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ABSTRACT Although fine-grained image classification is able to classify more fine-grained sub-categories
compared to its coarse-grained counterpart, it often fails to identify individual instances. Therefore,
we propose a new instance-level image classification task which further refines the granularity of fine-
grained classification in order to identify unique instances rather than a sub-category containing multiple
instances. In addition, we introduce an instance-level image classification dataset, AircraftCarrier, which
contains 20 global aircraft carrier classes, as the first publically available dataset for instance-level image
classification. The classification of instance-level aircraft carriers can prove to be a challenging task due
to large intra-category differences as well as variations in the camera view, illumination, scale, and the
presence of complex backgrounds. The AircraftCarrier dataset put forward here has the potential to improve
the development of instance-level image classification. At the same time, we provide a Simple Classification
Head (SCH) technique for the classification of aircraft carriers, with classical convolutional neural network
models as the backbone network. The SCH has better performance than a direct classification head, and
these results provide a benchmark performance result for researchers. Furthermore, we evaluate several fine-
grained image classification methods and give their benchmark results. Finally, we present the challenges
of instance-level classification and discuss further directions. This study provides the first publicly available
instance-level image classification dataset and a performance benchmark for further research. The dataset
and codes can be downloaded at https://github.com/tsingqsu/AircraftCarrier_Dataset/.

INDEX TERMS Image classification, aircraft carrier dataset, instance-level classification, fine-grained
classification.

I. INTRODUCTION
In computer vision, image classification usually refers to the
classification of coarse-grained objects (e.g. people, birds
and ships) [1]. The accuracy of such classification tech-
niques has been greatly promoted by the development of
deep learning technology [2]. However, the coarse-grained
image classification is not able to effectively address the task
of fine-grained image classification [3], [4]. In particular,
fine-grained image classification refers to a sub-category
classification of a coarse-grained super-category, such as
the classification between ‘‘destroyer’’, ‘‘frigate’’, ‘‘supply
ship’’ and ‘‘aircraft carrier’’ in the ‘‘ship’’ category. In order
to overcome the obstacles faced by coarse-grained image
classification, in the current study, we present an aircraft
carrier dataset, AircraftCarrier, in which each category cor-
responds to an instance of aircraft carriers, for example,
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‘‘Liaoning (CV16)’’, ‘‘USS Nimitz (CVN68)’’ and ‘‘Charles
de Gaulle (R91)’’. Each of the classes corresponds to an
aircraft carrier instance, thus we denoted this process as
instance-level classification. Figure 1 presents the semantic
diagram of coarse-grained, fine-grained and instance-level
classification.

The progress of deep neural networks has resulted in vast
improvements in accuracy in coarse-grained image classifica-
tion, as well as the development of visual object recognition
techniques, such as AlexNet [1], VGGNet [5], ResNet [6]
and DenseNet [7]. Furthermore, with the recent advance-
ment of part detectors [8], [9] and attention mechanisms
[10]–[12], the accuracy of fine-grained image classifica-
tion has also improved. However, research on instance-level
image classification is lacking. In particular, studies tend
to focus more on the feature representation of face recog-
nition [13] and person re-identification [14], overlooking
instance-level image classification. Despite this, research on
instance-level classification is highly important. For example,
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FIGURE 1. Semantic diagram of coarse-grained, fine-grained and
instance-level classification. Left: Coarse-grained classification
(e.g. ‘‘person’’, ‘‘birds’’ and ‘‘ships’’). Middle: Fine-grained classification,
for example, ‘‘destroyer’’, ‘‘frigate’’, ‘‘supply ship’’ and ‘‘aircraft carrier’’,
in the ‘‘ship’’ category. Right: Instance-level classification of the ‘‘aircraft
carrier’’ sub-category (e.g. ‘‘Liaoning (CV16)’’, ‘‘USS Nimitz (CVN68)’’ and
‘‘Charles de Gaulle (R91)’’).

aircraft carriers are key military objects across the globe, thus
research in the instance-level classification of aircraft carrier
images is of great significance.

