
of natural frequency and velocity calculation of traveling
wave determine the accurate fault location in VSC-HVDC
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FIGURE 3. The extension of each I0 and I1.

systems. Hence, it is extremely challenging task to estimate
the distance of fault simply by utilizing natural frequency.

The rate of variance contribution could be proper index for
measuring the relative importance of the main constituent.
Accordingly, in order to distinguish the external and internal
area, high-frequency variance contribution rate (HVCR) of
intrinsic mode function (IMF) constituents are utilized in the
developed method.

Di =
1
N

N∑
k=1

|ci (k1t)|2 −

[
1
N

N∑
k=1

ci (k1t)

]2
(6)

Mi =
Di
n∑
i=1

Di

(7)

HVCR = 100×M1 (8)

In these equations, Di and ci represent the variance and coef-
ficients of i-th IMF respectively. In addition, 1t represents
the sampling rate and time interval between two sampling
measure.

For an intelligent fault location scheme, it is an extremely
essential issue that the developed model selects the informa-
tive and educational features to learn the process and make
an accurate model between input-output pairs. According to
conducted researches in the field of signal processing, HH
transform can capture the information of frequency and time
domain. The developed method uses the sampled current
signal at single-ended DC bus to locate unipolar short-circuit
faults. It is a well-known fact that I0 and I1 have different
transmission velocities, because of the faster attenuation of
I0. Therefore, using instantaneous frequency analysis of the
first IMF component, the time delay can be achieved. Subse-
quently, the boundary spectrum of I1 is as the characteristic
frequency connected to the distance of fault. Figure 4 illus-
trate the wave shape of extracting temporal data. In addition,
Figure 5 shows the boundary spectrum of HH transform.

The developed model is simulated by MATLAB in order
demonstrate the recognizing capability of the HVCR in
different fault distances. The obtained result shown by
Figure 6 confirms that fault area is connected to HVCR

FIGURE 4. The I1 instantaneous frequency investigation related to fault at
15 km (for internal fault occurrence at negative pole) from side M.

FIGURE 5. The boundary spectrum of I1 in 15 km from side M for internal
fault occurrence at negative pole.

value. In this figure, the horizontal axis shows the fault dis-
tances in Km and vertical axis shows the value of HVDC
in percent. A proper criterion for separating the external and
internal sections could be defined via simulation as faults take
place in the vicinity of capacitors. Accordingly, 0.004 with
additional margin is selected for HVCRset .

High-frequency energy (ω1) of I1 and I0, and energy atten-
uation coefficient (λ) of I1 and I0 are utilized for validating
the fault distances as well as characteristic frequency of I1 and
time difference between I1 and I0. The λ and ω1 are defined
by Eq. (9) and Eq. (10):

ωi =
1
N

N∑
k=1

|ci (k1t)|2 (9)

λ =
ωmin

ωmax
(10)

In these equations, for I0, ωmax is ω2, for I1, ωmax is ω4 and
ωmin is the high-frequency energy ω1.
For ANFIS training, the developed method take the neg-

ative pole grounded fault instances that take place on the
transmission line for each five km. Each fault sample only
use current signal to achieve required features. According
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FIGURE 6. The HVCR value of I1 at side M in various distances for internal
fault occurrence at negative pole.

FIGURE 7. Extracted feature (time difference between I0 and I1) for
occurred faults in various locations.

to obtained results from MATALB simulations, it is more
appropriate to normalize the inputs in the range of [01],
in order to improve the generalization ability and remove the
differences of multiple input cases. Eq. (11) is utilized for
normalization purpose:

fnew =
f − fmin

fmax − fmin
(11)

For the purpose of better explaining the validity of the pro-
posed features, Figures 8 to 13 show the relationship between
the fault distance and extracted feature. In these figures,
the horizontal axis shows the fault distances in Km and
vertical axis shows the value of feature. As illustrated by
Figure 7, the time differences between I0 and I1 (feature 1) are
approximately linear to the fault distance and characteristic
frequency of I1 (feature 2) decrease when the fault distance
increases (Figure 8).

