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ABSTRACT The development of floor cleaning robots is an emerging area in robotics. Maximizing the area
coverage is a foremost mission for a floor cleaning robot. Reconfigurable floor cleaning robots outperform
floor cleaning robots with fixed morphology in the aspect of area coverage. A reconfigurable robot should be
more flexible in changing its morphologies by considering the shapes of objects occupied in an environment
to gain more coverage. Nevertheless, the state of the art methods of tiling robots considers only a limited
number of morphologies for the reconfiguration, which is not sufficient to match the shape of an object.
Therefore, this paper proposes a novel method to synthesize an appropriate morphology for a reconfigurable
robot in accordance with the shape of an object. The proposed concept is named hTetro-Infi since it is not
limited to a finite number of morphologies. The major novelty of the proposed concept overt the state of
the art is the consideration of an infinite number of morphologies for the reconfiguration without sticking
into a limited number of morphologies. Feedforward Neural Network (FNN) and Adaptive Neuro-Fuzzy
Inference System (ANFIS) were used for determining the hinge angle required for synthesizing a given
morphology. Different configurations of FNNs and ANFISs were trained and evaluated to find the most
suitable configurations. The area coverage performance of the proposed hTetro-Infi was compared against
that of the state of the art methods of an existing class of tiling robots, which considers only a limited number
of morphologies, through simulations. According to the statistical conclusions, the proposed hTetro-Infi is
capable of significantly improving area coverage compared to an existing tiling-theory based floor cleaning
robot. Furthermore, the area coverage improvement of hTetro-Infi is noteworthy. Therefore, the proposed
concept is beneficial in improving the abilities of a reconfigurable cleaning robot. Real-world experiments
with the hardware platform of the robot for evaluating the performance is expected to be conducted in the
next phase of the work. Furthermore, consideration of hTetro-Infi for navigation through confined areas is
proposed for future work.

INDEX TERMS Adaptive neuro-fuzzy inference system, area coverage, feedfoward neural network, tiling
robotic, floor cleaning robot, reconfigurable robot.

I. INTRODUCTION
Complex structural buildings with more space are rapidly
increasing in the world day by day. Adequate cleaning of
those buildings is one of the major concerns. Cleaning is a
daily routine process that requires much labor. The labors’
efficiency and accuracy may decrease due to the repeating
nature of the work. Since the cleaning process is routine,
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an autonomous cleaning robot can play a vital role in these
buildings. Many cleaning robots have been proposed for
different cleaning activities such as window cleaning [1],
staircase cleaning [2], floor cleaning [3], drainage clean-
ing [4], pavement cleaning [5] and pool cleaning [6]. In every
building, the number of floor area is high. Therefore, floor
cleaning robots can contribute tremendous services to those
buildings.

Navigation of a floor cleaning robot is not the same as
a typical robot since its navigation goal is to efficiently
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maximize area coverage. The robot should be capable of
perceiving the environment and planing an appropriate tra-
jectory for cleaning. Several research studies have been con-
ducted to develop path planning methods for cleaning robots.
A navigation algorithm using an evolutionary approach was
introduced in [7]. A circular-shaped vacuum cleaning robot
was considered for the development of the path planning
algorithm of the cited work. The environment to be cleaned
is divided into disk cells for the path planning coverage prob-
lem. Although the navigation algorithm is working properly,
the area coverage is limited due to its fixed circular shape and
the disk cell grid.

In [8], the authors introduced a sensor-based complete
coverage path planning (CCPP) algorithm for a cleaning
robot in a dynamic environment. A method for coverage
path planning (CPP) for extremely large environments was
introduced in [9]. It proposed a map decomposition method
to split large environments into sub-maps. They have used a
spiral path for large unknown environments. It was better if
the system could be able to have an optimization algorithm
for larger space by considering dynamic navigation. Another
limitation of the method is that the robot should not be very
small for a large environment otherwise the time required
for cleaning is very high. A simulation-based optimization
method for schedulingmultiple cleaning cycles was proposed
in [10].

Energy efficiency and time are major factors to be con-
cerned about a cleaning robot. Therefore, numerous research
studies in this niche have been conducted concerning these
factors. An online simulation-based energy efficient cov-
erage path planning method for a mobile robot has been
introduced [11]. They have considered backtracking for path
planning with energy-efficient navigational coverage for the
mobile robot. Multiple cleaning robots have been used for
area coverage to improve the efficiency of cleaning [12]. They
used a bio-inspired neural network model to tackle the area
coverage path planning. The model is capable of handling
the group of robots for area coverage. Although the time
taken from the robots is lesser than a single robot, the cost of
deployment is high. A study has been conducted to analyze
the performance of conventional cleaning and robot vacuum
cleaning [13]. According to their findings, the robot vacuum
cleaners can save more energy per unit than manual cleaning
machines.

