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ABSTRACT Temporal action localization is one of the most crucial and challenging problems for video
understanding in computer vision. It has received a lot of attention in recent years because of the extensive
application of daily life. Temporal action localization has made some significant progress, especially with the
development of deep learning recently. And more demand is for temporal action localization in untrimmed
videos. In this paper, our target is to survey the state-of–the-art techniques and models for video temporal
action localization. It mainly includes the related techniques, some benchmark datasets and the evaluation
metrics of temporal action localization. In addition, we summarize temporal action localization from two
aspects: fully-supervised learning and weakly-supervised learning. And we list several representative works
and compare their performances respectively. Finally, we make some deep analysis and propose potential
research directions, and conclude the survey.

INDEX TERMS Action detection, computer vision, fully-supervised learning, temporal action localization,
weakly-supervised learning.

I. INTRODUCTION
With the number of videos grows tremendously, video under-
standing becomes a hot question and a challenging direc-
tion in computer vision. The video understanding direction
includes many sub-research directions. According to Activi-
tyNet Challenge 2017 [48] held by CVPR in Hawaii, a total
of 5 tasks were proposed.

a) Untrimmed Video Classification (ActivityNet [7]).
b) Trimmed Action Recognition (Kinetics [44]).
c) Temporal Action Proposals (ActivityNet).
d) Temporal Action Localization (ActivityNet).
e) Dense-Captioning Events in Videos (ActivityNet Cap-

tions).
In this survey, we focus on temporal action localization,

which is the 4th of the above lists. It requires the detections of
temporal intervals which contain the target actions. For a long
untrimmed video, temporal action localization mainly solves
two taskswhich are recognition and localization. Specifically,
a) When does the action occur, that is the start time and the
end time of the action. b) What category does each proposal
belong to (such as Waving, Climbing, or Basketball-Dunk).
Of course, a video may contain one or more action clips.
So temporal action localization is to develop models and
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techniques which provide the most basic information needed
by computer vision applications: What are the actions and
when do the actions happen?We take this task as action local-
ization, or temporal action localization, or action detection.

Although both action recognition and action localization
are important tasks of video understanding, temporal action
localization is more challenging than action recognition. And
the relationship between action recognition and action local-
ization is similar to image recognition and image detection.
But owning to the temporal series information, temporal
action localization ismuch difficult than image detection. The
difficulties are as follows: a) temporal information. Because
of the 1-dimension temporal series information, temporal
action localization can’t use static image information. It must
combine the information of temporal series. b) Unclear
boundaries. Different from object detection, the boundaries of
the object are usually very clear, so we can mark out a clearer
bounding box for the object. However, there might have not
sensible definition about the exact temporal extent of action
[56], [57]. So it’s impossible to give an accurate boundary
when the action starts and when the action ends. c) Large
temporal spans. The span of temporal action fragments can
be very large. For example, waving hands can only take
a few seconds while climbing or cycling can last for tens
of minutes. Their spans differ in length which make them
extremely difficult to extract proposals. In addition, in the
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FIGURE 1. The increasing number of publications of academic and
conference papers in action detection from 2000 to 2019. (Some declines
in 2019 are due to incomplete statistics. Data is from Superstar Discovery
advanced search).

open environment, there are many problems such as multi-
scale, multi-target, and camera movement.

Temporal action localization is very close to our life, it has
extensive application prospects and social value in the fields
of video summarization [51], public video surveillance [49],
skill assessment [50] and daily life security. So it has received
a lot of attention in recent years. The total number of publica-
tions related to ‘‘action detection’’ is about 324,127, includ-
ing books, journals, dissertations, conference papers, patents
and some scientific and technological achievements in the
past twenty years. Below we mainly analyze the number of
publications trends of academic and conference papers on
action detection, which is shown as FIGURE 1.

This survey is intended to help the beginners who are inter-
ested in temporal action localization. It provides an overview
of methods and recent developments of action localization.
The rest of this article is organized as follows. Section II out-
lines the related techniques. Section III introduces the bench-
mark datasets for temporal action localization. Section IV
describes the performance evaluation metrics of the models.
Section V provides an overview of action localization models
and methods from fully-supervised and weakly-supervised
learning. Section VI discusses the current challenges and
suggests future directions. Section VII conclude the paper.