Instance-level image classification can be considered to
be the most fine-grained classification, and is also more
difficult to execute compared to the standard fine-grained
classification. This is because fine-grained classification cat-
egories can contain multiple instances, while each instance-
level classification category contains a unique instance.
In general, instance-level classification categories are made
up of one fine-grained classification category, with limited
inter-category variation. Moreover, each instance exhibits
variations in perspective, light, shade and so on, making
instance-level classification more complicated. In order to
improve such instance-level classification methods, we cre-
ated an instance-level image classification dataset and present
the baseline results.

The main contributions of this study are as followings:
• A new instance-level image classification task is pro-
posed and an instance-level aircraft carrier image clas-
sification dataset (AircraftCarrier) is presented. The
dataset is the first published aircraft carrier image clas-
sification dataset and exhibits a more refined granularity
compared to fine-grained image classification datasets.

• The Simple Classification Head (SCH) method is pro-
posed in order to classify aircraft carriers via the use of
classical convolutional neural network (CNN) models
as the backbone network. Existing high-precision and
light-weighted models and fine-grained image classi-
fication methods are evaluated using the AircraftCar-
rier dataset. The results provide a baseline for further
research. Furthermore, future research directions for
instance-level classification are discussed.

II. RELATED WORK
According to our knowledge, there is no work directly related
to instance-level image classification, and the indirectly
related works mainly include fine-grained classification and
instance recognition.

A. FINE-GRAINED CLASSIFICATION
There are numerous datasets available for fine-grained
image classification (e.g. CUB200,1 Stanford Dog,2 Stan-
ford Car,3 FGVC Aircraft,4 NABirds [15], iNat2017 [16]
and RPC2019).5 However, such datasets are distinct to those
required for instance-level classification. In particular, for
fine-grained image classification, each category contains dif-
ferent object instances, rather than the same object instance
as in instance-level classification. In terms of classification
granularity, instance-level image classification is considered
as the limitation of fine-grained classification, as it is a highly
challenging task.

Over the recent years, many state-of-the-art methods have
been developed for fine-grained image classification, and can
be classified into regional feature-based methods and global
feature-based methods. The former include detector-based
and attention-based approaches, such as Part R-CNN [17],
HSnet Search [18], RA-CNN [10], MA-CNN [11], DFL-
CNN [12], WS-DAN [19] and TASN [20]. Global feature-
based methods apply metric learning to increase accuracy,
with examples including Bilinear CNN (B-CNN) [21] and
its invariants [22], [23]. Furthermore, several triplet loss-
based methods have been developed, such as MAMC [24]
and MMLN [4].

B. INSTANCE RECOGNITION
Instance recognition refers to the identification of an
instance [25], with each instance belonging to a different cat-
egory. Different from instance-level classification, instance
recognition is considered as a matching problem of specific
instances, while instance-level classification is the classifica-
tion of multiple similar instances in a sub-category. Various
datasets already exist for instance recognition, containing
different instances from different categories for identification
(e.g. RGB-D6 and BigBIRD [26]), thus making this problem
distinct to instance-level classification. Instance recognition
datasets are frequently applied for image retrievals, where
the instance objects are retrieved from a large database via a
query image. The key-point [27], image block [28] and deep
feature [29] matching methods are frequently used to rec-
ognize a specific instance by matching local feature blocks,
feature points or feature vectors. Face recognition [13]
and person re-identification [14] are two types of instance-
level datasets, yet researchers generally focus on the feature

1http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
2http://vision.stanford.edu/aditya86/StanfordDogs/
3https://ai.stanford.edu/∼ jkrause/cars/car_dataset.html
4http://www.robots.ox.ac.uk/∼ vgg/data/fgvc-aircraft/
5https://rpc-dataset.github.io/
6http://www.cs.washington.edu/rgbd-dataset
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representation of the identification of a new face or per-
son, which differs from instance-level image classification.
In order to overcome this, we present our instance-level image
classification dataset.

