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ABSTRACT Accurate and rapid transfer alignment with large attitude errors under uncertain disturbances
is crucial for the strapdown inertial navigation system (SINS). This paper proposes an adaptive UT-H∞
filter which combines UKF technology and a H∞ filter to increase the robustness of the nonlinear transfer
alignment system. By focusing on the time-varying and the uncertain external disturbances, the robustness
factor of the adaptive UT-H∞ filter can be adaptively adjusted to balance the robustness and filtering
accuracy of the dynamic system. Then, the nonlinear error propagation model of the transfer alignment
is established in detail, and the velocity plus attitude matrix measurement model is used to improve the
performance of transfer alignment. Moreover, the sensor error compensationmodel is established to calibrate
and compensate for the sensor errors of the gyros and accelerometers online during transfer alignment.
The vehicle transfer alignment experiments show that the proposed adaptive UT-H∞ filter can significantly
improve the transfer alignment accuracy and the pure inertial navigation accuracy compared with the existing
filtering methods under uncertain disturbances.

INDEX TERMS Transfer alignment; nonlinear error model; adaptive UT-H∞ filter; robustness; uncertain
disturbances.

I. INTRODUCTION
A strapdown inertial navigation system (SINS) is an all-
weather independent navigation system which can provide
accurate three-dimensional information on attitude, velocity
and position of a vehicle [1], [2]. As the performance of
the SINS is greatly influenced by the accuracy and rapid-
ness of the initial alignment [3]–[5], it is crucial to study
the initial alignment methods when the SINS is used in
different application scenarios. In general, the initial align-
ment can be classified into self-alignment, transfer alignment,
and combination alignment [6]. Compared with the other
two alignment modes, transfer alignment has two significant
advantages. One is that transfer alignment is more rapid,
so it can be completed in a shorter time [7]. The other is
that self-alignment and combination alignment require high
sensor accuracy [3], [4], [6]; when the SINS has low sensor
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accuracy, the initial alignment cannot be completed by the
two alignment modes. However, there is no such problem
for transfer alignment, and transfer alignment also applies to
a low accuracy SINS [2]. Based on the above advantages,
transfer alignment has a wide range of applications such as
aircrafts, ships and vehicles [5], [8].

The error propagation model and filtering algorithm are
two important aspects of the transfer alignment of the
SINS [9]. The error sources of the SINS include inertial
measurement errors, initial condition errors, external dis-
turbances, environmental model errors and others [1], [7].
The error propagation model of SINS is described by a
group of nonlinear differential equations [9], [10]. The clas-
sical linear error model of the small misalignment angle
can only be established under the assumption that the error
sources are small. However, with the rapid development
of SINS technology, the application of the classical lin-
ear error model is limited, and it is necessary to study
the nonlinear error propagation model and the nonlinear
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filtering algorithm [10]–[12]. According to the premise of pri-
ori course uncertainty, Dmitriyev et al. [9] derived nonlinear
equations which describe the behavior of inertial navigation
system (INS) errors in the initial alignment. In [5], to solve
the problem of strong nonlinearity of the transfer alignment
model on vertically launched and warship-borne missiles,
a central difference particle filter (CDPF) was proposed.
The above studies have established accurate nonlinear error
propagation models of transfer alignment, and nonlinear fil-
tering algorithms have been used. However, there are actually
a lot of errors and disturbances between the master SINS
(M-SINS) and the slave SINS (S-SINS) in practical appli-
cations. They include flexure deformation, lever arm effect,
installation errors, vibration of vehicle, unknown environ-
mental disturbances, and so on. And many of the errors and
disturbances are time-varying and change with the applica-
tion environment, which are difficult to be modeled accu-
rately. When the nonlinear error model cannot be accurately
established [13]–[15], or the external disturbances are uncer-
tain and time-varying [16]–[19], how to complete accurate
and rapid transfer alignment is a challenging problem to be
solved.

For the nonlinear filtering problem, the common
approaches are based on an extended Kalman filter (EKF)
or an unscented Kalman filter (UKF) [20]–[22]. EKF uses
first-order linearization of the nonlinear function, so it is
only used for the weak nonlinear model [21]. UKF uses
the distribution of sigma points to approximately represent
the distribution of the nonlinear function, and the estima-
tion accuracy can achieve at least second order [20], [23].
To use the third-degree spherical-radial cubature rule,
Arasaratnam et al. [24] designed the cubature Kalman fil-
ter (CKF) for the high-dimensional state estimation. It can
be proven that CKF is actually a special case of UKF when
the tune parameter κ of UKF is set to zero [23]. How-
ever, EKF, UKF and CKF all require the accurate nonlin-
ear error model and the exact noise statistics, which are
very hard to be satisfied in real-world systems [16]. The
incomplete information of the dynamical system and the
uncertain and time-varying external disturbances can lead
to the decrease of the estimation accuracy or even filtering
divergence [16], [18], [25]–[27]. Therefore, it is necessary to
study new robust filtering algorithms to improve the filtering
performance for practical applications [18], [25], [28]–[30].
Jia et al. [17] designed a Sparse-grid Quadrature Fil-
ter (SGQF) which utilizes weighted sparse-grid quadrature
points to approximate the multidimensional integrals, and
the estimation accuracy level of the SGQF can be flexibly
controlled. Based on an approximation to the quadratic error
matrix, Hu et al. [31] derived a second-order extended (SOE)
H∞ filter for nonlinear discrete-time systems that have
model uncertainty. In [32], an adaptive event-triggered H∞
filter was designed for a class of networked nonlinear inter-
connected systems. These studies have intensively explored
robust filtering, but few studies have been done for the
nonlinear error model of transfer alignment.

