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ABSTRACT To observe the complicated physical world, sensor networks are widely used for data collection.
Moreover, due to the limited energy, storage and computation capacity of sensor nodes, approximate
data acquisition in adaptive sampling manner is a wide choice. Nevertheless, existing data acquisition
methods are most designed for univariate data (e.g., temperature), and thus not applicable to image data
with high dimensions and complex structures. In this paper, we propose a framework of Physical-world-
Aware Adaptive Data Acquisition (PAADA) for image sensor networks, to sample data adaptively with pre-
specified error bound. First, based on the convolutional autoencoders (CAEs), PAADA compresses the high-
dimensional image data into a feature vector with a handful of hidden variables which compactly capture
the key features of the image data. Second, PAADA designs a Physical-world-aware Adaptive Sampling
(PAS) algorithm based on the Hermitee interpolation. Under the feature space, the PAS algorithm adjusts
the sampling frequency automatically by considering the change trend of the feature vector. In addition,
the feature vectors at non-sampling time points can be recovered with O (ε) approximation guarantee to the
ground truths. Next, PAADA recovers the image data at non-sampling time points based on the recovered
feature vectors. Finally, for each sensor, PAADA returns an image series composed of sampled images
(at sampling time points) and approximate images (at non-sampling time points). Experiments on real-
world datasets demonstrate that the proposed PAADA has high performance in both accuracy and energy
consumption.

INDEX TERMS Image sensor networks, adaptive data acquisition, physical-world-aware approximation.

I. INTRODUCTION
The physical world presents an incredibly rich set of input
modalities, e.g., acoustics, image, motion, vibration, heat,
light, etc. For collecting information from the complicated
physical world, a large number of sensing devices are
deployed to acquire data continuously from monitored envi-
ronments in many real applications [1]–[3]. In particular,
in the area of big data [4], wireless networks in combina-
tion with image sensors (i.e., image sensor networks) [5],
[6] open an up multitude of previously unthinkable sensing
application, e.g., surveillance [7], [8], home automation [9]
and wildlife monitoring [10].

Currently, given an image sensor network (ISN), most
existing works acquire image data from the physical world
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based on the equi-frequency sampling (EFS) methods [11],
[12]. However, the EFS methods may distort the observed
physical world when the sampling frequency is low, which
results in the misunderstanding of the physical world. One
possible solution is to increase the sampling frequency. How-
ever, for an ISN, collecting a large amount of raw data
with high sampling frequency may lead to several undesir-
able problems. First, the lifetime of the ISN may be short
with much more energy consumption of sensor nodes. It
is reported in [13] that the lifetime of a sensor network
can be increased extraordinarily from 1 month to more than
18months by lowering the data sampling rate of sensor nodes.
Second, the data quality may deteriorate due to the packet
loss caused by network congestion. With a high sampling
frequency, the data collected intensively while the bandwidth
of sensor nodes is limited, which may potentially result in
network congestion. Third, the image data collected by ISN
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are usually high-dimensional and large-scale, which further
burdens data transmission and storage of the sensor nodes. In
summary, the data collection with high sampling frequency
is impractical for ISN due to the problems introduced above.

To address this issue, one possible way is adaptive sam-
pling, i.e., to let the sensors skip sampling whenever, based
on existing samples, the future readings we intend to skip can
be estimated accurately. Currently, several adaptive sampling
methods [14]–[17] have been proposed for acquiring data
from the physical world. However, most existing algorithms
are built based on EFS methods and focus on saving energy
with certain accuracy loss. This may overlook some critical
points and lead to distortion of the observed physical world,
even provide incorrect information to the upper applica-
tions. Moreover, existing algorithms cannot handle the high-
dimensional image data as they are proposed for univariate
(one-dimensional) data.

To overcome the shortages of existing adaptive sampling
methods, we propose a framework of Physical-world-Aware
Adaptive Data Acquisition for image sensor networks, named
PAADA, to support approximate data acquisition with a pre-
specified error bound. In PAADA, we first compress the
high-dimensional image into a feature vector (consisting of
a few hidden variables) based on the convolutional autoen-
coders (CAEs), where the hidden variables can capture the
key features of the original image data. Then in the low-
dimensional feature space, the next sampling time point
is determined adaptively. Moreover, the data at the non-
sampling time points between two consecutive sampling time
points are recovered approximately. Finally, the sampled and
approximate images are concatenated to form the final image
series.

Our contributions in this paper are summarized as follows.
• We propose a novel framework, namely PAADA, for
physical-world-aware approximate image data acquisi-
tion under the energy, computation and storage limita-
tions of the image sensor nodes.

• Owing to the high dimensionality of the image data,
we propose a data compression algorithm based on the
CAEs model. After data compression, the feature vec-
tors of the original image data are used to later data pro-
cessing, which significantly reduces the computational
cost.

• A physical-world-aware data sampling algorithm is pro-
posed based onHermitee interpolation. By sampling dis-
crete image data adaptively with considering the change
trend of continuously-varying physical world, the pro-
posed algorithm extends the lifetime of the ISN with
controllable accuracy sacrifice.

• Based on the sampled data, we propose a data
approximation algorithm to recover the image data at
non-sampling time points by employing the Hermitee
interpolation and the decode part of the trained CAEs
model. With the guarantee of O (ε)-approximation to
physical world on feature level, the images are recovered
with high accuracy.

• Finally, we conduct extensive experiments over two real-
world datasets to evaluate the performance of the pro-
posed PAADA framework.

Generally, to convert data into valuable information, there
are five steps: data acquisition, data preprocessing, data stor-
age, data modeling and analysis, and data visualization. It
is notable that this work focuses on the image data acqui-
sition with considerations of energy consumption and data
accuracy simultaneously for an ISN. In other words, the pro-
posed PAADA can be considered as an assemble serving for
data collection. Moreover, the proposed PAADA returns the
images at each time point where the images at non-sampling
time points are recovered approximately rather than sampling
from the real physical world. Thus there is no increase of data
size and our proposed PAADA does not incur extra burden
for the following data processing tasks. On the other hand,
it is notable that this paper focuses on saving energy from the
task of data sampling within each single sensor node in ISN.
The main energy consumption is usually considered from
data transmission and data reception. However, the energy
consumption of data sensing is not always insignificant [18],
[19], especially for energy-hungry sensors, e.g., image sen-
sors, gas sensors, which also consume a large amount of
energy during sensing data compared to that of data trans-
mission [20], [21].

The reminder of this paper is structured as follows. In
Section II, we introduce the preliminaries. In Section III,
we overview the PAADA and then introduce the data
compression technique in Section IV. After introducing
the solution for physical-world-aware adaptive sampling in
Section V, we present the data approximation algorithm in
Section VI. We report the experimental results in Section VII,
and finally conclude the paper in Section VIII.