Several reconfigurable robots have been introd-
uced [14]–[17]. Most of them are developing for search and
rescue operations, and exploration. Nevertheless, few were
proposed for floor cleaning purposes [18], [19]. There are
many benefits of using a reconfigurable robot as a clean-
ing robot. It can change its morphology when obstacles
present in a space and can navigate through narrow spaces.
Thereby, a reconfigurable floor cleaning robot can increase
area coverage which is the main shortcoming of robots
with fixed morphologies. Most of the previously discussed
robots have fixed morphologies, and those robots are not
capable of navigating through narrow spaces. As a solution

FIGURE 1. Hardware design of the existing hTetro.

to this problem, a reconfigurable robot with floor cleaning
abilities named hTetro has been introduced [18]. hTetro is
a self-reconfigurable modular robot inspired by Tetris. It is
capable of changing its morphologies to seven one-sided
tetrominoes. In the work [18], hTetro’s area coverage has
been compared against a commercially available fixed mor-
phology robot. According to the outcomes of the work,
hTetro has a higher area coverage than a fixed morphology
robot. Furthermore, a floor cleaning robot named hTromo has
been introduced with three reconfigurable blocks [20]. The
authors have validated the application of three tiling theorems
for tackling the area coverage by hTromo robot. The key
requirements of cleaning robots are area coverage, energy
usage and the time consume for cleaning [21]. Therefore,
much research has been conducted to improve area coverage
of tiling robots. A complete coverage path planning method
has been introduced for a reconfigurable floor cleaning robot
combining tiling theory and genetic algorithm [22]. The
robot is capable of navigation in the shortest distance path
with minimum grid coverage time without revisiting the
previously approached grid cells. This approach is useful in
saving energy and time.

In the previous work on tiling robots [18], [22]–[24] the
robots are operated with only with a limited number of mor-
phologies. Moreover, the existing area coverage algorithms
for tiling robots consider a less number of morphologies for
the reconfiguration. The area coverage and path planning are
conducted through tiling theory by considering only a fixed
number of shapes. In these methods, the obstacles and the
walls are assumed as square shapes although it is not true for
most of the real-world cases. As a result of this assumption,
there can be uncovered areas when the tiling based coverage
is considered.

This paper introduces a novel hTetro-Infi, which is capable
of having uncountable morphologies, to overcome the limi-
tations of the existing tiling robots mentioned above. Feed-
forward Neural Network (FNN) and Adaptive Neuro-Fuzzy
Inference System (ANFIS) are used to synthesize appropri-
ate morphologies to improve area coverage by considering
shapes of obstacles. The formation of hTetro-Infi, which
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FIGURE 2. Seven shapes of hTetro considered for tilling theory based coverage planing.

considers an infinite number of reconfigurable morphologies
without limiting the number of reconfigurable morphologies
to a few, is the novel contribution of this paper with respect to
the state of the art. Section II briefs about the robot platform.
The proposed hTetro-Infi is presented in Section III with
due attention to the rationale and the method proposed for
synthesizing morphologies. Particulars on the validation of
the proposed concept are discussed in Section IV. Section V
provides the concluding remarks.

II. ROBOT PLATFORM
The existing hardware platform of hTetro consists of four
blocks with each consist of a cleaning module. Figure 1
shows the hardware components of the robot. Each block
is connected to another block by a free hinge. Thereby,
three free hinges are included in the robot. These hinges
facilitate the relative motion between blocks that supports
the reconfiguration into different morphologies. Each hinge
angle can be varied from 0◦ to 180◦. The dimensions of
each block are 250 mm x 250 mm x 130 mm (length x
width x height). Every block is included with a differential
drive wheel unit powered by two 12 V DC motors combined
with omnidirectional wheels. The central rod, which can be
freely rotated, is connected with these locomotion modules.
Therefore, the steering angles of a locomotion module can be
changed by the differential drive mechanism. A 2D LiDAR
is used to map the surrounding environment as a 2D map
which is utilized for navigation, localization, and planing
area coverage. Intel compute stick is deployed to perform
high-level tasks such as path planning and mapping. The
Arduino mega controller communicates with the Intel com-
pute stick and takes necessary low-level control actions such
as motor control. Other subcomponents of the robot are motor
drivers, absolute encodersmounted on top of each locomotion
module, and batteries. The same hardware platform (i.e.,
hardware platform of hTetro) is expected to be used for the
concept of hTetro-Infi, which considers an infinite number of
morphologies, with minor alterations such as fixing encoders
for hinges and modifications of low-level control algorithms.

III. hTetro-INFI
A. RATIONALE BEHIND THE PROPOSED METHOD
The rationale behind the proposed hTetro-Infi is explained
based on conventional hTetro which is one of the existing

tiling robots. The existing work on hTetro considered that
hTetro can have only seven distinct shapes, and the shapes
are ‘O’, ‘T’, ’Z’, ‘S’, ‘I’, ‘L’ and ‘J’ [22]–[24]. Themorpholo-
gies that are mimicked by the conventional hTetro is shown
in Figure 2. These seven morphologies are created by chang-
ing ith hinge angle (θi ∈ { 0,π /2,π }) for i = 1, 2, 3. Typically,
polyomino tiling theory is followed to generate shapes for
filling a given space. Therefore, initially, an environment
to be cleaned is divided into a grid such that each cell is
equivalent to the size of a block of hTetro. An environ-
ment to be cleaned can be occupied by many objects which
can have heterogeneous shapes. The environment shown
in Figure 3(a) can be considered as an example where there
is an oval-shaped object. In previous work on hTetro, any
grid cell partially occupied by any object is assumed as the
grid cell is completely occupied to facilitates the application
of tilling theory. The grid map corresponding to the example
is shown in Figure 3(b) where black cells are considered as
occupied areas.