From Figures 9 to 12, it can be seen that the energy atten-
uation coefficient λ (features 3 and 4) and high-frequency
energy ω1 (features 5 and 6) have normal fluctuations with
various fault distances. It can also be seen that the time
differences between I0 and I1 was used for coarse global
refinement, and characteristic frequency of I1, the energy

FIGURE 8. Extracted feature (characteristic frequency of I1) for occurred
faults in various locations.

FIGURE 9. Extracted feature (λ of I0) for occurred faults in various
locations.

FIGURE 10. Extracted feature (λ of I1) for occurred faults in various
locations.

attenuation coefficient λ as well as high-frequency energy ω1
were used for fine local refinement.

In the developed method, six extracted features by HH
transform are implemented as the inputs of optimizedANFIS.
The extracted features by HH transform are as follow:

F1: Time difference between I0 and I1
F2: Characteristic frequency of I1
F3: Energy attenuation coefficient (λ) of I0
F4: Energy attenuation coefficient (λ) of I1
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FIGURE 11. Extracted feature (ω1 of I0) for occurred faults in various
locations.

FIGURE 12. Extracted feature (ω1 of I1) for occurred faults in various
locations.

F5: High-frequency energy (ω1) of I0
F6: High-frequency energy (ω1) of I1
In the second module, ANFIS is used as intelligent estima-

tor. The issue of learning algorithm type and its convergence
speed is an extremely important topic in building ANFIS
model. In ANFIS training, antecedent parameters (found in
the second layer) and conclusion parameters (found between
third and fourth layers) are selected using learning algorithm.
In this study, the mentioned parameters are selected by using
CDWPSO algorithm. In the proposed method, we used mean
square error (MSE) as fitness function. The mathematical
representation of MSE is as follow:

MSE =
1
N

N∑
i=1

(di − Oi) (12)

In Eq. (12), Oi is the true output value of i-th training sam-
ples or target di is the expected value, and N is the number of
samples.

FIGURE 13. Membership functions of second input selected by different
approaches.

FIGURE 14. MSE of CWDPSO-based ANFIS and standard ANFIS.

TABLE 1. Antecedent parameters of second input selected by different
algorithms.

IV. SIMULATION RESULTS
In this section, the performance of the propounded method is
investigated.

A. DATA
In the experiments, VSC-HVDC system with dual-loop
proportional–integral (PI) control as shown by Figure 2 is
modeled in computer software, MATLAB environment. The
DC voltage of test system is 110 KV, nominal power is
75 megawatt (MW), the length of the transmission line is
equal to 250 km and the grounding resistance is 10 �.
In addition, capacitor’s capacity in the vicinity of terminal is
1 millifarad (mF). In order to generating training dataset for
ANFIS, negative pole grounded fault cases measured for per
5 km. Therefore, we have 50 sample for training the ANFIS.

B. PERFORMANCE OF THE PROPOSED METHOD
To verify the estimation accuracy of the unknown fault
location, 14 unipolar ground fault cases are simulated with
random distances in MATLAB. The CDWPSO algorithm
is utilized to train the ANFIS. Input variables are modeled
using Gaussian membership function (MF). In this case,
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TABLE 2. Performance of anfis with different learning algorithms and inputs.

three membership functions are utilized for each input and
eight fuzzy rules are obtained. Each Gaussian MF has two
parameters including sigma (σ ) and center (C). Therefore,
we have 6 × 3 = 18 antecedent parameters and 8 × 7 =
56 conclusion parameters. Thus, (6× 3) + (8× 7) = 74
unknown parameters are optimized using CDWPSO to build
an ANFIS with the highest accuracy.