II. RELATED TECHNIQUES
Since temporal action localization has been an active research
area recently, many different approaches to deal with this
problem have come into being. Although action detection
has been studied for many years, it is still in the test phase
of laboratory datasets, and there is no actual practicality and
industrialization. The task of understanding what and when
the action happens in a video is very challenging. It can be
seen that there is still no robust solution for this task currently.
In this section, we will review the related techniques of
temporal action localization.

As we know, video feature representation can provide use-
ful information for video action and a lot of attempts have
been made. In the past twenty years, it’s well known that

FIGURE 2. The timeline frame of temporal action localization.

the progress of feature extraction has generally gone through
two important historical periods. One is the traditional action
detection periods before 2014, the other is deep learning
based periods after 2014. The timeline frame is shown as
FIGURE 2.

In deep learning periods, they are mainly grouped into
two type frameworks: ‘‘two-stage detection’’ and ‘‘one-
stage detection’’. Specifically, the former is based on the
‘‘proposal-then-classification’’ paradigm which is the main-
stream method. The latter does proposal and classification
simultaneously, so we call it one-stage detection.

A. TRADITIONAL METHODS
Due to action recognition is a part of temporal action localiza-
tion, so most of the early action localization algorithms were
built based on hand-crafted features, the same as action recog-
nition. There are several ways to extract video features that
contain static image features and temporal visual features.
Speaking specifically, static image features are SIFT (Scale-
Invariant Feature Transform) [62], [63] and HOG (Histogram
of Oriented Gradients) [64] and so on. HOG can be con-
sidered as an improvement of SIFT. While temporal visual
features are the combination of static image features and tem-
poral information. By these features, temporal information of
a video can be achieved.

In general, we can divide feature extraction into local fea-
ture extraction and global feature extraction. a) Local features
extraction refers to local points of interest or regions of inter-
est in the video. It includes statistics, dictionary learning, bag-
of-words (BoW) [65], [66] and feature learning and so on.
Compared with global features, local features are more robust
to video lighting, perspective, camera shake, and complex
backgrounds. b) Global features extraction refers to the over-
all characteristics of human behavior, such as the contours
and skeleton of the human body. It includes global density and
trajectory methods. To solve the problem of human behavior
in complex scenes, it’s not enough just to detect the gray level
changes in the spatiotemporal area. Therefore, researchers
have proposed many feature extraction methods based on
feature point tracking. The approximate process is as follows:
These methods detect feature points in the temporal region
of the video firstly, then track these feature points frame by
frame and join the trajectories that form the feature points.
At last, they use feature descriptors to describe the trajectory
and its temporal neighborhood. Among the many feature
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extraction methods based on feature point tracking, the clas-
sic method is Dense Trajectories (DT) [67]. Afterward, con-
sidering that the camera movement leads to the extraction of
DT features which are not related to human behavior, the DT
feature is further improved, and an improved dense trajec-
tory (iDT) [1] method is proposed. Although many today’s
methods have far surpassed iDT, the valuable insight of iDT is
still influenced for the later research work. It is worth noting
that the combination of deep learning and iDT can usually
further improve the performance. Many papers have adopted
the form of ‘‘Our method+ iDT’’ to achieve the highest level
SOTA (state-of-the-Art).

In any case, the research process and ideas of traditional
feature extraction methods are very useful because these
methods have strong interpretability. They provide inspira-
tion and analogy for designing deep learningmethods to solve
such problems.

B. DEEP LEARNING METHODS
As the performance of the methods using hand-crafted fea-
tures became stabilized, temporal action localization has
reached a plateau. Along with the convolutional neural net-
work was rebirthed [61], a lot of works have risen. The
convolutional neural network can learn the robust and high-
level feature representations. For example, a 2D-CNN [2] for
large-scale video (Sports-1M dataset) classification was pro-
posed of Li Feifei’s group in 2014. Although its performance
hasn’t compared to the methods based on hand-crafted fea-
tures, the idea inspired later research. Afterwards, two-stream
CNNs [3] (RGB frames and optical flow), 3D convolutional
networks [4] and then their variations become the popular
solutions to learn discriminative features for action recogni-
tion. Subsequently, a combination of two-stream and C3D
networks named as I3D [5] (Inception 3D) was proposed.
And it has become a generic video feature representation
encoder. In addition, several methods based on recurrent
neural networks [53], [54] were introduced to capture the
long range dynamics for action recognition. TSN [55] was
designed to model the entire video information with average
aggregation via the strategy of a sparse sampling. According
to FIGURE 1, we know deep learning is divided into two
types: two-stage localization and one-stage localization.