The rest of the paper is organized as follows. First,
we present the first publically available aircraft carrier
dataset, containing a large number of warships from across
the globe. Then, we introduce six classical convolutional neu-
ral networks as the backbone network, and propose our Sim-
ple Classification Head (SCH) technique to construct several
classification models. This is followed by an evaluation of the
models using the aircraft carrier dataset. Finally, we discuss
the challenges and future directions of instance-level image
classification tasks.

III. INSTANCE-LEVEL DATASETS
A. DATASET COLLECTION
To the best of our knowledge, regardless of face recognition
and person re-identification, there are no publicly available
datasets for instance-level image classification tasks. In order
to fill in this gap, we built an aircraft carrier image classifi-
cation dataset using images selected from the Internet via the
Baidu and Google search engines. In addition to this, images
were also manually collected from professional military
websites (including navy.mil,7 denfense.gov,8 defense.gov).9

The dataset contains the following 20 categories: ‘‘Liaon-
ing (CV16)’’, ‘‘Cavour (CVH550)’’, ‘‘Giuseppe Garibaldi
(CVH551)’’, ‘‘USS Nimitz (CVN68)’’, ‘‘USS Dwight David
Eisenhower (CVN69)’’, ‘‘USS Carl Vinson (CVN70)’’,
‘‘USS Theodore Roosevelt (CVN71)’’, ‘‘USS Abraham Lin-
coln (CVN72)’’, ‘‘USS George Washington (CVN73)’’,
‘‘USS John C. Stennis (CVN74)’’, ‘‘USS Harry S. Truman
(CVN75)’’, ‘‘USS Ronald Reagan (CVN76)’’, ‘‘USS George
H.W. Bush (CVN77)’’, ‘‘USS Gerald R. Ford (CVN78)’’,
‘‘Juan Carlos I (L61)’’, ‘‘HMS Queen Elizabeth (R08)’’,
‘‘INS Viraat (R22)’’, ‘‘Charles de Gaulle (R91)’’, ‘‘HTMS
Chakri Naruebet (R911)’’ and ‘‘Admiral Flota Sovetskogo
Soyuza Kuznetsov (RN063)’’. Figure 2 presents examples of
the 20 aircraft carriers.

B. DATASET CHARACTERISTICS
The AircraftCarrier dataset contains 2781 images, with the
number of images in each category varying from 53 to 208,
and an average of 150 images. Figure 3 presents the size dis-
tribution of the dataset. Note the CVH551, R22 and R911 cat-
egories contain relatively low numbers of images, due to the
images of these categories are very few on the Internet.

Although the instance-level AircraftCarrier dataset is not
directly captured by camera, it still exhibits a high amount
of variation between images. The images collected from the
Internet differed in terms of perspective, illumination, scale

7https://www.navy.mil/
8https://www.usni.org/
9https://www.defense.gov/

FIGURE 2. Examples of the 20 aircraft carriers used in our AircraftCarrier
dataset. Each row corresponds to a category.

FIGURE 3. The number of images in each category of the AircraftCarrier
dataset.

and complex background types. Figure 4 provides examples
of the variation in image characteristics.

In particular, Figure 4 shows that images within the same
category present variations in terms of viewing angle, scale,
and lighting condition. Thus, it is evident that the aircraft
carrier dataset exhibits great differences inmultiple character-
istics. Such intra-category variations in instance-level image
classification make the classification task much more of a
challenge.

C. DATASET USAGE
In order to evaluate the effectiveness of the instance-level
classification on the AircraftCarrier dataset, we randomly
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FIGURE 4. Intra-category differences of instance-level aircraft carrier
images. (a) Different image perspectives from the CVN72 category, (b)
images with complex backgrounds from the CVN75 category, (c) different
image scales from the CVN77 category, and (d) different image
illumination from the CVN78 category.