After generating the occupancy grid map for tilling,
the robot generates tiling sets for free space by following
polyomino tiling theory as Figure 3(c). Themain shortcoming
of the existing methods is that there will be an uncleaned
space due to the fact the partially filled grid cells are con-
sidered as fully occupied. The uncleaned area in the example
scenario is visualized in Figure 3(d). The main objective
of a reconfigurable floor cleaning robot is to improve area
coverage. However, hTetro with only seven shapes fails to
realize the maximization of area coverage in situations where
an environment is occupied by objects with heterogeneous
shapes. Thereby, the reconfigurability of hTetro beyond seven
morphologies could solve this problem. Moreover, hTetro
should not be limited to the seven one-sided tetrominoes and
hTetro should be considered with an infinite number of mor-
phologies. hTetro with infinite morphologies is considered as
hTetro-Infi (which is proposed in this paper).

The operation of the proposed hTetro-Infi can be explained
with the aid of the previously discussed example situation.
hTetro-Infi perceives the exact shape of an occupied object
through sensory and map information when it reaches near to
the object as depicted in Figure 3(e). After that, hTetro-Infi
changes its morphology to match the outer shape of the object
by changing its ith hinge to any θi such that θi ∈ [ 0, π ]. The
way of transforming its morphology to match the shape of
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FIGURE 3. The figures describe the area coverage of hTetro (i.e., one of the existing tilling robots) and
hTetro-Infi (i.e., the concept proposed in this paper) in an example situation where the environment is
occupied by an oval-shaped object. (a): An environment occupied with an oval-shaped obstacle divided into a
grid, (b): The environment considered by hTetro for cleaning (the area going to be cleaned is represented in
white). (c): The area covered by applying tiling theory (previous work of hTetro follows this methodology), (d):
The area which will not be cleaned by hTetro is represented in white. The area that will be covered by the
robot is represented in blue. (e): hTetro-Infi (the concept proposed in this paper) observes the obstacle for
synthesizing an appropriate shape to approach the object. (f): hTetro-Infi approached the obstacle with the
synthesized shape to improve the coverage.

an object is explained in Section III-B. Then, hTetro-Infi will
approach the object as depicted in Figure 3(f) which covers
the area uncleaned by the existing methods (conventional
hTetro). Thereby, hTetro-Infi can increase area coverage by
changing its hinge angles per the shape of an object. The robot
can mimic an infinite number of shapes by changing its hinge
angles to any value in their ranges. Therefore, the proposed
concept is introduced as hTetro-Infi. The overall process of
the proposed hTetro-Infi is summarized in Algorithm 1.

B. PRINCIPLES OF SYNTHESIZING AN APPROPRIATE
MORPHOLOGY
The main improvement of hTetro-Infi over the existing
approaches is that hTetro-Infi is capable of adapting its mor-
phology to match the outer shape of an object that it encoun-
ters during cleaning. The map built using LiDAR information
is used to determines the locations of objects. The robot
covers the area to be cleaned based on the tilling theory until
it reaches the proximity of an object. The robot maintains a
gap of one cell from the area that is considered as occupied as
shown in Figure 4. It should be noted that the area considered
as occupied may not be completely occupied. Then, the robot
perceives the shape of the object as the displacement along
X1 axis between the center point of each block (i.e., C1, C2,
C3, and C4) to the obstacle. The distances are marked as d1,

Algorithm 1 Area Coverage
input : Metric Map
output: Coverage Plan
initialization;
Divide the map into a grid;
Generate the occupancy grid map;
Generate the tiling set;
Starting coverage;
while ! coverage completed do

Navigation;
if Near new occupied area then

Cover_object();
end

end
Function Cover_object():

Stay away one grid from the occupied area;
Perceive the exact shape of the obstacle;
Synthesize an appropriate morphology;
Approach to the object;
Return back;

end function

d2, d3, and d4 respectively. The distances, d1, d2, d3, and
d4 can be obtained from map and LiDAR information. The
distance and angular resolutions of the LiDAR in hTetro are
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FIGURE 4. The robot perceive the shape of an object as distance from the
center points C1, C2, C3, and C4 to the obstacle along X1 axis. The
distances are labeled as d1, d2, d3, and d4 respectively. The hinge angles
are symbolized as α, β and γ . The frame axes of blocks are considered as
(X1, Y1), (X2, Y2), (X3, Y3) and (X4, Y4) for the block 1, 2, 3 and
4 respectively. The offsets required to be maintained for the block 2,
3 and 4 to match the object are symbolized as δ1, δ2 and δ3.

0.5 mm and 0.9◦ respectively. Therefore, these distances can
be measured with sufficient accuracy in practical usage. The
first block is taken as the reference frame for the other three
blocks. To match the outer shape of an object, the centers
of the robots’ blocks should replicate the outer shape of the
obstacle. This can be achieved by varying the hinge angles,
α, β, and γ in such a way that each block needs to maintain
an offset with the reference block. The required offsets are
considered as δ1, δ2, and δ3. The offsets can be calculated for
a particular scenario as given in (1). The offsets are measured
along X1 axis. δ1δ2

δ3

 =
d1− d2d1− d3
d1− d4

 (1)

The coordinate frames of blocks are notated as (X1, Y1),
(X2, Y2), (X3, Y3) and (X4, Y4) for block 1, 2, 3, and 4 respec-
tively. Homogeneous transformation matrices from frame
{1} to frame {2} (i.e., 12T ) from frame {2} to frame {3} (i.e.,
2
3T ), and from frame {3} to frame {4} (i.e., 3

4T ) are given
in (2), (3), and (4).