1) TWO-STAGE LOCALIZATION METHODS
Two-stage type is based on the paradigm of proposal-then-
classification. This paradigm extracts temporal proposals
first, and then deals with the classification and regression
operation. This type is the mainstream method, so most
papers adopt this method. In fact, the generation of pro-
posals is a difficult point in this paradigm for temporal
action localization which is similar to proposal generation
in object detection (region proposals generation in R-CNN
[68]). A good proposal algorithm can greatly improve the
effect of the model.

The task of temporal action proposal generation is to gener-
ate a certain number of temporal proposals for an untrimmed

long video. A temporal action proposal is a temporal interval
that may contain action segments (from the start boundary
to the end boundary). Generally, average recall (AR) under
a certain number of proposals is used to measure the perfor-
mance of algorithm. The datasets used commonly are THU-
MOS14 [6] and ActivityNet [7], There are several methods
for extracting proposals.

a: SLIDING WINDOW (S-CNN [14], 2016)
In 2016, S-CNN is the first method to fix some size slid-
ing windows to generate various sizes video segments, and
then deal with them by a multi-stage network (Segment-
CNN). SCNN includes three sub-networks all using C3D
network. The first one is proposal network which is used
to determine the probability of the current segment being
an action. The second one is classification network which is
used to classify video segments. The third one is localization
networks whose output is still the probability of the category.
And an overlap-related loss function is added during training
so that the network can estimate the category and overlap of
a video clip better. In principle, when the degree of overlap
is higher, the effect is better. But the amount of calculation
is very large. Finally, non-maximized suppression (NMS)
is used to remove overlapping segments and complete the
prediction.

Theoretically, this method is the most comprehensive as
long as the overlap is high enough, but it has more redun-
dancy.

b: TEMPORAL ACTIONNESS GROUPING (TAG [15], 2017)
Previous work used sliding windows to extract proposals,
but this method cannot deal with video actions of different
lengths. Because in general action recognition, convolution
is applied to dense video frames. And the consumption is so
huge for long action videos.

Y. Xiong et al. [15] proposes a new framework to accu-
rately determine the boundaries of action for variable-length
videos in 2017. The framework contains two parts: generat-
ing temporal proposals and classifying proposed candidates.
The former generates s series of proposals, and the latter
determines whether it is an action and predicts its category.
In order to generate a temporal proposal, TAG network is
proposed. They are threemain steps: a) Extract snippets: Each
snippet contains a video frame and optical flow information,
and snippets are obtained at regular intervals. b) Actionness:
Determine whether a snippet contains actions. In order to
do it, it learns a binary classification network using TSN
(Temporal Segment Network). c) Grouping: For the output
snippets sequences and their probabilities, it will group those
continuous snippets with high scores. At the same time,
setting some thresholds to remove those snippets with lower
scores for preventing noise interference, and generally setting
multiple sets of thresholds to prevent missing proposals.

This method is more flexible for boundaries, but it may
miss some proposals due to classification errors.
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c: TEMPORAL UNIT REGRESS NETWORK (TURN TAP [16],
2017)
In SCNN network, it used sliding windows to find the propos-
als. If you want to get accurate results, you need to increase
the overlap between the windows which results in a problem
of large calculation.

In order to reduce the amount of calculation and increase
the accuracy of temporal localization, Gao J.Y. et al. [16] pro-
posed TURN learning from the method of boundary regres-
sion introduced by faster-RCNN [69], [70] in 2017. This
method divides the video into fixed size units, such as a unit
of 16 video frames, then puts each unit into C3D to extract
the horizontal features. Adjacent units form a clip and let
each unit as an anchor unit construct a clip pyramid. Then
temporal coordinate regression is performed at the unit. The
network contains two outputs: The first output is confidence
score that determines whether the clip contains actions; and
the second output is temporal coordinates offset which adjusts
the boundary.