TABLE 1. The partitioning of the AircraftCarrier dataset. ‘‘#train’’, ‘‘#val’’
and ‘‘#test’’ refer to the number of training, validation, and testing
images, respectively.

divided the dataset into three sections, the training set, the val-
idation set and the test set, with a ratio of 3:1:1. The results
are reported in Table 1.

IV. EVALUATION METHODS
A. BACKBONE NETWORKS
Three high-precision and three light-weighted models were
used as the basic backbone network to build a classifier for the
AircraftCarrier dataset. These backbone networks are briefly
described as follows:

a) SqueezeNet [30]: SqueezeNet applies the squeeze oper-
ation in order to reduce the featuremap channels replacing the
3×3 convolutional filters with 1×1 filters, and subsequently
expands the channels by concatenating the results of the 3×3
and 1 × 1 filters. SqueezeNet is able to achieve AlexNet-
level accuracies on ImageNet with 50× fewer parameters,
amounting to less than 1.0 M.

b) ShuffleNetV2 [31]: ShuffleNet proposes a new type
of channel shuffle operation for group convolution. This
group operation is able to reduce computation costs, while
the channel shuffle operation exchanges information among
different groups. Accuracy levels are maintained when the
computation is reduced. Furthermore, in order to avoid the
large amount of group convolutions of ShuffleNetV1, Shuf-
fleNetV2 adopts a shuffle split strategy, thus achieving amore
competitive performance.

c) MobileNetV2 [32]: MobileNet proposes a depthwise
separable convolution with depthwise and pointwise layers

in order to compress the size of the model. The architec-
ture is based on an inverted residual structure where the
channels are initially increased and subsequently decreased.
MobileNetV2 builds on MobileNet by including a pointwise
convolution before the depthwise convolution to increase the
channels, and also removes the second activation function to
form a line bottleneck.

d) VGGNet-16 [5]: VGGNet is the first network to use
3 × 3 convolution filters in order to build networks with a
depth of dozens of weight layers. VGGNet-16 has 13 con-
volution layers and 3 fully connection layers. It achieves a
better performance than former deep convolutional neural
networks, at the cost of, however, greater computation and
an increased number of parameters.

e) ResNet-50 [6]: In ResNet, the deep network is built via
a residual block. The identity mapping creates a direct con-
nection from the input to the output, thus reducing the back
propagation path and avoiding the vanishing and exploding of
the gradient. Furthermore, compared with the original block
of two 3×3 convolutions, the improved block of 1×1, 3×3,
1× 1 convolutions reduces the parameters and computations
without causing any drop in performance. ResNet-50 is the
most widely used CNN for classification purposes.

f) DenseNet-121 [7]: DenseNet is a CNN with dense con-
nections. In particular, there is a direct connection between
any two layers. More specifically, the input of each layer of
the network is the union of the output of all the previous
layers, and the featuremap learned by a particular layer is also
directly transmitted to all the subsequent layers as an input.
Due to this dense connection, DenseNet is able to enhance the
back propagation gradient, thus making the network easier to
train.

B. SIMPLE CLASSIFICATION HEAD
In order to unify their application, we delete all full connec-
tion and classification layers in the above networks, to pro-
pose a unified Simple Classification Head (SCH) method for
image classification (Figure 5).

The SCH is principally composed of global average pool-
ing (GAP), a dimension reduction module (DRM) and a
softmax classifier. Note that the DRM is composed of a
convolution (Conv) with the 1 × 1 filter, a batch normal-
ization (BN) and a rectified linear unit (ReLU). Due to the
small size of the dataset, during training, we include a dropout
layer prior to the softmax classifier [33] with a discarding rate
of 0.5. This avoids over-fitting while training.