1
2T =

cos(α) sin(α) 0
sin(α) cos(α) L
0 0 1

 (2)

2
3T =

sin(β) −cos(β) L
cos(β) sin(β) L

0 0 1

 (3)

3
4T =

 cos(γ ) sin(γ ) L
−sin(γ ) cos(γ ) 0

0 0 1

 (4)

The center position of ith block with respect to the
frame {1}, 1Ci is given in (5), where iCi is the center posi-

tion of ith block with respect to ith frame. 1Ci and iCi are
matrices that have the format given in (6), where xi, yi, and zi
represent the translations to the center position along X, Y,
and Z axes of the frame of interest. The component along
the X-axis of frame {1} (i.e., along X1) is the factor of
interest for establishing the relationship between the offsets
of the centers and hinge angles. The relationship between
the offsets and the center positions of jth blocks is given
in (7). The relationship between the hinge angles and the
offsets of the center points can be obtained from using (2)
to (7).

1Ci =
i−1∏
k=1

k
k+1T

iCi for i = 2, 3, 4 (5)

1Ci =

1xi
1yi
1

 , iCi =

ixi
iyi
1

 (6)

δj =
ixj+1 − 1x1 for j = 1, 2, 3 (7)

The robot can perceive d1, d2, d3 and d4 from the sen-
sory information. Thereby, the required offsets to synthesize
a morphology for a particular situation can be calculated
from (1). Then, the required hinge angles (α, β, and γ ) to
synthesize the morphology have to be obtained using the
established relationships between hinge angles and the off-
sets. Moreover, three hinge angles (α, β, and γ ) need to
be calculated for given three offsets (δ1, δ2, and δ3) in a
scenario. Nevertheless, it would not always be possible to
find the hinge angles that satisfy the required offsets since
the required offsets might not be achieved by the robot due
to the hardware limitations. Furthermore, the problem could
not be deduced to an inverse kinematic problem of a manip-
ulator end-effector positioning since, in this specific case,
the positioning of intermediate locations (offsets of three
centers) has to be also considered instead of merely the end
effector positioning. In addition to that, imprecision sensory
information induces uncertainty to the system. Therefore,
relying on an analytical/geometrical approach is not feasible
for realizing the required goal of the proposed concept. On the
other hand, approaches based on soft computing techniques
such as neural networks and neuro-fuzzy systems have been
proven to cope well in similar sorts of situations [25]–[27].
Moreover, solutions based on approximators/soft computing,
which consider the problem holistically, would have greater
potential. Therefore, a Feedforward Neural Network (FNN)
and Adaptive Neuro-Fuzzy System (ANFIS) have been used
to synthesize the appropriate hinge angles per the shape of an
object.

C. FEEDFORWARD NEURAL NETWORK (FNN) APPROACH
An Artificial Neural Network (ANN) can be described as
a parallel distributed processor build up with simple pro-
cessing units that can accumulate knowledge through learn-
ing. The problem of synthesizing an appropriate morphology
is related to a combination of multivariate and nonlinear
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FIGURE 5. The architecture of a feedforward neural network (FNN).

modeling. ANN can be used as a solution for this problem
due to its robustness and capability of surface approxima-
tion. Therefore, a Feedforward Neural Network (FNN) is
examined as one of the options to obtain hinge angles to
synthesize an appropriate morphology in this work. Figure 5
illustrates the general architecture of an FNN. The input
layer, hidden layers, and output layer are the main three
types of layers present in an FNN. The input and output
layers each contain only one layer of neurons while hidden
layers may contain one to few layers depending on the case.
The numbers of neurons in the input and output layers are
equivalent to the number of inputs and outputs respectively.
The number of hidden layers and the number of hidden
neurons are typically determined trial and error based on
performance. The offsets, δ1, δ2, and δ3 are taken as the
inputs, and the outputs are the hinge angles α, β and γ to
synthesize an appropriate morphology. The artificial neu-
rons in different layers are interconnected through weights.
The weights are adapted in the training to map inputs (i.e.,
the offsets of center positions of the blocks) and outputs (i.e.,
corresponding hinge angles). Each artificial neuron has an
activation function that maps its inputs with its output. Gen-
erally, nonlinear activation functions such as tangent sigmoid
and logarithmic sigmoid are used as activation functions of
FNN [28].

According to the universal approximation theorem, a sin-
gle hidden layer FNN with a finite number of neurons
can approximate continuous functions on compact subsets
of Rn, where n is the number of inputs [29]. There is
no general rule to define the best FNN architecture con-
figuration for a given set of inputs and outputs. Typically
configuration of the architecture such as the number of hid-
den neurons is decided trial and error based on the perfor-
mance and requirements. The training was conducted using
Levenberg-Marquardt (LM) backpropagation algorithm [30]
considering the Mean Squared Error (MSE) as the perfor-
mance measure. The LM technique was selected since it
has a second-order convergence rate and high efficiency for
FNN [31].

FIGURE 6. The architecture of an adaptive neuro fuzzy inference
system (ANFIS).

D. ADPATIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
APPROACH
Adaptive Neuro-Fuzzy Inference System (ANFIS) is a hybrid
artificial intelligent method that combines a fuzzy infer-
ence system and an Artificial Neural Network. Although
several types of neuro-fuzzy hybrid systems are available,
ANFIS introduced by Jang [32] is the most widely used
method. An ANFIS can be considered as an ANN based on
Takagi–Sugeno fuzzy inference system. Since ANFIS is a
hybrid method of neural networks and fuzzy logic principles,
it possesses the benefits of both techniques.More specifically,
ANFIS has the learning capability of ANN and the decision
making ability of fuzzy logic. ANFIS is considered to be
a universal approximator since the reasoning mechanism of
ANFIS resembles a set of learnable fuzzy if-then rules that
are capable of approximating nonlinear functions [33].