In the standard ANFIS, combination of LS and BP
(LS+BP) is used as the learning algorithm. Table 1 shows
the antecedent parameters of second feature (Characteristic
frequency of I1) selected by the CDWPSO and LS+BP. These
membership functions build according on selected parame-
ters are shown in Figure 13. According to Figure 13, it can be
observed that there is remarkable difference between mem-
bership functions built by the LS+BP and CDWPSO. These
parameters have significant effect on ANFIS performance.
Therefore, ANFIS will have different performance using dif-
ferent parameters.

In order to investigate the accuracy of the developed
method in fault location at unknown distances, 14 ran-
domly unipolar ground fault cases are considered. In order
to assess the HVCR criterion, two external fault instances
are considered in the simulation and experiments. The results
achieved by the proposed method, optimally trained ANFIS
(CDWPSO-based ANFIS) and six extracted features using
HH transform, are listed in Table 2. In this table, NP means
negative pole and PP means positive pole.

For comparison with standard ANFIS, the obtained results
using LS+BP-based ANFIS are also listed in this table.
In Figures 14 and 15, the accuracy of different meth-
ods are compared. It can be seen that input type, cur-
rent signal or extracted features, and learning algorithm,
LS+BP or CDWPSO, have significant impact on accuracy
of ANFIS and fault location estimation. The main contribu-
tion of the proposed method is improving the performance
of ANFIS by using new learning algorithm, improving the
robustness of ANFIS, extracting new effective features from

TABLE 3. Performance of optimized anfis in presence of noise.

current signal and enhancing the fault location accuracy in
VSC-HVDC systems.

C. EFFECT OF NOISE
In a real VSC-HVDC system, there are many electromagnetic
disturbances and noise resources that affect the measure-
ments. Therefore, developed method should have ability to
handle available noises and locate the fault with high accu-
racy. In this subsection, the performance of developedmethod
is investigated under different noise levels and obtained
results are listed in Tables 3 and 4. For this purpose, dif-
ferent signal-to-noise (SNR) are considered, and the value
of MSE for 14 test samples is listed. In this experiment,
CDWPSO-based ANFIS is used for fault location. The
obtained results prove that the proposed method has good
performance even when there are noise. This experiment
shows that the extracted features improve the performance
of ANFIS when there are noise. Moreover, the developed
method will have a better anti-noise ability through collecting
more training samples with different noise levels.

D. COMPARISON AND DISCUSSION
Because of the importance of accurate and fast fault location
in VSC-HVDC systems, number of surveys and studies have
been done in over the past years and various schemes have
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FIGURE 15. Performance of CWDPSO-based ANFIS and comparison standard ANFIS.

TABLE 4. Performance of different methods.

FIGURE 16. Performance of different methods.

been proposed by researchers. For example, in [34] authors
have introduced a new method for fault location on VSC-
HVDC transmission line using one terminal current data and
the natural frequency of distributed parameter line model.
In this method, Prony algorithm to obtain natural frequency.
In [35] authors have proposed a one-end gap-based method
for fault location in VSC-HVDC systems. In this method, cur-
rent signal during fault occurrence is used as the initial input
signal. In this method, frequency spectrum is produced using

post-fault current time series for measuring the gaps between
the contiguous peak frequencies. Table 4 and Figure 16 show
and compare the performance of different method in term
of MSE and the used inputs. The obtained results and com-
parisons show that the proposed method has much better
performance and accuracy than other similar fault location
methods.

V. CONCLUSION
In this study, an intelligent and accurate method based on
ANFIS proposed for fault location in VSC-HVDC systems.
In the proposed method, time and frequency domain features
extracted in order to improve the ANFIS performance and
fault location accuracy. Furthermore, CDWPSO algorithm
used for ANFIS training instead of conventional approach,
LS+BP. In first experiment, the performance of CDWPSO-
based ANFIS and standard ANFIS tested using two kind of
inputs: raw data (current signal) and proposed features (six
extracted features from current signal using HH transform).
The value of MSE for standard ANFIS using raw data
and proposed features was 0.8774 and 0.1839 respectively.
In addition, the value of MSE for CDWPSO-based ANFIS
using raw data and proposed features was 0.5128 and
0.0592 respectively. The obtained results show the high
impact of input type and learning algorithm. Moreover,
the performance of the proposed method is much better
than other similar methods in fault location in VSC-HVDC
systems.