Given an input image, the output of the backbone is a
feature tensor F = [F1,F2, . . . ,FC ] ∈ RH×W×C , where
Fk , k = 1, . . . ,C refers to the k-th feature map and C refers
to the number of the channels ofF. A feature vector x can then
be determined via the GAP operation, with the c-th element
of x calculated as follows:

xc =
1

H ×W

H∑
i=1

W∑
j=1

Fc(i, j), (1)
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FIGURE 5. The proposed unified Simple Classification Head (SCH) method, composed of a global average
pooling (GAP), a dimension reduction module (DRM) and a softmax classifier. DRM consists of a 1 × 1
convolution (Conv), a batch normalization (BN) and rectified linear unit (ReLU). A dropout layer is added
before the softmax classifier to avoid over-fitting.

where H and W denote the height and width of the c-th
feature map Fc, respectively. Following this, in the DRM,
the 1×1 convolution is applied in order to reduce the channel
dimension of x to 512. Batch normalization and the ReLU
function are then executed. The output f ∈ R1×1×512 is
determined by

f = δ(BN (K⊗ x)), (2)

where δ denotes the ReLU function, BN is the batch nor-
malization operation, ⊗ is the convolution operation and
K ∈ R1×1×C×512 is a convolutional kernel parameter for the
dimensionality-reduction.

In order to improve the generalization performance,
the label smoothing softmax classifier [34] is then applied,
with the loss is computed as follows:

L =
C∑
i=1

−qi log pi, (3)

where

qi =

1−
C − 1
C

ε, i = y

ε/C, i 6= y,
(4)

pi =
exp(WT

y f+ by)∑C
j=1 exp(W

T
j f+ bj)

, (5)

and y is the ground truth of the input image, C is the number
of classes, Wj and bj are the parameters to learn, and ε is a
hyper-parameter set as 0.1.

V. EVALUATION AND ANALYSIS
A. IMPLEMENTATION DETAILS
Our experiments were performed on a deep learning work-
station with the following specifications: 3.5 GHz Intel Core
E5-2637v4 CPU, Nvidia GTX 1080Ti GPU with 11GB
RAM, and the Ubuntu 16.04 operating system. The program-
ming environment is based on the Python language, while the
PyCharm integrated development environment and Pytorch
deep learning toolkit were used for GPU accelerated training.

TABLE 2. Evaluation results of the AircraftCarrier dataset. ‘‘Prec(%)’’
refers to the test accuracy, ‘‘FLOPs(G)’’ refers to the floating point
calculation, and ‘‘Params(M)’’ refers to the number of parameters. The
bold and underlined numbers denote the optimal and the second optimal
results of the methods in Section IV-A, respectively.

1) TRAINING
Our network, which applies the ImageNet pre-trainingmodel,
is trained using batch stochastic gradient descent (SGD) with
a batch size of 32. The initial learning rate of the model back-
bone network is 0.001, with the exception of the SCH, where
0.01 is used. This is done in order to increase the learning
rate of the newly added SCH and to increase the convergence
of the network. We train the network for 120 epochs and
decay the learning rate by 0.1 following the end of epochs
70 and 100 respectively. We apply this multi-stage learning
rate in order to increase the learning speed via a large learning
step at the start of the training, and subsequently to reduce
the learning step at the later stage. This aims to improve the
convergence of the optimization object.

2) DATA PREPROCESSING
All input images are uniformly normalized to 224 × 224
pixels. The training data was first expanded to 256 × 256
pixels, and then randomly cropped to 224 × 224 pixels and
flipped horizontally with a probability of 0.5. The test data is
scaled directly and uniformly to 224× 224 pixels.