II. PRELIMINARIES
A. PROBLEM STATEMENT
Suppose an image sensor network S consists of n sensor
nodes S = {s1, s2, · · · , sn}.
Definition 1: An image Ii (t) is the data collected by sen-

sor si at time t to describe the observed physical world.
Generally, an image is usually represented by a matrix of
pixels values with size (H ×W ) ∈ Rd .
Definition 2: The feature vectorFi (t) =

(
Fi,1(t) ,Fi,2(t),

· · · ,Fi,h (t)
)
is the h-dimensional hidden representation

(embedding) of the image Ii (t), where the redundancy infor-
mation in the original image is removed while essential
aspects of the data are preserved.
Definition 3: An image series I i=

{
Ii(ts), Ii (t1), · · ·,I

(
tf
)}

is a series of images collected by sensor si at each time point
t in range

[
ts, tf

]
, where ts (ts = t0) and tf are the start and

end time points of users observing the physical world by the
image sensor network S.
As introduced earlier, the sensor node si does not

sample data at each time point with the constraints of
remaining energy and network bandwidth. Let T si =
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{
tsi,1, t

s
i,2, · · · , t

s
i,c, · · · ,

} (
ts ≤ tsi,c ≤ tf

)
be the sampling

time points, and T ui =

{
tui,1, t

u
i,2, · · · , t

u
i,l, · · · ,

}(
ts ≤ tui,l ≤ tf

)
be the non-sampling time points of si in range[

ts, tf
]
. At non-sampling time points, the image data are not

sampled by S and thus need to be approximated by estimation.
Definition 4: An approximate image Îi (t) is the estima-

tion of Ii (t) where t is a non-sampling time point.
Definition 5: An approximate feature vector F̂i (t) is the

estimation of Fi (t) at a non-sampling time point t .
Definition 6: An approximate image series Îi ={̂
Ii (t0) , Îi (t1) , · · · , Îi

(
tf
)}

is the approximation of the
image series Ii, where the data at sampling time points are the
images essentially collected by sensor si while the data at non-
sampling time points are the approximate images estimated
based on the observed images.
Problem: Given an image sensor network S where each

sensor collects image data from the physical world at some
discrete sampling time points, our goal is to recover the image
data at non-sampling time points by approximation and return
an approximate image series Îi for each sensor node si ∈ S.

For tackling the above problem, we propose a new
framework, called Physical-world-Aware Approximate Data
Acquisition (PAADA), to obtain data from physical world
based on an image sensor network. Note that the data acqui-
sition of various sensor nodes in a given ISN are independent.
For each sensor si ∈ S, PAADA aims to tackle the following
issues:
• Compressing the high-dimensional image data Ii (t) into
a low-dimensional feature vector Fi (t) to dramatically
reduce the complexity of further data processing, where
ts ≤ t ≤ tf .

• Determining the next sampling time tsi,c+1 ∈ T si at the
current sampling time tsi,c ∈ T

s
i .

• Approximating the image data at each non-sampling
time point tui,j ∈ T

u
i .

Example 1: The dataset PRID1 provides the image
sequences extracted from multiple person trajectories from
two cameras. Figure 1 shows the flowchart of PAADA to pro-
cess an example segment of image series in PRID dataset. As
shown, at the sampling time point tsi,1, the image is captured
by the camera. Then, PAADA computes the next sampling
time point tsi,2 based on tsi,1 for sampling data adaptively to
save energy and storage resource. Next, PAADA recovers the
data at the non-sampling time points between tsi,1 and tsi,2
with high accuracy. With the same line, the sampling and
approximation processes are repeated in

[
tsi,2, t

s
i,3

]
. Finally,

an approximate image series of sensor si is expected to be
returned.

B. RELATED WORK
Since the abilities on sensing, computation, storage and com-
munication of sensor nodes in ISN are quite limited, adaptive

1https://www.tugraz.at/institute/icg/research/team-bischof/lrs/
downloads/prid11/

FIGURE 1. The flow chart of the proposed PAADA.

sampling in data acquisition is essential to reduce energy
consumption and obtain high accuracy of sensed data. Nowa-
days, many adaptive sampling methods have been proposed
for acquiring data from the physical world by WSNs.

EDSAS [17] adapts the sampling rate of a sensor node by
employing temporal data correlations based on its historical
data segment. LiteSense, proposed in [22], is an adaptive
sampling scheme, oriented to WSNs aiming at improving
the trade-off between capturing data accurately and saving
energy. Reference [20] proposes an energy aware adaptive
sampling (ESAS) approachwhich combines an adaptive sam-
pling algorithm with an energy management technique opti-
mized for energy harvesting WSN. However, the adaptive
sampling algorithm adopted in [20] is traditional rather than a
novel proposed one. In the same way, [23] combines an adap-
tive sampling and a novel transmission reduction technique
into a single energy efficient algorithm. In [24], the sampling
rate is minimized based on the battery level, energy harvest-
ing level and characteristics of the gathered data. Reference
[25] rules sensing frequency of sensor node based on the bat-
tery power levels of sensor nodes, disregarding the variability
of the observed parameter.

The methods in [26]–[29] are proposed for periodic sen-
sor networks. To prolong the lifetime of a periodic sensor
network, [26] proposes an adaptive data collection protocol
(ADaC) where the sampling rates of sensor nodes are adapted
based on the similarity of the data between periods by using
Euclidean distance. In [27], each sensor adapts its sampling
rate based on the dependence of measurements variance to
the physical changing dynamics. Specifically, the authors
use the ANOVA model to determine whether there are any
significant differences between the means of different data
sets collected in successive periods. The ADiDaG framework
proposed in [28] is applied in distributed manner for periodic
WSN applications. It adapts the sensor sampling rate based
on Longest Common Subsequence (LCS). The suggested
method in [29] gives every node the capacity to recognize data
repetition between gathered data over time, by employing
overlap similarity functions and providing sampling with an
adaptive rate.

Moreover, there are several adaptive sampling approaches
for various real-world applications. AdaSense [30] deter-
mines the optimal sampling rates of sensor nodes based
on genetic programming to reduce data acquired in activity
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detection and multi-activity classification. DDASA [19] is a
data-driven adaptive sampling algorithm proposed for sensor
networks used in automated water quality monitoring. The
sampling frequency of each sensor node is adapted based on
the observed water quality. Reference [31] is proposed for
landslidemonitoring system, where the sampling rate dynam-
ically varies depending on the sensor/network-level contexts.
However, there are only three sampling rates predefined
manually, which insufficient obviously. In [32], an adaptive
sampling approach based on the input characteristics for
air monitoring sensor networks is proposed. The algorithm
adapts the sampling period based on the similarity between
the current and the previous sensed data.
Disadvantages: However, most of the adaptive sampling

approaches introduce above face issues summarized as fol-
lows.

(1) Most existing works focus on saving energy to prolong
the lifetime of the sensing networks, rather than acquiring
data accurately to recover the real world physical world. The
accuracies of them are even worse than EFS (Equi-Frequency
Sampling) methods.

(2) The basic idea of most existing methods is that a sensor
node increases its sampling rate when it notices an obvious
change of measurements, while it decreases its sampling
rate when the change is lower than a threshold. However,
the threshold used to filter the abrupt change is difficult
to determine. Moreover, most existing works determine the
change trend of the physical world by comparison current
data with a segment of collected historical data, which is
not accurate. In other words, the loss of the data acquisition
by adaptive sampling is computed as the difference between
the data acquired in different data segments, rather than the
difference between the acquired data with the their ground
truths.