70868 VOLUME 8, 2020



R. Rohani, A. Koochaki: Hybrid Method Based on Optimized Neuro-Fuzzy System and Effective Features

REFERENCES
[1] Q. Huai, K. Liu, L. Qin, X. Liao, S. Zhu, Y. Li, and H. Ding, ‘‘Backup-

protection scheme for multi-terminal HVDC system based on wavelet-
packet-energy entropy,’’ IEEE Access, vol. 7, pp. 49790–49803, 2019.

[2] B. Gustavsen and Y. Vernay, ‘‘Measurement-based frequency-dependent
model of a HVDC transformer for electromagnetic transient studies,’’
Electr. Power Syst. Res., vol. 180, Mar. 2020, Art. no. 106141.

[3] J. Chen, L. Li, F. Dong, X. Wang, H. Sheng, C. Sun, and G. Li,
‘‘An improved coordination method of multi-terminal MMC-HVDC sys-
tem suitable for wind farm clusters integration,’’ Int. J. Electr. Power
Energy Syst., vol. 117, May 2020, Art. no. 105652.

[4] S. Xue, C. Gu, B. Liu, and B. Fan, ‘‘Analysis and protection scheme of
station internal AC grounding faults in a bipolar MMC-HVDC system,’’
IEEE Access, vol. 8, pp. 26536–26548, 2020.

[5] X. Chu and H. Lv, ‘‘Coupling characteristic analysis and a fault pole
detection scheme for single-circuit and double-circuit HVDC transmission
lines,’’ Electr. Power Syst. Res., vol. 181, Apr. 2020, Art. no. 106179.

[6] M. Ahmad, W. Zhixin, and Z. Yong, ‘‘An improved fault current limiting
circuit for VSC-HVDC transmission system,’’ Int. J. Electr. Power Energy
Syst., vol. 118, Jun. 2020, Art. no. 105836.

[7] X. Wu, L. Xiao, J. Yang, and Z. Xu, ‘‘Design method for strengthen-
ing high-proportion renewable energy regional power grid using VSC-
HVDC technology,’’ Electr. Power Syst. Res., vol. 180, Mar. 2020,
Art. no. 106160.

[8] R. Irnawan, F. F. da Silva, C. L. Bak, A. M. Lindefelt, and A. Alefragkis,
‘‘A droop line tracking control for multi-terminal VSC-HVDC trans-
mission system,’’ Electr. Power Syst. Res., vol. 179, Feb. 2020,
Art. no. 106055.

[9] A. S. Silva, R. C. Santos, J. A. Torres, and D. V. Coury, ‘‘An accurate
method for fault location in HVDC systems based on pattern recognition
of DC voltage signals,’’ Electr. Power Syst. Res., vol. 170, pp. 64–71,
May 2019.

[10] X. Chu, ‘‘Unbalanced current analysis and novel differential protection
for HVDC transmission lines based on the distributed parameter model,’’
Electr. Power Syst. Res., vol. 171, pp. 105–115, Jun. 2019.

[11] X. Chu, ‘‘Transient numerical calculation and differential protec-
tion algorithm for HVDC transmission lines based on a frequency-
dependent parameter model,’’ Int. J. Electr. Power Energy Syst., vol. 108,
pp. 107–116, Jun. 2019.

[12] A. E. B. Abu-Elanien, A. A. Elserougi, A. S. Abdel-Khalik,
A. M. Massoud, and S. Ahmed, ‘‘A differential protection technique
for multi-terminal HVDC,’’ Electr. Power Syst. Res., vol. 130, pp. 78–88,
Jan. 2016.

[13] D. Wang and M. Hou, ‘‘Travelling wave fault location principle for hybrid
multi-terminal LCC-VSC-HVDC transmission line based on R-ECT,’’ Int.
J. Electr. Power Energy Syst., vol. 117, May 2020, Art. no. 105627.