The architecture of the proposed ANFIS is shown
in Figure 6. It consists of five layers. The inputs of the ANFIS
are the offsets of the centers of the blocks (i.e., δ1, δ2, and δ3).
Layer 1 is the fuzzification layer that fuzzifies the inputs
of ANFIS utilizing the membership functions represented in
each node of layer 1. The number of nodes per input depends
on the number of fuzzy sets considered for representing the
input space. Layer 2 is the fuzzy rule layer. Each node in
this layer corresponds to a single fuzzy rule, and the output
of a node is the firing strength of the corresponding rule.
The algebraic product operator is used as the T-norm fuzzy
operator to obtain the firing strength from the inputs to a
node in this layer. Layer 3 is called the normalizing layer
since it normalizes the firing strength of each rule by diving
each from the total firing strength. Nodes in layer 4 repre-
sent consequents parameters (i.e., singleton output sets of a
Takagi–Sugeno fuzzy inference system). Layer 5 computes
the crisp output of the ANFIS by considering the summation
of incoming signals. The problem considered in this paper
should have three outputs which are the corresponding hinge
angles to synthesize an appropriate morphology. Therefore,
multiple ANFIS are combined as a coactive-ANFIS [34] to
facilitate the multiple outputs. Therefore, the outputs of this
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coactive ANFIS are the corresponding hinge angles (i.e., α,
β, and γ ) for a given set of offsets. The hybrid learning rule
proposed in [32] has been used for the training of this ANFIS.
The hybrid learning rule uses a combination of backprop-
agation to compute input membership function parameters,
and least-squares estimation to compute output membership
function parameters.

IV. RESULTS AND DISCUSSION
A. TRAINING AND TESTING OF FNN AND ANFIS
The data set required for training, validation, and testing of
the FNN and the ANFIS was generated through the relation-
ship established between hinge angles (i.e., α, β, and γ ) and
the corresponding offsets of centers (i.e., δ1, δ2, and δ3). The
relationships given in (2) to (7) were used for this purpose.
Moreover, the offsets corresponding to a set of hinge angles
were calculated for all the possible combinations of hinge
angles. Nevertheless, the step size of a joint angle was consid-
ered as 5◦ to avoid the generation of an excessively large data
set, which may lead to a very high data generation time and
training time. In this way, a data set consists of 13357 dis-
tinct entries that represent relationships between the offsets
corresponding to joint angles. The data set was randomly
divided into 3 distinct subsets for training, validation, and
testing. 70% of data was used for training while 15% each
for validation and testing. When training the FNN and the
ANFIS, the offsets and hinge angles are used as the inputs
and the outputs respectively since the goal of the work was
to develop a mechanism to synthesize the joint angles to
have the offsets required for a particular scenario. The set
of training data consists of data in relation to morphology
configurations that can be achieved by the robot. There-
fore, inputs heavily deviated from the possible morphology
configurations of the robot may lead to undesirable output
results such as hinge angle values that are not compliant
with the joint ranges. (The ways for coping out of the range
hinge angles synthesized by FNN and ANFI are given in
Section IV-D)

Three different configurations of FNNs were analyzed by
considering Root Mean Square Error (RMSE) as the perfor-
mance indicator to identify the most suitable configuration
of FNN for this specific problem. The maximum number of
epochs was limited to 1000, and the training was terminated
either decrease of performance gradient below minimum
threshold or increase of generalization error (when error for
validation data is increased) is observed. After the training,
the trained FNNs were evaluated by using the set of testing
data. RMSEs observed for the three configurations of FNNs
are given in Table 1 along with their configuration details.
The parameter number (i.e., NP) of each network is given
to the better comparison of the complexity level of each
network. Mean execution time (i.e., t) of each network has
been calculated from running the proposed models imple-
mented in MATLAB on a laptop with the Intel Core i7-
9750H processor and 16 GB memory. Parallel processing
was not used in this regard. Since t of the FNNs are in the

TABLE 1. Comparison of the trained networks.

order of microseconds, the execution times of these models
would not cause overhead for the robot in online operation.
In contrast, the compute stick of the robot is expected to have
a lower specification than the tested environment (compute
stick: Intel Core m5-6Y57 Processor and GB). However,
the execution time would not be intensively increased in such
a way that it hinders the online operation after deployment
in a compute stick. FNN-2, which had 100 hidden neurons,
received the lowest RMSE (7.28) for testing data. Therefore,
the best performance was observed from FNN-2 among other
FNNs. The execution time, t of FNN-2 is 0.0393 ms.

In the case of ANFIS, two different configurations were
considered by altering the number of fuzzy sets used
per an input membership function. Three and five trian-
gular fuzzy sets per input were used in ANFIS-1 and
ANFIS-2 respectively. The initial membership functions of
the ANFISs were generated through grid partitioning. In gen-
eral, clustering-based methods for initializing ANFIS such as
subtractive clustering, would lead to simpler fuzzy structures
than grid-partitioning. However, when using grid-partitioning
to generate the initial fuzzy membership function, the cor-
responding fuzzy rules are uniformly generated. More-
over, the input space is smoothly analyzed. Therefore,
grid-partitioning is preferred over the other methods when
the dimension of the input space is small [35]. The number of
inputs of the proposed ANFIS is 3, which is a low number that
leads to a simple structure even though grid partitioning was
used. Therefore, grid-partitioning opted for the initialization
of ANFIS. Then, these initial fuzzy membership functions
were tuned by training through the hybrid learning rule. The
training has been done for both ANFISs considering the max-
imum number of epochs as 100. Nevertheless, the training
was terminated when an increase of the error for validation
data was observed to avoid overfitting. RMSEs observed for
the two ANFISs are also given in Table 1. ANFIS-2, which
had 5 triangular fuzzy sets per input, was selected as the best
among two ANFISs since it had the lowest RMSE for testing
data. The execution time, t of ANFIS-2 is comparatively
more substantial than that of other networks. Nevertheless,
the mean execution time was 2.479 ms, which is negligible
with respect to the operation time of the robot.