(3) All these algorithms are focus on the data with single
variable (i.e., just for one single time series), which are not
competent for high-dimensional image data.

The data acquisition algorithm proposed in [33] is the most
related one to our work. It adjusts the sampling frequency
automatically based on Hermite/Spline interpolation by con-
sidering the changing trend of the physical world. More-
over, the accuracy of data acquisition can achieve certain
approximation to the real physical world. However, as men-
tioned above, it is also only suitable for univariate data and
thus cannot handle the high-dimensional image data. In this
paper, we propose the PAADA framework to obtain the high-
dimensional image data from the real physical world with
high accuracy in an energy-efficient manner.

III. THE PAADA FRAMEWORK
In this section, we give an overview of the proposed PAADA
framework. As shown in Figure 2, the proposed PAADA
consists of three components:

(C1) Data Compression compresses the original image
data into low-dimensional feature vectors (which contains h

FIGURE 2. The framework of the proposed PAADA.

hidden variables) based on the convolutional autoencoders
(CAEs). The solution contains two stages: training stage and
testing stage. In the training stage, given a set of images as
the input, a CAEs model is trained to extract feature vectors
which can be used to reconstruct the input. Afterwards, for
any image Ii (t) in the testing stage, the feature vector Fi (t)
of Ii (t) is obtained from the learned CAEs model directly.

(C2) Adaptive Sampling determines the future sam-
pling time points adaptively under the low-dimensional fea-
ture space. As introduced earlier, at current time point tsi,c,

the image I
(
tsi,c
)

collected by sensor node si ∈ S is

transformed to a h-dimensional feature vector Fi
(
tsi,c
)
=(

Fi,1
(
tsi,c
)
,Fi,2

(
tsi,c
)
, · · · ,Fi,h

(
tsi,c
))

. Under the feature
space, we compute the next sampling time point tsi,c+1 by
exploring the characteristics of Hermitee interpolation [34].

(C3) Data Approximation recovers the images at non-
sampling time points since data are not acquired from the
physical world by the sensor node si. At a non-sampling
time point tui,j ∈ T

u
i , the approximate feature vector F̂i

(
tui,j
)

of image Ii
(
tui,j
)
is estimated based on the Hermitee curve

generated in the adaptive sampling component. Further,
the approximate image Îi

(
tui,j
)
is recovered based on F̂i

(
tui,j
)

by employing the decode part of the CAEs model learned in
the data compression component.

Finally, PAADA returns an approximate image series Îi for
each sensor si ∈ S. Algorithm 1 provides the pseudo-code
of PAADA. In PAADA, the time window

[
ts, tf

]
(given by

users) is divided into multiple time intervals by the discrete
sampling time points. At the current sampling time point
tsi,c, each sensor node si ∈ s samples data and computes
its next sampling time point tsi,c+1 by using the historical

data in time interval
[
tsi,c−1, t

s
i,c

]
(Line 13-18). As shown in

Line 18, PAADA needs to store the historical data at four
time points, i.e., t ti,c−1, t

t
i,c−1 + 4t , t

′, tsi,c − 4t , where
tsi,c−1 is the last sampling time point before tsi,c (see details
in Section V). At the next sampling time point tsi,c+1, sensor
si samples data and recovers the image data which are not
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FIGURE 3. The architecture of the CAE model.

sampled at non-sampling time points in
[
tsi,c, t

s
i,c+1

]
(Line 23-

28). Repeating the process introduced above for each time
interval

[
tsi,c, t

s
i,c+1

]
⊆
[
ts, tf

]
, the approximate image series

for each sensor si ∈ S is obtained. Next, we introduce each
component in detail in the following sections.

IV. DATA COMPRESSION
In PAADA, we adopt the deep convolutional autoencoders
(CAEs) to compress the high-dimensional image data since
the CAEs model is the state-of-the-art tool for feature extrac-
tion from unlabeled images [35]. The architecture of the
CAEs model in this paper is shown in Figure 3. We take an
image (with size 128×64) in PRID dataset as an example for
illustration. As shown, the model contains two parts: encode
and decode.

The encode part consists of three convolutional and pool-
ing layers, respectively. The first convolutional layer filters
the 128×64×1 input image with 64 kernels of size 3×3 and a
stride of 1 pixel. The second convolutional layer takes as input
the (pooled) output of the first convolutional layer and filters
it with 32 kernels of size 3 × 3 × 1. The third convolutional
layer has 16 kernels of size 3×3×1 connected to the (pooled)
outputs of the second convolutional layer. The objective of
the convolution operation is to extract the high-level features,
e.g., edges, gradient orientation, from the input image. Note
that between two convolutional layers, there is a pooling
layer to streamline the underlying computation by reducing
the spatial size of the convolved features. We adopt the max
pooling as it performs a lot better than average pooling in
most cases. As for the activation function in each convolution
layer, we adopt the most-frequently-used ReLU [36].

After a series of convolution process, the non-linear com-
binations of the high-level features (as represented by the
output of the final convolution layer) are learned by adding
two fully-connected layers. Thus far, we have converted a
high-dimensional input image Ii (t) into a suitable form of
feature vector (embedding) Fi (t) with low dimension.

The decode part which consists of three deconvolutional
and unpooling layers respectively has symmetric architecture
with the encode. The objective of decode is to transform the
extracted feature vector Fi (t) going in the opposite direc-
tion of the convolutions, and then recover the input image,
i.e., obtain the recovered image Îi (t). With the idea that if the
feature vector Fi (t) captures the key features of the original
input Ii (t), it allows a good reconstruction Îi (t). Thus the loss
function is to minimize the reconstruction error between Îi (t)
and Ii (t) as shown below.

Min L (θ, φ; Ii (t)) =
∥∥Ii (t)− Îi (t)∥∥2 , (1)

where
∥∥Ii (t)− Îi (t)∥∥2 denotes the mean square error (MSE)

distortion between the original image Ii (t) and the recovered
image Îi (t). θ and φ are the parameters during data transfor-
mation in the encode and decode, respectively.

To compress the high-dimensional image data into feature
vectors based on CAEsmodel, there are two, i.e., training and
testing, stages. Given a set of images as the input, a CAEs
model is learned (i.e., the parameters θ and φ are optimized)
in the training stage by optimizing the loss function. More-
over, we adopt Adam [37] as the optimizer and use a batch
size of 128 to train the model up to 1000 iterations. The learn-
ing rate is kept as a fixed value of 0.001. In addition, since
the image series are sampled continuously with time passing,
the CAEs model can be retrained by adding new sampled
data periodically. Next, in the testing stage, given an image
Ii (t) as the input, its feature vector Fi (t) (low-dimensional
embedding) is obtained by a series of data transformation in
the encode part of the learned CAEs model.
Complexity Analysis: Since the trainedCAEsmodel is used

for feature extraction repeatedly and retrained periodically
in off-line, the time complexity of model training is not
included. In the testing stage, we use the encode part of
the trained CAEs model to obtain the feature vector of each
input image Ii (t). The time complexity of a convolutional
(containing pooling) layer is related to the size of input
image and the numbers of input and output channels in the
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Algorithm 1 PAADA(S, ts, tf , ε, fmax)
Input : The image sensor network S = {s1, s2, · · · , sn}, the start time ts and

end time tf , the user-specified error threshold ε, the maximum sampling
frequency fmax .