[14] D. Marques da Silva, F. B. Costa, V. Miranda, and H. Leite, ‘‘Wavelet-
based analysis and detection of traveling waves due to DC faults in LCC
HVDC systems,’’ Int. J. Electr. Power Energy Syst., vol. 104, pp. 291–300,
Jan. 2019.

[15] D. Wang, M. Hou, M. Gao, and F. Qiao, ‘‘Travelling wave directional pilot
protection for hybrid LCC-MMC-HVDC transmission line,’’ Int. J. Electr.
Power Energy Syst., vol. 115, Feb. 2020, Art. no. 105431.

[16] S. Jamali and S. S. Mirhosseini, ‘‘Protection of transmission lines in multi-
terminal HVDC grids using travelling waves morphological gradient,’’ Int.
J. Electr. Power Energy Syst., vol. 108, pp. 125–134, Jun. 2019.

[17] M. Ikhide, S. B. Tennakoon, A. L. Griffiths, H. Ha, S. Subramanian,
and A. J. Adamczyk, ‘‘A novel time domain protection technique for
multi-terminal HVDC networks utilising travelling wave energy,’’ Sustain.
Energy, Grids Netw., vol. 16, pp. 300–314, Dec. 2018.

[18] Y. Hao, Q. Wang, Y. Li, and W. Song, ‘‘An intelligent algorithm for
fault location on VSC-HVDC system,’’ Int. J. Electr. Power Energy Syst.,
vol. 94, pp. 116–123, Jan. 2018.

[19] A. Addeh, A. A. Kalteh, and A. Koochaki, ‘‘A hybrid method for fault
location in HVDC-connected wind power plants using optimized RBF
neural network and efficient features,’’ Res. Prog. Appl. Sci. Eng., vol. 4,
no. 1, pp. 6–12, Mar. 2018.

[20] S. R. Samantaray, P. K. Dash, and G. Panda, ‘‘Fault classification and
location using HS-transform and radial basis function neural network,’’
Electr. Power Syst. Res., vol. 76, nos. 9–10, pp. 897–905, Jun. 2006.

[21] G. Luo, C. Yao, Y. Liu, Y. Tan, J. He, and K. Wang, ‘‘Stacked auto-
encoder based fault location in VSC-HVDC,’’ IEEE Access, vol. 6,
pp. 33216–33224, 2018.

[22] S. Lin, Z. Y. He, X. P. Li, andQ. Q. Qian, ‘‘Travelling wave time–frequency
characteristic-based fault location method for transmission lines,’’ IET
Gener., Transmiss. Distrib., vol. 6, no. 8, pp. 764–772, 2012.

[23] H. Xue, Z. Zhang, M. Wu, and P. Chen, ‘‘Fuzzy controller for autonomous
vehicle based on rough sets,’’ IEEE Access, vol. 7, pp. 147350–147361,
2019.

[24] F. Liu, H. Wang, Q. Shi, H. Wang, M. Zhang, and H. Zhao, ‘‘Comparison
of an ANFIS and fuzzy PID control model for performance in a two-axis
inertial stabilized platform,’’ IEEE Access, vol. 5, pp. 12951–12962, 2017.

[25] C. Abdelkrim, M. S. Meridjet, N. Boutasseta, and L. Boulanouar, ‘‘Detec-
tion and classification of bearing faults in industrial geared motors using
temporal features and adaptive neuro-fuzzy inference system,’’ Heliyon,
vol. 5, no. 8, Aug. 2019, Art. no. e02046.

[26] W. Chen, M. Panahi, K. Khosravi, H. R. Pourghasemi, F. Rezaie, and
D. Parvinnezhad, ‘‘Spatial prediction of groundwater potentiality using
ANFIS ensembled with teaching-learning-based and biogeography-based
optimization,’’ J. Hydrol., vol. 572, pp. 435–448, May 2019.