B. BEHAVIOR OF SYNTHESIZING MORPHOLOGIES
The behavior and overall operation of hTetro-Infi are
explained based on the situation depicted in Figure 7, where
the robot approaches an object from the four principal direc-
tions. In this situation. The object has dissimilar outer shapes
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FIGURE 7. hTetro-Infi approaching an object in different directions.

TABLE 2. Variation of synthesized hinge angle when the robot
approaches the object in different directions.

from the perspective of the approaching directions. Hence,
the robot had to approach the object by synthesizing an
appropriate morphology for each approaching direction to
improve area coverage. A MATLAB based simulation was
conducted to verify and analyze the behavior and overall
operation of hTetro in similar situations. The FNN net-
work and the ANFIS, which had the best performances,
were used for synthesizing morphologies for hTetro-Infi.
The operation of hTetro with FNN and hTetro with ANFIS
were independently considered. The results related to the
synthesizing of the morphologies in this situation are given
in Table 2.

hTetro-Infi approaching the obstacle from the left of
the object was considered as the first instance. Initially,
hTetro-Infi maintained a gap of one cell from an object
before changing its morphologies. The distances along X1
axis from the center of each block of the robot to the occu-
pied object were determined by the robot. The obtained
distances were d1 = 54.6 cm, d2 = 43.1 cm, d3 =
41.7 cm, and d4 = 54.6 cm. Then, the robot calcu-
lated the offsets to be maintained with centers of the
blocks (i.e., δ1, δ2 and δ3). The required hinge angles
to synthesize a shape to match the object were done
by the FNN (for hTetro-Infi with FNN) or ANFIS (for
hTetro-Infi with ANFIS). In the event of hTetro-Infi with

FNN, the hinge angles were determined as α = 41.6◦,
β = 77.6◦, and γ = 0.0◦ by the FNN. After that, it changed
its morphology considering the synthesized hinge angles.
Then, it approached the obstacle with the synthesized shape.
As shown in Figure 7, hTetro-Infi was able to synthesize a
morpholgy that canmatchwith shape of the object. In the case
of hTetro-Infi with ANFIS, the hinge angles were determined
as α = 41.7◦, β = 80.9◦ and γ = 0.0◦ when the robot was
approaching from the left. From those generated hinge angles
the robot was able to change the morphology in accordance
with the shape of the object. As similar to the event of FNN,
then the robot approached the object.

Similarly, hTetro-Infi (with FNN and ANFIS) was able
to synthesize an appropriate morphology to match with the
shape of the object when approaching from the principal
directions as shown in Figure. This behavior validates that the
proposed hTetro-Infi can synthesize appropriate morpholo-
gies when approaching an obstacle from different directions;
subsequently, hTetro-Infi covers an additional amount of area
that would not be covered from existing methodologies for
tiling robots.

C. EVALUATION OF AREA COVERAGE
The goal of the work was to improve the area coverage by
considering an infinite number of morphologies for hTetro-
Infi. Therefore, area coverage of hTetro-Infi (i.e., the concept
proposed in this paper) was evaluated against one of the
existing tiling robots. The FNN network and the ANFIS,
which had the best performances, were used for evaluating
the effect on area coverage. Typically, objects with hetero-
geneous shapes can be occupied in a floor area that going
to be cleaned by a floor cleaning robot. Therefore, eight
distinct cases, where the floor areas are occupied by objects
with heterogeneous shapes, were considered for the evalua-
tion. Both FNN and ANFIS techniques for hTetro-Infi were
used for each case for synthesizing an appropriate shape to
match the occupied object. The simulations were conducted
using MATLAB. Figure 8 depicts the arrangements of the
eight cases used for the evaluation. The area that cannot be
covered from each of the configurations of the robot were
obtained to evaluate the performance improvement of the pro-
posed approaches (hTetro-Infiwith FNN and hTetro-Infiwith
ANFIS) with respect to the existing methods (hTetro with
only seven morphologies). The hinge angles (α, β, and γ )
synthesized by hTetro-Infi for the corresponding distances
from the centers to the obstacle (d1, d2, d3, and d4) in each
case are given Table 3 including the amount of uncovered area
(U. Area).

hTetro-Infi (both FNN and ANFIS) had a lower uncov-
ered area with respect to hTetro in all the test cases. The
means of the uncovered area of these cases for hTetro-Infi
and hTetro are emphasized in Figure 9 (a) along with error
bars. A one way ANOVA test was conducted to evaluate
the statistical significance of the results obtained for area
coverage. The one way ANOVA test confirms that at least one
mean is significantly different from others (F7,21 = 24.88,
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FIGURE 8. Arrangements of the test cases for the evaluation of area coverage.