Output: The collection of image series {I1,I2, · · · ,In} of S.
1 foreach sensor node si do
2 Îi = 8, 4t = 1

fmax
3 // initial the current and next sampling time points
4 t = tsi,c−1 = ts, t ′ = ts + 24t , tsi,c = ts + 44t
5 while t < tf do
6 if

t == tsi,c−1 or t ==
(
tsi,c−1 +4t

)
or t == t ′ or t ==

(
tsi,c −4t

)
then

7 // sampling the image data at time t
8 Îi ← {Ii (t)}
9 // compressing the image data into feature vector

10 Fi (t)=DataCompression(Ii (t))
11 t = t +4t

12 if t == tsi,c then
13 // sampling the image data at time t

14 Îi ←
{
Ii
(
tsi,c

)}
15 // compressing the image data into feature vector

16 Fi
(
tsi,c

)
=DataCompression(Ii

(
tsi,c

)
)

17 // determining the next sampling time point

18 tsi,c+1 = AdaptiveSampling(tsi,c−1, t
′, tsi,c, Fi

(
tsi,c−1

)
,

Fi
(
tsi,c−1 +4t

)
, Fi

(
t ′
)
, Fi

(
tsi,c

)
, Fi

(
tsi,c −4t

)
, ε)

19 // selecting t ′ randomly from
(
tsi,c, t

s
i,c+1

)
used for next

sampling time determination
20 t ′ =RandSelect(

(
tsi,c, t

s
i,c+1

)
)

21 t = t +4t

22 else if t == tsi,c+1 then

23 Sampling the image data Ii
(
tsc+1

)
24 Îi ←

{
Ii
(
tsc+1

)}
25 // compressing the image data into feature vector

26 Fi
(
tsi,c+1

)
=DataCompression(Ii

(
tsi,c+1

)
)

27 // Approximating the image data at the non-sampling time
points between tsi,c and t

s
i,c+1, i.e.,

tui,j ∈
(
tsi,c +4t, t

′
)
∪

(
t ′, tsi,c+1 −4t

)
28

{̂
Ii
(
tui,j

)}
=DataApproximation(tsi,c, t

s
i,c +4t , t

s
i,c+1 −4t ,

tsi,c+1, Fi
(
tsi,c

)
, Fi

(
tsi,c +4t

)
, Fi

(
tsi,c+1 −4t

)
, Fi

(
tsi,c+1

)
)

29 // adding the data into Îi
30 Îi ←

{̂
Ii
(
tui,j

)} (
tui,j ∈

(
tsi,c +4t, t

′
)
∪

(
t ′, tsi,c+1 −4t

))
31 tsi,c−1 = tsi,c, t

s
i,c = tsi,c+1

32 else
33 t = t +4t

34 return {I1,I2, · · · ,In}

convolutional layer. These parameters are known and fixed
once the structure of CAEs model is designed and the data set
is determined. Thus for a sensor si, if it samples the image data
at time t , then the time complexity of data compression can
be considered as a constant, denoted by O (c) in this paper.
For the image sensor network S which consists of n sensors,
the time complexity of data compression is O (cn).

V. PHYSICAL-WORLD-AWARE ADAPTIVE SAMPLING
In this section, we propose a Physical-world-aware Adaptive
Sampling (PSA) algorithm, to acquire image data from the
physical world in an adaptivemanner.Moreover, to reduce the
computational consumption of data processing, the algorithm

is applied over the low-dimensional feature vectors (derived
based on the CAEs model introduced in Section IV).

For each sensor node si ∈ S, let tsi,c and tsi,c+1
be two consecutive sampling time points. Suppose in[
tsi,c, t

s
i,c+1

]
, the feature series of the image series Ii is

Fi =

{
Fi
(
tsi,c
)
,Fi

(
tui,1
)
, · · · , Fi

(
tui,l′
)
,Fi

(
tsi,c+1

)}
where{

tui,1, · · · , t
u
i,1′

}
are the non-sampling time points between

tsi,c and tsi,c+1, while the approximate feature series of

the approximate image series Îi is F̂i =

{
Fi
(
tsi,c
)
,

F̂i
(
tui,1
)
, · · · , F̂i

(
tui,l′
)
,Fi

(
tsi,c+1

)}
.

Definition 7: F̂i isO (ε)-approximate toFi in
[
tsi,c, t

s
i,c+1

]
if and only if there exist a constant C satisfying that∣∣∣F̂i (tui,j)−Fi (tui,j)∣∣∣ ≤ Cε for any non-sampling time point

tui,j ∈
[
tsi,c, t

s
i,c+1

]
, where ε is a user-specified error bound.

Specifically, based on Definition 2 and Definition 5,
both Fi

(
tui,j
)

and F̂i
(
tui,j
)

are h-dimensional vectors,

i.e., Fi
(
tui,j
)
=

(
Fi,1

(
tui,j
)
,Fi,2

(
tui,j
)
, · · · ,Fi,h

(
tui,j
))

, and

F̂i
(
tui,j
)
=

(̂
Fi,1

(
tui,j
)
, F̂i,2

(
tui,j
)
, · · · , F̂i,h

(
tui,j
))

. We define

that
∣∣∣̂Fi (tui,j)−Fi (tui,j)∣∣∣= 1

h

∑h
k=1

∣∣∣̂Fi,k(tui,j)−Fi,k(tui,j)∣∣∣.
Based on the above definition, for any sensor si ∈ S,

the physical-world-aware adaptive sampling problem aims
to predict the next sampling time point tsi,c+1 at the current
sampling time point tsi,c, where the approximate feature series

F̂i is O (ε)-approximation to Fi in
[
tsi,c, t

s
i,c+1

]
.