B. RESULTS AND ANALYSIS
The evaluation results for the AircraftCarrier dataset of the
methods described in Section IV-A are presented in Table 2.
In terms of classification accuracy, ResNet-50 achieved the
highest accuracy of 63.44%, which was 11.77% higher
than that of SqueezeNet (51.67%). In terms of FLOPs,
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ShuffleNetV2 exhibited the fastest computation speed and
only 0.02 G FLOPs, while VGGNet-16 had the slowest com-
putation speed, requiring 1.71 G FLOPs. In terms of model
size, SqueezeNet required the lowest number of parame-
ters (1.0 M), while ResNet-50 used the greatest (24.57 M),
at approximately 25 times greater than that of SqueezeNet.
In summary, greater FLOP values and larger model sizes
were observed for the high-precision models (ResNet-50,
DenseNet-121 and VGGNet-16), while fewer FLOPs and
smaller model sizes were associated with relatively low clas-
sification accuracies.

Note that SqueezeNet and ShuffleNetV2 have the worst
accuracies. In terms of model size, they are the smallest and
the second smallest models. Compared with ResNet-50 and
DenseNet121, they have fewer network layers and parame-
ters. Therefore, the ability of the model is relatively weak
and the performance is relatively poor. It is worth noting
that the MobileNetV2 has a relatively better performance,
because it uses the reverse residual structure to increase the
number of channels of features, which has stronger fea-
ture representation ability. Besides, the same accuracy level
(58.35%)was determined for VGGNet-16 andMobileNetV2.
This is because VGGNet-16 is an early and relatively basic
approach, and lacks further improvements, such as batch
normalization (BN).

Our results show that, in general, for the practical use of
such methods, the classification accuracy, calculation speed
and model size need to be considered comprehensively. For
example, the SqueezeNet model is very small in size, making
it suitable for embedded mobile platform applications with
low precision requirements.

In order to further determine the errors and accuracies of
the six classification models, we presented their confusion
matrices (Figure 6).

In particular, the classification confusion matrices present
the detailed classification accuracies of the 20 categories
from the AircraftCarrier test set. The presence of non-zeros
(except diagonal) indicates amisclassification between corre-
sponding categories, yet no misclassifications were observed
between the two categories here. The black diagonal denotes
the accuracy of the classification. For example, Figure 6(e)
demonstrates that all L61 classifications were correctly clas-
sified, while CVN72 only achieved an accuracy of 20%.
Furthermore, Figure 6(a) shows that misclassifications were
present for each category for various models, with mis-
classification rates varying across models. In particular,
CVN68 exhibited an accuracy of just 13%, while the cate-
gories CVN68-CVN78 were easily misclassified. These pre-
diction errors are attributed to the limited variations between
the instances of the U.S. nuclear powered aircraft carriers in
these categories. In contrast, the classification accuracy of
aircraft carriers from China, Russia, India, Italy, England and
France, amongst other countries, is relatively high. In addition
to their hull numbers, other features are also easily distin-
guished, including the aircraft carrier tower.

Figure 7 presents some misclassified images of the
ResNet-50 model, where T:XXX and P:XXX denote the truth
and predicted labels, respectively. A total of 207 images were
misclassified during the prediction.

From Figure 7, we can see that the categories CVN68-
CVN78 are easily misclassified because they have the similar
appearances. Moreover, most of the carriers in the images
are small, and the hull number is invisible or unrecognizable.
Although the hull number in some images is large enough
(the fifth image in row 2), the category is still misclassified.
It may be because the hull number feature is not learned by
the model. In a same category, the images with hull number
are few and have big difference from other images. Therefore,
the instance-level aircraft carrier image classification is a very
challenging task due to the large intra-category difference and
small inter-category difference.

C. ABLATION ANALYSIS
To further evaluate the SCH, we have conducted ablation
experiments about SCH by removing DRM. We named the
SCH without DRM as DCH, in which the features output
by GAP is directly connected to classifier. The results are
reported in Table 3.

TABLE 3. Ablation analysis. ‘‘Prec(%)’’ refers to the test accuracy.