The main contributions are as follows: (1) A novel method
for generating temporal proposal segments using coordinate
regression. (2) Fast speed (800fps). (3) A new evaluation
metric AR-F is proposed.

d: BOUNDARY SENSITIVE NETWORK (BSN [21], 2018)
As we know, high-quality temporal action proposals should
have several characteristics: a) Flexible temporal length. b)
Precise temporal boundaries. c) Reliable confidence scores.
But the existingmethods cannot dowell in these aspects at the
same time. In order to solve the difficulties, T. Lin et al. [21]
proposed BSN in 2018.

Briefly, BSN first locates the boundaries of the temporal
action segments (the start node and the end node). And
the boundaries nodes are directly combined into a temporal
proposal. Then it extracts a 32-dimensional proposal-level
feature based on the sequence of action confidence scores
for each candidate proposal. Finally, based on the extracted
feature of the proposal-level, it evaluates the confidence of
the temporal proposals.

The main contributions are as follows: a) the novel frame-
work can meet the requirements of the above 3 points at the
same time. b) The modules of BSN are simple and flexible.
The disadvantages are: a) the efficiency is not high enough
because the process of feature extraction and confidence
assessment is performed one by one for each temporal pro-
posal. b) Insufficient semantic information. In order to ensure
the efficiency of extracting action proposal feature, the 32-
dimensional feature designed by BSN is relatively simple,
but it also limits the confidence evaluation module to obtain
more semantic information. c) This method has multi-stage.
It doesn’t optimize several parts of the network jointly.

e: BOUNDARY-MATCHING NETWORK (BMN [72], 2019)
In order to solve the shortcomings in BSN, the new
temporal proposal confidence evaluation mechanism and

TABLE 1. Performance comparison: AR@AN = 200 on THUMOS14.

boundary-matching mechanism were proposed also by
T. Lin et al. [72] in 2019. BMN can generate the probability
of one-dimensional boundary and the confidence map of two-
dimensional BM simultaneously. Then it can evaluate the
confidence scores of all possible temporal proposals densely.

The performance comparisons among the above temporal
action proposal methods are shown in TABLE 1.

2) ONE-STAGE LOCALIZATION METHODS
The other type is one-stage frameworkwhich tackles proposal
and classification simultaneously. For example, in 2017,
T. Lin et al. proposed SSAD (single shot temporal action
detection) [12] and the group of Li Feifei proposed SS-TAD
(end-to-end, single-stream temporal action detection) [11].
Both of them are based on single-shot detector. Due to the
similarity between temporal action localization and object
detection, SSAD combines the characteristics of YOLO [73]
and SSD [74] models of object detection. The general flows
of SSAD are as follows. Using the pre-trained model, feature
sequences are obtained which are the input of SSAD model.
After processing, the model outputs the detection results.
While SS-TAD improves training and testing performance
using the semantic subtasks of temporal action localization
as adjusted semantic constraints. So the effectiveness is better
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than SSAD. SS-TAD extracts feature using C3D, the same as
SSAD. But SS-TAD adopts the anchor mechanism and the
stacked GRU units. Recently, Fuchen Long et al. introduces
GTAN (Gaussian Temporal Awareness Networks) [25] which
integrates temporal structure to one-stage action localization.
InGTAN, it introducesGaussian kernels to optimize temporal
scale of every action proposal dynamically.

In addition, some methods are based on sequential
decision-making process that also belong to one-stage frame-
work, such as [10], [13]. Literature [10] was the first one to
propose an end to end approach to learning action detection
in videos. In this article, it uses reinforcement learning to
train an RNN-based agent. The agent can constantly observe
the video frames and decide where to look next and when to
generate an action prediction.

III. BENCHMARK DATASETS
Though there is not a standard benchmark for temporal
action localization, most researchers use THUMOS14 [6] and
ActivityNet [7]. Besides, there are several large-scale datasets
for temporal action detection. For example, MEXaction2
[46], MutiTHUMOS [47], Charades [8] and AVA [9] and
so on. The following paragraph mainly introduces several
commonly used datasets.