A. MATHEMATICAL FOUNDATIONS
Given a sensor node si ∈ S, when t is an independent
variable, the feature vector Fi (t) is actually a collection of
curves where each curve Fi,k (t) is the continuous curve
reflecting the evolution of the kth feature with time t . At
time tsi,c and tsi,c+1, si samples the image data Ii

(
tsi,c
)
and

Ii
(
tsi,c+1

)
, respectively. Moreover, si computes the corre-

sponding feature vectors Fi
(
tsi,c
)

and Fi
(
tsi,c+1

)
based on

the learned CAEs model, respectively. Accordingly, the first
derivative F (1)i

(
tsi,c
)
and F (1)i

(
tsi,c+1

)
are computed. With

these values, based on Hermitee interpolation, each curve
Fi,k (t) ∈ Fi (t) (1 ≤ k ≤ h) is computed by

F̂i,k (t)=Fi,k
(
tsi,c
)
φ1 (t)+Fi,k

(
tsi,c+1

)
φ2 (t)

+F (1)i,k

(
tsi,c
)
φ3 (t)+F

(1)
i,k

(
tsi,c+1

)
φ4 (t) , (2)

where t ∈
[
tsi,c, t

s
i,c+1

]
, φ1 (t) =

(
tsi,c+1−t

)2(
2t−3tsi,c+t

s
i,c+1

)
(
tsi,c+1−t

s
i,c

)3 ,

φ2 (t)=

(
t−tsi,c

)2(
3tsi,c+1−2t−t

s
i,c

)
(
tsi,c+1−t

s
i,c

)3 , φ3 (t)=

(
t−tsi,c

)(
t−tsi,c+1

)2
(
tsi,c+1−t

s
i,c

)2 , and

φ4 (t) =

(
t−tsi,c+1

)(
t−tsi,c

)2
(
tsi,c+1−t

s
i,c

)2 .
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Theorem 1: For ∀t ∈
[
tsi,c, t

s
i,c+1

]
,
∣∣F̂i (t)− Fi (t)∣∣ ≤ ε,

if tsi,c+1− t
s
i,c ≤

 384ε
1
h
∑h

k=1 max
tsi,c≤ξk≤t

s
i,c+1

{∣∣∣F (4)i,k (ξk )

∣∣∣}


1
4

, where ε >

0 is a user-specified error bound.
Proof. Let

G (x)=
1
h

h∑
k=1

[̂
Fi,k (x)−Fi,k (x)−

w (x)
w (t)

(̂
Fi,k (t)−Fi,k (t)

)]
,

where w (t) =
(
t − tsi,c

)2 (
t − tsi,c+1

)2
, x, t ∈

[
tsi,c, t

s
i,c+1

]
.

Based on Equation (2), we have G
(
tsi,c
)
= G

(
tsi,c+1

)
=

G (t) = 0, and G(1)
(
tsi,c
)
= G(1)

(
tsi,c+1

)
= 0. Thus,

there exists ζ ∈
[
tsi,c, t

s
i,c+1

]
satisfying that G(4) (ζ ) = 0 by

repeatedly using Rolle Theorem [38]. Further, based on the
definition of G (x), we have

G(4) (ζ )=
1
h

h∑
k=1

[
F (4)i,k (ζ )−

24
w (t)

(
F̂i,k (t)−Fi,k (t)

)]
=0,

and thereby,

1
h

h∑
k=1

∣∣F̂i,k (t)− Fi,k (t)∣∣
=

1
h

h∑
k=1

∣∣∣∣w (t)24
F (4)i,k (ζ )

∣∣∣∣
=

1
24h

h∑
k=1

∣∣∣(t−tsi,c)2 (t − tsi,c+1)2∣∣∣ ∣∣∣F (4)i,k (ζ )

∣∣∣ .
Since t ∈

[
tsi,c, t

s
i,c+1

]
,
∣∣∣(t − tsi,c) (t − tsi,c+1)∣∣∣ ≤

1
4

(
tsi,c+1 − t

s
i,c

)2
, we have

1
h

h∑
k=1

∣∣F̂i,k (t)− Fi,k (t)∣∣
≤

1
24h

h∑
k=1

[
1
4

(
tsi,c+1 − t

s
i,c
)2]2 max

tsi,c≤ξk≤t
s
i,c+1

{∣∣∣F (4)i,k (ξk)

∣∣∣}
≤

1
384h

(
tsi,c+1 − t

s
i,c
)4 h∑

k=1

max
tsi,c≤ξk≤t

s
i,c+1

{∣∣∣F (4)i,k (ξk)

∣∣∣} . (3)

Combining
∣∣F̂i (t)− Fi (t)∣∣ = 1

h

∑h
k=1

∣∣F̂i,k (t)− Fi,k (t)∣∣
with Equation (3), there is∣∣̂Fi (t)−Fi (t)∣∣ ≤ 1

384h

(
tsi,c+1−t

s
i,c
)4 h∑
k=1

max
tsi,c≤ξk≤t

s
i,c+1

{∣∣∣F (4)i,k (ξk)

∣∣∣}
≤ ε.

Thus tsi,c+1 − tsi,c ≤

 384hε∑h
k=1 max

tsi,c≤ξk≤t
s
i,c+1

{∣∣∣F (4)i,k (ξk )

∣∣∣}


1
4

. The

theorem is proved. �

Algorithm 2 AdaptiveSamping(tsi,c−1, t
′, tsi,c, Fi

(
tsi,c−1

)
,

Fi
(
tsi,c−1 +4t

)
, Fi

(
t ′
)
, Fi

(
tsi,c
)
, Fi

(
tsi,c −4t

)
, ε)

Input : The last sampling time point tsi,c−1, the current sampling time point tsi,c,

the randomly selected time point t ′ ∈
(
tsi,c−1, t

s
i,c

)
, the feature vectors

at the time points introduced above, the user-specified error threshold ε.
Output: Next sampling time point tsi,c+1

1 foreach feature Fi,k (t) (1 ≤ k ≤ h) in Fi (t) do

2 gi,k (t) =LI
(
Fi,k

(
tsi,c−1

)
,Fi,k

(
tsi,c−1+4t

)
,Fi,k

(
t ′
)
,Ii
(
tsi,c−4t

)
,

3 Fi,k
(
tsi,c

))
4 max

tsi,c≤ξk≤t
s
i,c+1

{∣∣∣F (4)i,k (ξk )
∣∣∣} = max

tsi,c−1≤ξk≤t
s
i,c

∣∣∣g(4) (ξk )∣∣∣

5 tsc+1 =


384ε

max

 1
h
∑h
k=1 max

tsc−1≤ξk≤t
s
c

{∣∣∣g(4)(ξk )∣∣∣}, C




1
4

+ tsc

6 return tsc+1

B. ALGORITHM
Based on Theorem 1, to determine the next sampling
time point tsi,c+1 at the current sampling time point
tsi,c, the main issue needs to be tackled is to esti-
mate the maximum forth derivative of each feature, i.e.

max
tsi,c≤ξk≤t

s
i,c+1

{∣∣∣F (4)i,k (ξk)

∣∣∣}(1 ≤ k ≤ h) in range
[
tsi,c, t

s
i,c+1

]
.