P = 0.00). Since there is a significant difference in at least
one, Tukey pairwise comparison test was conducted to find
out the pairwise differences. The test result of Tukey pairwise
comparison test is shown in Figure 9 (b). According to the test
result, there is no significant difference between hTetro-Infi
with FNN and hTetro-Infi with ANFIS. In contrast, there is
a significant difference in the mean uncovered area of hTetro
from that of both hTetro-Infi configurations. Moreover, a sig-
nificant reduction of the uncovered area could be observed
from hTetro-Infi compared to hTetro. Furthermore, the reduc-
tion of the uncovered area by hTetro is huge since Cohen’s d
value of 2.96 can be observed from results (since Cohen’s d
value greater than 2.0 is considered as a huge effect [36]).
Therefore, the evaluation validates that the uncovered area
is significantly less for hTetro-Infi (proposed in this paper)
compared to hTetro (existing approaches), and this reduction
of the uncovered area is huge. Moreover, it can be concluded
that the proposed hTetro-Infi can significantly improve the
performance from the perspective of area coverage com-
pared to the existing tiling robots with limited number of
morphologies.

D. DISCUSSION
The proposed hTetro-Infi was compared against hTetro,
which is one of the state of the art tilling robots, to evaluate the
area coverage. hTetro was selected for the comparison with
the proposed hTetro-Infi since both robots possess a similar
hardware arrangement. Moreover, the hardware structure of
both robots is almost the same. Thereby, the usage of a robot
with equivalent hardware for comparison of performance
eliminates the bias that might be arisen due to the hardware
differences. In addition to that, hTetro is widely appeared in
research work compared to the other tilling robots. Thereby,
the comparison of hTetro-Infi against hTetro can be deemed
as a comparison of hTetro-Infi against the state of the art tiling
robots.

The test environments for the comparison were selected by
considering the typical shapes of objects observed in floor
areas such as pillars and furniture. However, the situations
with multiple scattered objects were not considered for the
test cases since the appropriate morphology synthesizing for
situations with multiple scattered objects is not addressed
within the scope of the paper. The work proposed in this
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TABLE 3. Results of area coverage evaluation.

FIGURE 9. (a) Variation of mean uncovered area in different
configurations of the robot. The error bars are drawn to represent the
standard error. (b) Turkey simultaneous 95% confidence intervals plot.
If an interval does not contain zero, the corresponding means are
significantly different. The labels are defined as follows; hTetro: the robot
limited to seven morphologies, hTetro-Infi FNN: the FNN based method
proposed in this paper, and hTetro-Infi: the ANFIS based method
proposed in this paper.

paper is the first paper in a niche of research that considers an
infinite number of reconfigurable morphologies for a tiling
robot instead of a limited number of reconfigurable shapes
utilized by the state of the art methods. Therefore, it is rea-
sonable to limit the scope of this work to consider situations
with single objects, and the extension of the proposed method
for situations with multiple scattered objects is proposed for
future work.

According to the outcomes of the test cases for the evalua-
tion of area coverage, both configurations of hTetro-Infi (i.e.,
with FNN and with ANFIS) did not demonstrate any distinct

in the performance of area coverage. Nevertheless, there can
be slight differences in the operation due to their inherent
behavior. An ANFIS is a human interpretable and explainable
architecture where an FNN is not. This interpretable behavior
allows the amendment of a trained ANFIS based on expert
knowledge to have desired control behavior such as limitation
of the output space. In the case of the FNN, the FNN might
synthesize hinge angles that could be out of the upper and
lower bound of the respective hinge angles in some scenar-
ios. Therefore, the hinge angle controller needs to take care
of this issue to curtail the operation of the hinges within
the limitation to ensure the safety of the robot. In contrast,
an output space of the ANFIS could be configured to a fixed
range, and the hinge angles synthesized by the ANFIS is
always with the operational range of the respective hinges.
Thereby, the usage of ANFIS would reduce the overhead
of post-processing of the synthesized hinge angles to curtail
them within the operational ranges.

In this paper, a novel method for synthesizing an appropri-
ate shape to match an object, which is required for realizing
the consideration of an infinite number of morphologies,
has been introduced. The possibility of improving the area
coverage of a tiling robot considering an infinite number of
morphologies for the reconfiguration (instead of a limited
number of morphologies) has been proven through the pro-
posed method of synthesizing morphologies. In this regard,
an existing tetrominoes based tiling robot, hTetro has been
used for grounding the proposed concept of consideration of
an unlimited number of morphologies to improve the capa-
bilities. Even though the proposed concept is demonstrated
using a tetromino based tiling robot, the concept could be
extended to any polyform based tiling robot. For example,
this concept can be applied to a tromino based tiling robot
such as hTromino [20] with few adaptations. hTromino has
only 3 blocks yielding to only two hinges (less than the case
of this paper). Therefore. the concept proposed in this paper
should be tailored to the reduced number of hinges. Similarly,
the proposed concept could be extended for a pentomino
based robot by considering its addition hinge (pentomino
based robot will have 4 hinges). Therefore, the concept pro-
posed in this paper could easily be tailored to a tilling-theory
based reconfigurable floor cleaning robot with any polyform
shapes.
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The implications of the proposed method mentioned above
have been concluded based on simulation results. The sim-
ulation results have been obtained by considering the real
parameters of the robot hardware. Therefore, the simulation
outcomes would not heavily deviate from real-world exper-
iments since the real parameters of the hardware platform
is utilized for the simulation. Furthermore, this paper is the
first paper in a line of research that considers an infinite
number of morphologies for reconfiguration of a tiling robot
instead of a limited number for improving the area coverage.
Moreover, this paper could be lined up as a proof of concept in
this new research direction. Therefore, the implications con-
cluded based on the simulation results are still useful for state
of the art. The same hardware platform of hTetro presented in
Section II is expected to be used for the concept of hTetro-
Infi, which considers an infinite number of morphologies,
with minor alterations such as fixing encoders for hinges and
low-level control algorithms. The process of implementing
the proposed concept of hTetro-Infi by facilitating the nec-
essary hardware and low-level control modifications to the
existing hTetro is currently underway. Conducting real-world
experiments with the hardware platform is expected to be
performed in the next phase of the work.