A. THUMOS’14 [6]
THUMOS14 comes from THUMOS Challenge 2014. This
dataset includes two tasks: action recognition and tem-
poral action detection. Most papers are evaluated in this
dataset. The THUMOS dataset has video-level annotations
of 101action classes in its training, validation, and testing
sets, and temporal annotations only for a subset of videos in
the validation and testing sets for 20 classes.

The details for some fully-supervised learning methods are
as follows: a) Training set: UCF101, 101 types of actions,
a total of 13,320 trimmed video clips. b) Validation set:
1,010 untrimmed videos, 200 of them are labeled with tem-
poral annotations. (3007 action segments, only 20 classes
which can be used for the task of temporal action detection).
c) Testing set: 1,574 untrimmed videos, 213 of them have
temporal action annotations. (3,358 behavioral segments,
only 20 classes which can be used for the task of temporal
action detection.)

In a word, this dataset is challenging as some videos are
relatively long (up to 26 minutes) and contain multiple action
instances. The length of an action varies from less than a sec-
ond to minutes significantly.

B. ActivityNet [7]
The ActivityNet dataset is the largest one which recently
introduced benchmark for action recognition and action
localization in untrimmed videos. This dataset only provides
the link of YouTube video, but cannot download the videos
directly. So we need to use the YouTube download tool in
Python to download it automatically.

The ActivityNet1.3 consists 10,024 videos for training,
4,926 for validation, and 5044 for testing, with 200 activity
classes, such as ‘walking the dog’, ‘long jump’, and ‘vacuum-
ing floor’. The total duration of the video is 648 hours. The
ActivityNet 1.3 only contain 1.5 occurrences per video aver-
agely and most videos simply contain single action category
with 36% background on average.

This dataset contains a large number of natural videos that
involve various human activities under a semantic taxonomy.

C. MEXaction2 [46]
MEXaction2 dataset contains two types of actions which are
horse riding and bullfighting. This dataset consists of three
parts: YouTube videos, horse riding videos in UCF101, and
INA videos. Among them, the YouTube video clips and the
horse riding video in UCF101 are trimmed short video clips
that are used for the training set, while the INA videos are
untrimmed long videos with a total length of 77 hours. The
INA videos are divided into training, validation and test sets.
There are 1,336, 310, and 329 action segments in the training
set, validation set and testing set respectively.

In short, MEXaction2 dataset is characterized by the fact
that the untrimmed videos are very long, and the annotations
segments are only a small proportion of the total videos.

D. MUTITHUMOS [47]
MUTITHUMOS is a dense, multi-classes, framewise labeled
video dataset which includes 400 videos of 30 hours,
38,690 annotations of 65 classes. It has 1.5 labels per
frame averagely, and 10.5 action classes of each video. It’s
an enhanced version of THUMOS. At present, we only
saw the evaluation of this dataset in the paper ‘‘Learning
Latent Super-Events to Detect Multiple Activities in Videos’’
in 2017.

E. CHARADES [8]
Charades is untrimmed videos which contain 9,848 indoor
videos, (7985 training data, 1863 testing data), and
157 classes from 267 different people. Each video is about
30 seconds. Each video has multiple annotations and the start
time and end time of each action.

F. AVA [9]
AVA is a spatio-temporally localized Atomic Visual Actions
dataset. It contains 430 movie clips of 15 minutes’ length
which is annotated with 80 actions. There are 386,000 labeled
segments, 614,000 labeled bounding boxes and 81,000 per-
son tracks. There are totally 1.58M labelled actions and every
person has multiple labels frequently.

Next we summarize and compare these datasets shown in
TABLE 2.

IV. EVALUATION METRICS
A. BASIC CONCEPTS
In the problem of binary classification, TP represents True
Positive, FP represents False Positive, TN represents True
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TABLE 2. Comparison and summary of the datasets.

TABLE 3. The logic detail of binary classification.

Negative, and FN represents False Negative. The four param-
eters are used to calculate many kinds of performance evalu-
ation metrics. The logic details of four parameters are shown
in TABLE 3.

In which, at the actual binary classification, the positive-
1 label refers to the samples you are more concerned about,
such as an action or an abnormal event.