Since only the data at tsi,c is sampled, while the future

data in
(
tsi,c, t

s
i,c+1

]
are unknown, we estimate the

max
tsi,c≤ξk≤t

s
i,c+1

{∣∣∣F (4)i,k (ξk)

∣∣∣} based on the historical data in

range
[
tsi,c−1, t

s
i,c

]
, where tsi,c−1 is the last sampling time

point before tsi,c. The rationale behind the strategy is that

max
tsi,c≤ξk≤t

s
i,c+1

{∣∣∣F (4)i,k (ξk)

∣∣∣} in range
[
tsi,c, t

s
i,c+1

]
is close to that in

range
[
tsi,c−1, t

s
i,c

]
, as the monitored physical world usually

changes continuously and smoothly.
Given the current sampling time point tsi,c and the data

at historical time points tsi,c−1, t
s
i,c−1 + 4t , t

′, tsi,c − 4t ,
Algorithm 2 shows the pseudo-code of the PAS algorithm.
First, for each feature Fi,k (1 ≤ k ≤ h) in the feature vec-
tor Fi (t), PAS constructs a quartic interpolation function
gi,k (t) by Lagrange interpolation [39], where t ∈

[
tsi,c−1, t

s
i,c

]
(Line 2). Next, the maximum forth derive of Fi,k (t) in range[
tsi,c, t

s
i,c+1

]
is estimated by using the quartic curve gi,k (t)

in range
[
tsi,c−1, t

s
i,c

]
(Line 3). Finally, PSA averages the

h maximum forth derives 1
h

∑h
k=1 max

tsi,c≤ξk≤t
s
i,c+1

{∣∣∣F (4)i,k (ξk)

∣∣∣}
and determines the next sampling time point tsc+1 = 384ε

max

{
1
h
∑h

k=1 max
tsc−1≤ξk≤t

s
c
{|g(4)(ξk )|}, C

}


1
4

+ tsc based on Theo-

rem 1 (Line 4).
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Theorem 2: F̂i is O (ε)-approximate to Fi in
[
ts, tf

]
.

Proof. F̂i is O (ε)-approximate to Fi in
[
ts, tf

]
if and

only if F̂i is O (ε)-approximate to Fi in each time interval[
tsi,c, t

s
i,c+1

]
⊆
[
ts, tf

]
. Based on Equation (3) in the proof of

Theorem 1, we have

∣∣̂Fi (t)−Fi (t)∣∣= 1
h

h∑
k=1

∣∣F̂i,k (t)−Fi,k (t)∣∣
≤

1
384h

(
tsi,c+1−t

s
i,c
)4 h∑
k=1

max
tsi,c≤ξk≤t

s
i,c+1

{∣∣∣F (4)i,k (ξk)

∣∣∣}.

Moreover, tsi,c+1− tsi,c =

 384ε

max

{
1
h
∑h

k=1 max
tsc−1≤ξk≤t

s
c
{|g(4)(ξk )|},C

}


1
4

based on the PSA algorithm. Thus, there is

∣∣̂Fi (t)−Fi (t)∣∣ ≤ ε
1
h

∑h
k=1 max

tsi,c≤ξk≤t
s
i,c+1

{∣∣∣F (4)i,k (ξk)

∣∣∣}
max

{
1
h

∑h
k=1 max

tsc−1≤ξk≤t
s
c

{∣∣g(4) (ξk)∣∣},C} .

Since F (4)i (t) is continuous in most applications,

F (4)i (t) is bounded in range
[
tsi,c, t

s
i,c+1

]
. By adding

max

{
1
h

∑h
k=1 max

tsc−1≤ξk≤t
s
c

{∣∣g(4) (ξk)∣∣} ,C} ≥ C , we have∣∣F̂i (t)− Fi (t)∣∣ = O (ε). The conclusion is proved since

for any time interval
[
tsi,c, t

s
i,c+1

]
⊆

[
ts, tf

]
, F̂i is O (ε)-

approximate to Fi. �

Algorithm 3 DataApproximation(tsi,c, t
s
i,c + 4t , t

s
i,c+1 −

4t , tsi,c+1, Fi
(
tsi,c
)
, Fi

(
tsi,c +4t

)
, Fi

(
tsi,c+1 −4t

)
,

Fi
(
tsi,c+1

)
)

Input : The sampling time points tsi,c, t
s
i,c +4t , t

s
i,c −4t , t

s
i,c+1 and the

corresponding feature vectors at these time points.
Output: Recovered image

{̂
Ii
(
tui,j

)}
at each non-sampling time point

tui,j ∈
[
tsi,c, t

s
i,c+1

]
.

1 //Constructing the Hermite interpolation curves in range
[
tsi,c, t

s
i,c+1

]
2 foreach feature (element) Fi,k (t) ∈ Fi (t) do

3 F (1)i,k

(
tsi,c

)
=

Fi,k
(
tsi,c+4t

)
−Fi,k

(
tsi,c

)
4t

4 F (1)i,k

(
tsi,c+1

)
=

Fi,k
(
tsi,c+1

)
−Fi,k

(
tsi,c+1−4t

)
4t

5 F̂i,k (t) = Fi,k
(
tsi,c

)
φ1 (t)+ Fi,k

(
tsi,c+1

)
φ2 (t)+ F

(1)
i,k

(
tsi,c

)
φ3 (t)+

F (1)i,k

(
tsi,c+1

)
φ4 (t)

6 foreach non-sampling time point tui,j in range
[
tsi,c, t

s
i,c+1

]
do

7 F̂i,k
(
tui,j

)
= Fi,k

(
tsi,c

)
φ1

(
tui,j

)
+ Fi,k

(
tsi,c+1

)
φ2

(
tui,j

)
+

F (1)i,k

(
tsi,c

)
φ3

(
tui,j

)
+ F (1)i,k

(
tsi,c+1

)
φ4

(
tui,j

)
8 F̂i

(
tui,j

)
=

{
F̂i,1

(
tui,j

)
, · · · , F̂i,h

(
tui,j

)}
9 Îi

(
tui,j

)
= CAEs(F̂i

(
tui,j

)
)

10 return the collection of approximate images
{̂
Ii
(
tui,j

)}

Complexity Analysis: As introduced in Algorithm 2, at a
sampling time point, to determine the next sampling time
point for a sensor node si ∈ S, the proposed PAS algo-
rithm needs to estimate the max

tsi,c≤ξk≤t
s
i,c+1

{∣∣∣F (4)i,k (ξk)

∣∣∣} by con-

structing a quartic interpolation function for each feature
Fi,k (t) (1 ≤ k ≤ h) in Fi (t). Thus the time complexity of
adaptive sampling is O (hn) where h and n are the numbers
of features in a feature vector and sensor nodes in the ISN,
respectively.

VI. DATA APPROXIMATION
As introduced earlier, each sensor si ∈ S samples data only
at time points tsi,c, t

s
i,c+4t , t

′, ti,c+1−4t , ti,c+1 in each time

interval
[
tsi,c, t

s
i,c+1

]
⊆
[
ts, tf

]
, while at other (non-sampling)

time points tui,j ∈
[
ts, tf

]
, sensor si does not sample data. Thus,

the image data at these non-sampling time points need to be
approximate by estimation.

Recall that for a non-sampling time point tui,j ∈[
tsi,c, t

s
i,c+1

]
, its feature vector isFi

(
tui,j
)
=

{
Fi,1

(
tui,j
)
,Fi,2

(
tui,j
)
,

· · · ,Fi,h
(
tui,j
)}
. Referring to Equation (2), for each fea-

ture in the feature vector, we can derive a Hermitee
curve F̂i,k (t) where t ∈

[
tsi,c, t

s
i,c+1

]
, F (1)i,k

(
tsi,c
)
=

Fi,k
(
tsi,c+4t

)
−Fi,k

(
tsi,c

)
4t , and F (1)i,k

(
tsi,c+1

)
=

Fi,k
(
tsi,c+1

)
−Fi,k

(
tsi,c+1−4t

)
4t . Thus the approximate feature

F̂i,k
(
tui,j
)
of Fi,k

(
tui,j
) (

tui,j ∈
[
tsi,c, t

s
i,c+1

])
can be computed

based on the Hermite curve, and thereby the approximate
feature vector F̂i

(
tui,j
)

is derived. Moreover, the approxi-

mate feature vector F̂i
(
tui,j
)
is O (ε)-approximate to Fi

(
tui,j
)
,

i.e.,
∣∣∣F̂i (tui,j)− Fi (tui,j)∣∣∣ ≤ Cε where tui,j ∈ [tsi,c, tsi,c+1].