The considered hinge arrangement of the robot has one
hinge on one side (i.e., α) and two hinges on the other side
(i.e., β and γ ). Thereby, when the robot’s morphology needs
to be bent toward the side of one hinge, that hinge (i.e.,
α) takes the responsibility. In contrast, both β and γ take
responsibility when the robot needs to be bent toward the
side of two hinges. However, the effect of β is comparatively
higher in the case of ANFIS where it leads to non-movement
of the third hinge angle (i.e., γ = 0 in all the considered test
cases for the robot with ANFIS). On the other hand, in the
case of FNN, the third hinge angle plays a considerable role.
In addition to that, the method proposed in this paper is used
in conjunction with the existing coverage methods based on
tiling theory, where it requires the robot to reconfigure into
primitive seven shapes. Therefore, the third hinge (γ ) cannot
be omitted. However, an analysis on identifying efficient
configurations of hinge angles for hTetro-Infi is proposed for
future work.

In the scope of this paper, the performance of hTetro-Infi
against the state of the art was compared in the perspective
of area coverage since it is the most crucial parameter for
a floor cleaning robot to measure the performance. Never-
theless, the factor such as energy usage and time taken for
accomplishing a cleaning task are also fairly crucial for the
performance of a floor cleaning robot. Therefore, the inves-
tigation of the performance of hTetro-Infi in the perspectives
of other parameters is proposed for future work.

V. CONCLUSION
Floor cleaning is a vital task for maintaining the living
standard. Robots have been deployed to handle the floor
cleaning to reduce the involvement of human labor. Area
coverage is one of the important parameters that measure the

performance of a floor cleaning robot. Most of the existing
floor cleaning robots have fixed morphologies. The main
limitation of the floor cleaning robot with fixed morphology
is the low area coverage. Reconfigurable robots have been
introduced to improve area coverage. hTetro is one of such
reconfigurable robot designed for floor cleaning.

The state of the art approaches for tiling robots consider
that a robot can be reconfigured only into a limited number
of morphologies. The existing work on tiling robots utilizes
tilling theory to solve the coverage problem. The environment
is divided into a grid with cell size equal to a block of the
robot when applying the tilling theory. Existing methods of
tiling robots assume that a grid cell is fully occupied even
though it is partially occupied to facilitate the application of
tilling theory. This assumption reduces area coverage when
the environment is occupied by objects with heterogeneous
shapes. Therefore, this paper proposed the novel concept,
hTetro-Infi, which can take an infinite number of morpholo-
gies to improve area coverage.

The proposed hTetro-Infi is capable of synthesizing an
appropriate morphology in accordance with the outer shape
of an object. The outer shape of an object is perceived by
hTetro-Infi through sensory information. Two different tech-
niques, Feedforward Neural Network (FNN) and Adaptive
Neuro-Fuzzy Inference System (ANFIS) have been proposed
for determining the appropriate hinge angles to synthesize a
morphology to match an object. FNNs and ANFISs with dif-
ferent configurations have been trained and compared against
each other based on the testing error to find the most suitable
configuration for each technique. The FNN with 100 hidden
neurons and ANFIS with 5 triangular fuzzy sets per input
were chosen as the most suitable configurations.

Area coverage of an existing tiling robot was compared
against that of the proposed hTetro-Infi through simulations
for evaluating the performance. According to the statistical
outcomes, both configurations of the proposed hTetro-Infi
(i.e., hTetro-Infi with FNN and hTetro-Infi with ANFIS) can
significantly reduce the area that would not be covered by
a state of the art tiling robot. Furthermore, this reduction is
huge. However, no significant difference between hTetro-Infi
with FNN and hTetro-Infi with ANFIS could be observed.
Therefore, it can be concluded that both the configuration of
hTetro-Infi (i.e, with FNN or with ANFIS) can surpass the
state of the art methods of tiling robots (which considers only
a limited number of morphologies for reconfiguration) in the
perspective of area coverage. These implications have been
concluded based on simulation results, and it is expected to
conduct the experiments with the hardware of the robot in the
next phase of the work.

The capabilities of the proposed hTetro-Infi are limited
by the hardware configuration of the robot. For example,
the morphologies that could be synthesized by hTetro-Infi
is dependent on the arrangement of hinge configurations.
Therefore, the investigation of effects on different hinge con-
figuration for hTetro-Infi is proposed for future work. In addi-
tion to that, the scope of this work is limited to improving the
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area coverage by synthesizing appropriate morphologies to
matchwith objects occupied in areas to be cleaned.Moreover,
this work does not focus on navigation through narrow areas
confined with obstacles with heterogeneous shapes by using
the infinite number of morphologies. Therefore, the develop-
ment of hTetro-Infi to navigate through narrow areas would
be a potential future development.
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