1) ACCURACY
Accuracy is the proportion of classified samples correctly.
It is used to evaluate the performance of the classifier.

accuracy =
rP+ TN

TP+ TN + FP+ FN
=
TP+ TN
ALL

(1)

2) RECALL
Recall is the coverage of predicting correctly. Specifically,
recall is that how many real positive samples in the testing set
were identified. The formula is as follows.

recall =
TP

TP+ FN
(2)

3) PRECISION
Specifically, precision is the percentage of the predicted real
positive samples in predicted results. The formula is as fol-
lows.

Precision =
TP

TP+ FP
=
TP
n

(3)

In which, n is the sum of True Positive and False Positive,
and n is also the total number of samples identified by the
system.

4) INTERSECTION-OVER-UNION (IoU)
IoU can be understand as the overlap between the predicted
detection box by the model and the ground truth for the
object detection in images. In fact, it is the accuracy of detec-
tion. The calculation formula is the intersection of Detection

Result and Ground Truth compared to their union.

IoU =
predicted detection box ∩ ground truth
predicted detection box ∪ ground truth

(4)

IoU is used to checkwhether the IoU between the predicted
result and the ground truth is greater than a predicted thresh-
old.We often set 0.5 as the threshold. If the IoU is greater than
0.5, the object will be identified as ‘‘detected successfully’’,
otherwise it will be identified as ‘‘missed’’. In temporal action
detection, IoU is changed into t-IoU for time which has only
one dimension.

B. EVALUATION METRICS
C. AVERAGE RECALL (AR)
AR is the evaluation metric for temporal action propos-
als generation. Because temporal action proposal generation
doesn’t need to classify, it only needs to find the proposal.
Therefore, whether the temporal proposals we find are com-
plete can be used to evaluate the performance of the method.
So we often use AR for the judgment.

AR =
sum of the videos recalled
total number of videos

(5)

D. MEAN AVERAGE PRECISION (mAP)
In the task of temporal action localization, mAP is the eval-
uation metric which we most commonly used. In general,
we compare mAPs in the case of t-IoU = 0.5.
To say simply, Precision (P) is the degree of correct detec-

tion in a single class of a given video. For example, for a given
single video, precision in Class C is shown in the formula.

P =
TP

TP+ FP
=
number of predicted correct proposals
total mumber of predicted proposals

(6)

Because there are many videos in the testing set, Average
Precision (AP) is the average precision of all videos in Class
C. At the same time, because there are also many classes
corresponding to the testing set videos, so Mean Average
Precision is the average precision of all classes in all testing
videos.

mAP =
the sum of average precision of all classes

total number of videos in testing set
(7)

In a word, under a certain t-IoU, P is the accuracy of
predicted proposals of a certain Class C in a video. AP is
the average accuracy of the predicted proposals of all classes
in a video. MAP is the mean of the average accuracy of
the predicted proposals of all classes in all testing videos.
Following the standard evaluation protocol, almost all papers
report mAP at different thresholds of t-IoU.

V. RECENT METHODS AND DEVELOPMENTS
A. FULLY-SUPETVISED TEMPORAL ACTION LOCALIZATION
(F-TAL)
1) FULLY-SUPETVISED LEARNING
Fully-supervised learning is a process to train an intelligent
algorithm to map the input data into labels, where each
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training data has its corresponding label indicating its ground
truth. Classification and regression which we often study
are the representatives of supervised learning. In the task
of temporal action localization, full supervision employs the
labels of training set that contain both the video-level cate-
gory labels and the temporal annotations information of the
action segment (including the start and the end time of the
action).