After feature approximation, by taking the F̂i
(
tui,j
)
as the

input, the trained CAEs model (introduced in Section IV)
outputs the approximate Îi

(
tui,j
)
after a series of data transfor-

mation going through in the decode part of the model. Finally,
for each time interval

[
tsi,c, t

s
i,c+1

]
⊆
[
ts, tf

]
, the approxi-

mate image Îi
(
tui,j
)
at any non-sampling time point tui,j ∈[

tsi,c, t
s
i,c+1

]
is obtained. Afterwards, the approximate image

series Ii of sensor si ∈ S is derived. Algorithm 3 shows the
pseudo-code of the data approximation.
Complexity Analysis:Based on Algorithm 3, the time com-

plexity of the feature approximation for a sensor node si is
O (h) since a feature vector consists of h hidden variables. The
time complexity of image approximation based on the decode
part of the CAEs model is O (c) as introduced earlier. Thus
the time complexity of data approximation is O ((h+ c) n)
In summary, the time complexity of three components,

i.e., data compression, adaptive sampling and data approx-
imation, in PAADA are O (cn), O (hn) and O ((h+ c) n),
respectively, where c is a constant and h is the number
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of hidden variables in a feature vector which can be also
regarded as a constant due to d � n. Moreover, the compo-
nents of data compression and adaptive sampling are used at
sampling time points, while the component of data approx-
imation is used at non-sampling time points. Therefore,
the time complexity of the proposed PAADA isO ((h+ c) n),
which increases linearly with the number of sensor nodes in
the ISN.

VII. EXPERIMENTS
We evaluate the performance of the proposed algorithms
empirically in this section. All the methods are implemented
in Python and the experiments are conducted on a PCwith 64-
bit Windows operating system, 16GB memory and 3.2GHz
CPU. Moreover, we use a NVIDIA GTX 1080 Ti GPU with
3584 cores and 11GB memory.

A. EXPERIMENTAL SETTINGS
1) DATASETS
To evaluate the performance of REMAIN, we adopt two real-
world datasets from the Person Re-identification Datasets2 as
follows:

(1) PRID [40] consists of the image series which record the
movement of persons. The images are extracted from trajecto-
ries recorded by two different, static surveillance cameras.We
adopt the data from camera Awhich contains the image series
of 298 persons, where each series consists of 100 images on
average.

(2) iLIDS-VID [41], [42] involves 600 image sequences
of 300 distinct individuals extracted from iLIDS MCTS
dataset. We select 100 image sequences from the dataset
to conduct our experiments, where each sequence contains
75 images averagely.

In both of the datasets, each original image has size 64 ×
128. For model training, we split the datasets into training
set and testing set with ratio 80/20, where the training set is
used to learn an effective CAEs model to compress the high-
dimensional image data into low-dimensional feature vectors,
and the testing set is used to evaluate the performance of the
proposed algorithms.

2) ALGORITHMS FOR COMPARISON
To the best of our knowledge, there is few existing adaptive
data acquisition algorithm is competent for high-dimensional
image data. In this paper, we first compress the high-
dimensional image data into low-dimensional feature vectors.
Afterwards, the adaptive sampling algorithms are applied
over the feature vectors. Thus, over the same feature vec-
tors obtained by CAEs model (which is adopted in PAADA
for data compression), we experimentally compare the pro-
posed PAADA with existing adaptive sampling algorithms
EDSAS [17] and DDASA [19] since they are the latest meth-
ods. The reason of choosing CAEs model for image data

2http://robustsystems.coe.neu.edu/sites/robustsystems.coe.neu.edu/files/
systems/projectpages/reiddataset.html

FIGURE 4. Performance on data compression.

compression is that it performs better than existing widely
adopted data compression algorithms PCA [43] and AEs
model [44], [45] (as shown in Section VII-B).

3) PERFORMANCE METRIC
We adopt the Mean Absolute Error (MAE) to evaluate the
accuracy of the acquired approximate image series. The lower
MAE is, the performance of data acquisition is better.

Moreover, to evaluate the energy consumption of the pro-
posed PAADA, we suppose that 6.53uW power is consumed
for sampling an image by an CMOS image sensor which is
widely used in imaging system [46]. Then the total energy
consumed is the summation of energy consumption of multi-
ple sampling times.

B. DATA COMPRESSION EVALUATION
As introduced earlier, various adaptive sampling algorithms
apply over feature vectors obtained by the CAEs model.
We choose the CAEs model because the obtained feature
vectors aremore effective than those obtained by existing data
compression algorithms. We adopt the reconstruction error
between the input (image data) and output (reconstructed
image data) of the data compression model to evaluate the
effectiveness of the feature vectors. The rationale behind is
that more key features are captured, the reconstructed images
are closer to the ground truths. Moreover, the structure of the
CAEs adopted in this paper is shown in Figure. 3, where there
are three convolutional and deconvolutional layers, respec-
tively. In the paper, we implement the AEs model which
contains three encoder and decoder layers, respectively.
Additionally, the structure of AEs model for the two datasets
is [8192→4096→2048→ feature_num→2048→4096→
8192], where the encode and decode parts are symmetric.
As shown in Figure. 4, the reconstructed error of CAEs

model (adopted by PAADA) is the lowest, which verifies
that the feature vectors obtained by CAEs model are the
best. Since the PCA compresses data by exploring the linear
correlations amongst attributes of the data,3 it is not sur-
prising that its performance is the worst in handling image
data with complex (non-linear) correlations and structures.
By comparison, the performance of AEs model is better than
that of PCA but worse than that of CAEs model. Since we
capture the features of the input image data in a fine-grained

3Note that each pixel is a an attribute.
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FIGURE 5. Performance on feature vector recovery over PRID dataset.

manner by using CAEs model, more local features can be
captured accurately.

C. COMPARISON WITH EXISTING TECHNIQUES
In this section, we compare the proposed PAADA with exist-
ing adaptive sampling methods, i.e., EDSAS and DDASA,
on the PRID and iLIDS-VID datasets.

To obtain the approximate image series, we first recover
the feature vectors at non-sampling time points based on the
Hermite interpolation by using the feature vectors acquired
by PAADA, EDSAS and DDASA, respectively. Afterwards,
the approximate images are recovered based on the decode
part of the trained CAEs model by using the approximate
feature vectors. Note that the error bound inDDASA (denoted
by t in [19] and denoted by tD in this paper for distinguishing
the time point t) is over the average value of a segment
historical data. To make tD is in the same order of magnitude
with ε in PAADA and EDSAS, the threshold tD in DDASA
is computed as tD = ε

1
N
∑N

j=1 Fi(t)
where N is the length of

sliding-window (set as 20 in this paper).