[27] S. Padmanaban, N. Priyadarshi, M. Sagar Bhaskar, J. B. Holm-Nielsen,
V. K. Ramachandaramurthy, and E. Hossain, ‘‘A hybrid ANFIS-ABC
based MPPT controller for PV system with anti-islanding grid protection:
Experimental realization,’’ IEEEAccess, vol. 7, pp. 103377–103389, 2019.

[28] D. Karaboga and E. Kaya, ‘‘An adaptive and hybrid artificial bee colony
algorithm (aABC) for ANFIS training,’’ Appl. Soft Comput., vol. 49,
pp. 423–436, Dec. 2016.

[29] B. Haznedar and A. Kalinli, ‘‘Training ANFIS structure using simulated
annealing algorithm for dynamic systems identification,’’ Neurocomput-
ing, vol. 302, pp. 66–74, Aug. 2018.

[30] K. Chen, F. Zhou, and A. Liu, ‘‘Chaotic dynamic weight particle swarm
optimization for numerical function optimization,’’ Knowl.-Based Syst.,
vol. 139, pp. 23–40, Jan. 2018.

[31] J. S. R. Jang, ‘‘ANFIS: Adaptive-network-based fuzzy inference sys-
tem,’’ IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665–685,
May/Jun. 1993.

[32] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng,
N.-C. Yen, C. C. Tung, and H. H. Liu, ‘‘The empirical mode decomposi-
tion and the Hilbert spectrum for nonlinear and non-stationary time series
analysis,’’ Proc. Roy. Soc. London A, Math., Phys. Eng. Sci., vol. 454,
no. 1971, pp. 903–995, Mar. 1998.

[33] Z. German-Sallo and H. S. Grif, ‘‘Hilbert–Huang transform in fault detec-
tion,’’ Procedia Manuf., vol. 32, pp. 591–595, 2019.

[34] G. Song, X. Chu, X. Cai, S. Gao, and M. Ran, ‘‘A fault-location method
for VSC-HVDC transmission lines based on natural frequency of current,’’
Int. J. Electr. Power Energy Syst., vol. 63, pp. 347–352, Dec. 2014.

[35] Q. Yang, S. L. Blond, B. Cornelusse, P. Vanderbemden, and J. Li,
‘‘A novel fault detection and fault location method for VSC-HVDC links
based on gap frequency spectrum analysis,’’ Energy Procedia, vol. 142,
pp. 2243–2249, Dec. 2017.

REZA ROHANI was born in Iran, in 1982.
He received the B.S. degree in electrical engi-
neering from Islamic Azad University, Bojnourd
Branch, in 2006, and the M.S. degree in elec-
trical engineering from Islamic Azad University,
Saveh Branch, in 2010. He is currently pursuing
the Ph.D. degree in electrical engineering with
Islamic Azad University, Aliabad Katoul. He is
also with the Department of Electrical Engineer-
ing, Islamic Azad University, Iran. His research

interests include power system analysis and renewable energies.

AMANGALDI KOOCHAKI was born in 1981.
He received the B.Sc. degree in electrical engi-
neering from the Faculty of Electrical Engineer-
ing, University of Tehran, Iran, in 2003, and the
M.Sc. and Ph.D. degrees from the Amirkabir Uni-
versity of Technology, Iran, in 2003 and 2010,
respectively. He is currently Assistant Professor
with the Department of Electrical Engineering,
Islamic Azad University, Aliabad Katoul, Iran. His
research interests include power system analysis,

relay coordination, and renewable energies.

VOLUME 8, 2020 70869


	INTRODUCTION
	BASCI CONCEPTS
	ANFIS
	OPTIMIZATION ALGORITHM
	HH TRANSFORM

	PROPOSED METHOD
	SIMULATION RESULTS
	DATA
	PERFORMANCE OF THE PROPOSED METHOD
	EFFECT OF NOISE
	COMPARISON AND DISCUSSION

	CONCLUSION
	REFERENCES
	Biographies
	REZA ROHANI
	AMANGALDI KOOCHAKI