2) CURRENT REPRESENTATIVE METHODS
Many of the methods (such as S-CNN [14] and PSDF [18])
generate proposals by sliding window, and classify them into
C + 1 classes that is C action classes and one background
class. Among them, S-CNN uses a multi-stage CNN for
temporal action localization to capture the robust video fea-
ture representation. For precise boundaries, the CDC [19]
(Convolutional-De-Convolutional) network and the TPC-Net
[20] (Temporal Preservation Convolutional network) are pro-
posed for frame-level action predictions. BSN [21] (Bound-
ary Sensitive Network) is recently proposed to locate tem-
poral boundaries which are further integrated into action
proposals. Next year, the authors of BSN also propose a
new temporal proposal confidence evaluation mechanism
and boundary-matching mechanism BMN [72]. BMN can
generate the probability of one-dimensional boundary and
the confidence map of two-dimensional BM simultaneously.
For the completeness of the proposals, SSN [22] introduces
structured temporal pyramids with decoupled classifiers for
classifying actions and determining completeness. Further-
more, some region-based methods (such as R-C3D [23] and
TAL-Net [24]) propose to generalize the methods for 2D
object detection to 1D temporal action localization. Recently,
TSA-Net [26] and Gaussian temporal modeling [25] are
proposed for accurate action localization. The following are
the performance comparisons. For simplicity and fairness,
we take performance comparison of mAP@tIoU= 0.5 on the
THUMOS14 dataset and publications of various representa-
tive methods, as shown in the TABLE 4.

In recent years, with the introduction of various new net-
works, the accuracy has reached the latest 46.9% [26]. Of
course, there is still a certain gap with object detection in
images, which is why it is difficult to commercialize on
a large scale currently. But we can believe that with the
continuous progress of technology, the accuracy will achieve
a breakthrough.

B. WEAKLY-SUPETVISED TEMPORAL ACTION
LOCALIZATION (W-TAL)
According to the above section, we know that current fully-
supervised learning techniques have achieved great success
in temporal action localization. Because many existing tech-
niques rely on trimmed videos as their inputs, such as
UCF101, and they have these precise temporal annota-
tions. But in the realistic scenario, most of the videos are
untrimmed and contain many frames that are not relevant to
target actions. So it is very difficult to require the temporal

TABLE 4. comparisons: mAP@tIoU = 0.5 on the THUMOS14.

annotations. The specific reasons are summarized as follows:
a) frame-level annotations for every action instance is expen-
sive and time-consuming. b) There is no sensible definition
about the temporal action exactly, so these temporal annota-
tions may be subjective by different people.

So weakly-supervised learning methods have been more
and more popular.

1) WEAKLY-SUPETVISED LEARNING
Let’s take a look at weakly- supervised learning. There are
three types of weakly-supervised learning [40]. a) Incomplete
supervised, that is only a little subset of training data are
labeled, while the other data have no labels. For example,
in image classification, we can easily get a large number
of images from the internet, but only a small number of
images have annotations due to the expensive cost by human.
b) Inexact supervised, that is the training data only have
coarse-grained labels. We also take images classification as
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an example. We usually have image-level labels but not
object-level labels. c) Inaccurate supervised, that is the labels
given to us are not always the ground-truth. For example,
when the image annotator is tired or careless, or some images
are very difficult to classify, such situation will happen.

According to the above, since weakly-supervised temporal
time localization only has video-level labels but not frame-
level temporal annotations in the training process, it belongs
to the second type of weak supervision which is inexact
supervised.

2) CURRENT REPRESENTATIVE METHODS
There are only a few methods based on weakly-supervised
which only rely on video-level class labels to temporal action
localization. Motivated by the weakly-supervised object
detection in images, UntrimmedNet [29] and Hide-and-seek
[30] are studied by researchers. UntrimmedNet is the first one
to propose action recognition and action detection with weak
supervision. It’s an end-to-end model to learn single label
action classification and detection. STPN [31] is a deep neural
network based on classification. The general structure of the
network is as follows: the video is divided into N segments,
and the attention module can identify a sparse subset of the
key segments. Thenwe can obtain the importance of each seg-
ment in the process of predicting classification label. Thereby,
it can generate the corresponding category labels and interval
suggestions by adaptive temporal pooling. AutoLoc [32]
attempts to predict the temporal boundary directly that is dif-
ferent from the previous weakly-supervised temporal action
detection according to the threshold on the CAS. The main
idea is that the average score outside the action segment is
encouraged to be lower than the inside for score of action
category. W-TALC [33] introduces a novel function to get
K-max Multiple Instance Learning and unearth co-activity
relationship between the localized instances of the same class.
To solve the problem of fragmentation of video frames that
the classifier cares about and the completeness of the action,
Hide-and-seek [30] randomly hides some frames to force
residual attention to learn the relatively low discrimination
video frames in each training. Although, it doesn’t guarantee
the discovery of new parts at each training. The result shows
that this method works well for spatial object detection but
is not good for temporal action localization. Step-by-step
erasion, one-by-one collection [34] erases and trains multiple
classifiers step by step, and merges the prediction segments
of each classifier directly. The performance is better, but it
costs more time and computation. Afterwards, CMCS [35]
proposes a multi-branch network architecture with diversity
loss for action completeness modeling. At the same time,
they propose a scheme generating a hard negative video for
separating contexts. Although the main point of this article
is not the background class, it inspires the next subsequent
three works that are BaSNet [36], background modeling [37],
and LPAT [38]. Without considering the background cate-
gory, the background frames were misclassified into action
categories, resulting in a large number of FPs. In BaSNet,