1) PERFORMANCE ON FEATURE VECTOR RECOVERY
In this subsection, we first evaluate the performances of vari-
ous adaptive sampling algorithms on feature vector recovery.

First, Figure 5(a) shows the number of sampling times
by varying error bound over PRID dataset. As a large error

FIGURE 6. Performance on feature vector recovery over iLIDS dataset.

bound means a great tolerance of data quality, the sampling
frequency is correspondingly low. Thus the numbers of sam-
pling times of all three algorithms decrease with the increase
of the error bound. On the other hand, as shown in Figure 5(a),
the numbers of sampling times of three adaptive sampling
algorithms are close with each other, and largely smaller than
the size of all time points (denoted by ‘AllTimes’). Thus the
energy consumption is reduced and the lifetime of network is
lengthened.

Second, as shown in Figure 5(b)-(d), with the increase of
ε, the errors (i.e., max error, average error and 0.9-quantile
error) of all adaptive sampling algorithms correspondingly
increase. As the error bound is larger, the number of sampling
times is lower, and thereby the recovery accuracy decreases.
However, the errors of the proposed PAADA are the lowest
and increase slowly while ε becomes large . Figure 5(b)
shows that the max errors of DDASA and EDSAS are
extremely large while the max error of PAADA is quite small.
The reason is that DDASA and EDSAS consider the changing
trend of physical world by a set of past-period data whichmay
be sparse (i.e., a few data points are sampled in the sliding
time window) and thus has the real physical world distortion
problem. For the average error and 0.9-quantile error, similar
results can be observed in Figure 5(c) and Figure 5(d).

Finally, as introduced in Theorem 2, the feature vectors at
the non-sampling time points recovered by Hermite interpo-
lation are O (ε)-approximate to the ground truths. As shown
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FIGURE 7. Performance on image recovery over PRID dataset.

FIGURE 8. Performance on image recovery over iLIDS-VID dataset.

in Figure 5(b), themax errors of adaptive sampling algorithms
may be larger than given error bound ε since the sampling
interval is determined by posterior estimation. From Fig-
ure 5(d), we can see that when ε ≥ 0.25, the 0.9-quantile
error of PAADA is smaller than the given error bound ε. By
comparison, the 0.9-quantile errors of EDSAS and DDASA
are smaller than ε when ε ≥ 0.35 and ε ≥ 0.55, respectively.
Therefore, PAADA guarantees more time points satisfying
the precision requirement. Moreover, Figure 5(e) presents
the percentage of recovered features satisfying ε. As shown,
the percentage of recovered features satisfying ε in PAADA
is the greatest, which verifies again that the proposed PAADA
performs better at most time points in accuracy than existing
EDSAS and DDASA. In the same line, similar results can be
observed in Figure 6 where the performances are evaluated
over the dataset iLIDS-VID.

2) PERFORMANCE ON IMAGE RECOVERY
In this subsection, we evaluate the performances of various

methods on image recovery where the default error bound

FIGURE 9. The number of sampling times with the same image recover
accuracy.

ε = 0.2. Figure 7 and Figure 8 illustrate the max, average
and 0.9-quantile errors of approximate image series estimated
based on data at sampling time points obtained by various
adaptive sampling algorithms. As shown, the lowest MAEs
are achieved by the proposed PAADA, since more recov-
ered feature vectors at non-sampling time points satisfy the
precision requirement, while existing EDSAS and DDASA
do not aim to reconstruct the physical world. Moreover,
with the increase of error bound, it is not surprising that
the recovery errors rises. The reasons are as follows. First,
the number of sampling times decreases as ε increases (as
shown in Figure 5(a) and Figure 8(a)). Second, the accuracies
of recovered feature vectors become worse with the increase
of ε as illustrated in Section VII-C.1.

3) PERFORMANCE ON ENERGY CONSUMPTION
As introduced earlier, we can observe from Figure 5(a) and
Figure 6(a) that the numbers of sampling times of EDSAS,
DDASA and PAADA are much lower than the size of all
times. Thus, it is reasonable to believe that these adap-
tive sampling algorithms can significantly reduce the energy
consumed for data acquisition. Moreover, with almost the
same number of sampling times, the accuracies of feature
recovery and image recovery based on EDSAS and DDASA
are obviously lower than that of PAADA (shown in Fig-
ure 5∼8). To further show our contribution on energy sav-
ing, in this section, we conduct the experiments about the
energy consumption of the three adaptive sampling algo-
rithms (i.e., EDSAS, DDASA and PAADA). First, by adjust-
ing the parameters of the EDSAS and DDASA, we let their
image recovery accuracies are almost the same with that
of PAADA. Then we compare their numbers of sampling
times under the scenario of the comparable image recovery
accuracy. As shown in Figure 9, to achieve the compara-
ble image recovery accuracy, EDSAS and DDASA need to
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FIGURE 10. The saving energy with the same image recover accuracy.

sample more data, while the number of sampling times of
PAADA is the fewest. Thus the proposed PAADA saves more
energy.

Furthermore, Figure 10 shows the energy saved based on
various adaptive sampling algorithms. For example, in the
time interval with 5938 time points, the image data at
514 time points are sampled from the real physical world by
PAADA (with ε = 0.2), while the image data at the remaining
5424 time points are estimated by approximation. Thus the
energy consumed for data acquisition at these 5425 non-
sampling time points are saved . As a result, 35418.72 µW
energy are saved based on PAADA. As shown in Figure 10,
with the comparable image recovery accuracy, the perfor-
mance of our PAADA is the best.

In summary, compared with EDSAS and DDASA,
the energy consumption of the proposed PAADA is the
lowest with comparable image recovery accuracy, while the
image recovery accuracy is the highest with almost the same
number of sampling times. Therefore, the proposed PAADA
has high performance in both image accuracy and energy
saving.

VIII. CONCLUSION
In this paper, we have studied the data acquisition problem for
high-dimensional image data from image sensor networks.
Considering the limited energy, storage and computation
capacity of sensor nodes, we propose a physical-world-aware
adaptive data acquisition framework, called PAADA. To the
best of our knowledge, this is the first study on adaptive
sampling for image sensor networks. Instead of employing
the adaptive sampling algorithm over the original image data,
PAADA first compresses the high-dimension image data into
low-dimensional feature vectors. Then PAADA adjusts the
sampling frequency automatically based on the change trend
of the feature vector and the error bound given by users.
To obtain the image series of each sensor node, PAADA

first recovers the feature vectors at non-sampling time points
based on the Hermite interpolation which guarantees that the
approximate feature series can achieve O (ε)-approximate to
the physical world. Afterwards, the approximate image series
are recovered based on the approximate feature series and the
decode part of the trained CAEs model. Experimental results
on two real-world datasets demonstrate the superiority of the
proposed PAADA on accuracy and energy consumption.
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