It can be seen from Table 3 that SCH has better per-
formance than DCH. It is found that the performance of
SqueezeNet and ShuffleNetV2 is greatly reduced after DRM
is removed. The main reason is that these two models are
very light-weighted models, and there are very few redun-
dant parameters to adapt the changed objective. Furthermore,
the output of GAP layer is directly connected to the classifier,
and the adaptability of parameters is reduced during training.
From the convergence curves of training losses (as shown
in Figure 8), it can also be seen that SCH has better training
convergence than DCH for SqueezeNet and ShuffleNetV2.

D. EVALUATION WITH FINE-GRAINED IMAGE
CLASSIFICATION METHODS
In order to provide a more comprehensive evaluation,
we evaluate the latest fine-grained image classification meth-
ods (B-CNN [21], DFL-CNN [21], WS-DAN [19], DCL [9],
CrossX [3]) on the dataset. In order to compare with our
existing methods, we set the input image size of these fine-
grained image classification methods to 224× 224 for train-
ing and testing, and the corresponding accuracies are shown
in Table 4:

VOLUME 8, 2020 70311
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FIGURE 6. The confusion matrices of the studied models for the AircraftCarrier dataset. (a) SqueezeNet, (b) ShuffleNetV2,
(c) MobileNetV2, (d) VGGNet-16, (e) ResNet-50, (f) DenseNet-121. (Zoom in to see better).
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FIGURE 7. The images misclassified by ResNet-50, where T:XXX and P:XXX are the truth and predicted labels, respectively.

FIGURE 8. The convergence curves of training loss of SCH and DCH.

TABLE 4. The results of fine-grained classification methods on
AircraftCarrier dataset. ‘‘Prec(%)’’ refers to the test accuracy.

From Table 4, we can find that these fine-grained image
classificationmethods have better accuracy. At the same time,
we analyzed these models, and found that these methods are
basically based on ResNet-50 backbone, but they improve the
model effect by using metric learning [19], [21], additional
branches [12], adversarial generative learning [9], attention
mechanism [3]. The performance of our unified SCH is worse
than those of these methods. However, it is still meaningful to
provide these evaluation results for researchers, because the
original intention of our research is to provide a benchmark
performance.

VI. DISCUSSION
In practice, object recognition can frequently be consid-
ered as instance-level image classification. However, due to
the limited differences at the instance-level, it is difficult
to distinguish the target objects. For example, the biggest
difference between aircraft carrier instances lies in the hull
number, tower and runway. Thus, an effective image object
classification method is required for instance objects.

Based on the existing methods (e.g. fine-grained image
classification), the following directions can be further
explored:
• Numerous fine-grained image classification methods
have attempted to locate and utilize differential regions
based on part detectors, such as Part R-CNN [17] and
HSnet Search [18] used in fine-grained classification.
The differences in instance-level images categories can
also be attributed to the local regions, e.g. hull number
region. How to find the discriminative local regions can
be explored in future.

• Recently, visual attention mechanisms have been
applied to the classification, detection and segmentation
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of images. Such mechanisms are able to pay more atten-
tion to the important regions or channels of the fea-
ture maps extracted by convolutional neural networks,
such as WS-DAN [19] and TASN [20] used in fine-
grained classification. Hence, attention mechanisms can
be transferred to instance-level classification techniques.

• Deep convolutional neural networks have a strong fea-
ture representation ability, which allows for the applica-
tion of metric learning (e.g. triplet loss in MMLN [4]
and CDML [35]) to extract discriminant features by
compressing the distance of intra-category features, and
to expand the distance of the extra-category features.

VII. CONCLUSION
In the current study, a new instance-level object classification
task is proposed, and a new aircraft carrier instance-level
classification dataset is presented. We detail the collection
method, characteristics and usage of our AircraftCarrier
dataset. The publication of our dataset can promote research
into instance-level image classification. At the same time,
we propose the unified SCH method, which applies the clas-
sical convolutional neural network model as the backbone,
to analyze the dataset. This provides a comparison baseline
for future research. Finally, instance-level image classifica-
tion is a challenging image classification task, thus more
large-scale datasets and pointed methods are required.
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