TABLE 5. Performance comparison: mAP@tIoU = 0.5 on the THUMOS14.

in order to construct negative samples of the background
class, an attention module was introduced in another network
to suppress the background response. Two other works take
into account background class from different aspects, and
suppress the influence of background effectively. Finally,
they all improve the accuracy of the localization.

The following are the performance comparisons on the
THUMOS14 dataset, the same standard as fully-supervised
learning and publications of various representative methods,
as shown in the TABLE 5.

3) INSIGHTS ON THE PROBLEM OF W-TAL
Recently, multiple instance learning (MIL) has been used for
W-TAL. Instead of learning with s set of instances that are
individually labeled, a MIL model receives a set of labeled
bags, each of them containing many instances. If we consider
action instances in a video as a bag, and video-level anno-
tation as the label, then the W-TAL can be formulated as a
process of multiple instance learning.
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Temporal class activation mapping (T-CAM) or Class acti-
vation sequence (CAS) is another recently group of meth-
ods for W-TAL. The CNN visualization has shown that the
convolution layer of a CNN performs as the action detectors,
although there is no supervision on the location of the activi-
ties. Class activation sequence elucidates that a CNN enables
to have localization ability despite being trained on video-
level labels. In addition, some other research on W-TAL
were inspired by weakly supervised object detection, such as
interactive annotation and generative adversarial training.

All in all, weakly-supervised learning reduces the costs of
labor and time, but also increases the difficulty of temporal
detection. But for most video clips in most action categories,
the results seem to be good. Of course, there is still plenty of
room for improvements.

VI. FUTURE DIRECTIONS AND TRENDS
The application of temporal action localization will be more
and more wide actually, and the future trends may focus on
but is not limited to the followings.

a) Precision and efficiency improvements. Compared the
method two-stream and 3D convolution, two-stream is more
accurate but less efficient than the latter. How to take the
advantages of both of them better is a possible research
direction in

b) Action detectionwill extend from temporal action detec-
tion to spatio-temporal action detection [39]. That is to say,
we should detect from one-dimensional temporal interval to
two-dimensional spatio-temporal box that can detect actions
more comprehensively.

c) Action detection of videos online. That is a process
of dealing with a video stream which needs to detect the
category of action online, but cannot know the content after
the detection time. The setting of online is more conform to
the requirements of surveillance videos which need real-time
detection or early warning, such as anomaly detection [41].

d) Weakly-supervised learning of temporal action localiza-
tion will become more and more popular. In many tasks, it’s
difficult to obtain full supervision information due to the high
cost of the data labeling process.

e) Video is a multi-modal data which contains image and
audio. Whether to use audio information to assist temporal
action localization is direction worth considering. As Aytar
et al. had used image-assisted audio analysis [45].

VII. CONCLUSION
In this article, we conduct a comprehensive overview of
temporal action localization. We analyze related techniques
from time division: traditional methods and deep learning
methods. Next we summarize the benchmark datasets and
analyze the evaluation metrics. Then we review the recent
developments of temporal action localization from fully-
supervised learning to weakly-supervised learning methods.
Anyway, we have tried to give the relevance and current
situation of temporal action localization. At the same time,

we hope to help some readers who are interested in temporal
action localization.

Temporal action localization, as a hot topic in video under-
standing, is very complicated and challenging. However, in
the near future, we believe that the results can be improved
and the task will become easier with the exploiting of deep
learning techniques.
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