In this paper, a novel adaptive UT-H∞ filter is designed
for SINS’ transfer alignment under uncertain disturbances.
Different from the linear transfer alignment method in [7],
this paper aims to solve the nonlinear transfer alignment prob-
lem, and a nonlinear filtering method for transfer alignment
is proposed. The adaptive UT-H∞ filter combines the UKF
technology and H∞ filter to increase the robustness of the
nonlinear system. The robustness factor ξ of the adaptive
UT-H∞ filter is dynamically adjusted when the external
environment changes. Then, a nonlinear transfer alignment
model is established, which includes the SINS nonlinear error
model, velocity plus attitude matrix measurement model and
the sensor error compensation model. The vehicle transfer
alignment experiments verify the better robustness and higher
estimation accuracy of the proposed adaptive UT-H∞ filter
under uncertain disturbances.

The structure of this paper is as follows. In Section II, UKF
filtering technology is described. In Section III, the recur-
sive algorithm of UT-H∞ filter is derived rigorously, and
the adaptive UT-H∞ filter is designed. The nonlinear trans-
fer alignment model is established in detail in Section IV.
In Section V, twenty groups of vehicle transfer alignment
field experiments are performed to verify the effective-
ness of the proposed method. Finally, conclusions are given
in Section VI.

II. UKF TECHNOLOGY
Consider the following nonlinear discrete-time system with
additive noise [12], [31]:

Xk+1 = f (Xk )+ 0kW k

Y k = HkXk + V k (1)

where Xk is the (N × 1) state estimate; f (·) is a nonlinear
function; 0k is the (N × T ) system noise matrix; Yk is the
(M×1) measurement value;Hk is the (M×N ) measurement
matrix; Wk is the (T × T ) system process noise matrix; and
Vk is the measurement noise matrix. Here,Wk and Vk are the
uncorrelated zero-mean Gaussian white sequences, and they
satisfy the following relationships [22]:

E[W jWT
k ] = δjkQk

E[V jVT
k ] = δjkRk

E[W jVT
k ] = 0 (2)

In the above equation,Qk≥0, and Rk>0,δjk is the Kronecker
function, i.e.,

δjk =

{
0 (k 6= j)
1 (k = j).

The implementation of the simplified UKF algorithm is
presented as follows:

(1) Initialization:

X̂0 = E [X0]

P0 = E
[(
X0 − X̂0

) (
X0 − X̂0

)T]
(3)
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(2) Time updating:

χ0 = X̂k−1

χ i = [X̂k−1]N +
√
(N + γ )Pk−1i i = 1, 2, . . .N

χ i = [X̂k−1]N −
√
(N + γ )Pk−1i−N

i = N + 1,N + 2, . . . , 2N (4)

χk|k−1 = f
(
χk−1

)
X̂k|k−1 =

2N∑
i=0

Wm
i χ i,k|k−1

Pxx,k|k−1 =
2N∑
i=0

W c
i

(
χ i,k|k−1 − X̂k|k−1

)
×

(
χ i,k|k−1−X̂k|k−1

)T
+0k−1Qk−10

T
k−1 (5)

(3) Measurement updating:

Kk = Pxx,k|k−1HT
k

(
HkPxx,k|k−1HT

k + Rk
)−1

X̂k = X̂k|k−1 + Kk

(
Zk − Ẑk|k−1

)
Pk = (I − KkHk)Pxx,k|k−1 (6)

The parameters for calculating the sigma points are given as
follows:

γ = α2 (N + κ)− N

Wm
0 = γ / (N + γ )

W c
0 = γ

/
(N + γ )+

(
1− α2 + β

)
Wm
i = W c

i = 1
/
2 (N + γ ) i = 1, 2, · · · , 2N (7)

whereWm andW c represent the mean weight and covariance
weight, respectively; N is the dimension of the system state;
α is a small positive number and 1e-4 ≤ α ≤ 1; κ = 3− N ;
the value of β is relative to the distribution of X , and for the
normal distribution, β = 2 is optimal [10].

III. ADAPTIVE UT-H∞ FILTER
A. UT-H∞ FILTER
Considering the following nonlinear discrete-time system
with additive noise:

Xk+1 = f (Xk )+ 0kW k

Y k = HkXk + V k (8)

where 0k is the (N × T ) system noise matrix; Wk is the
(T × T ) system process noise matrix; and Vk is the mea-
surement noise matrix. The difference between Equation (1)
and Equation (8) is that 0k is unknown, and we do not make
assumptions about the statistical properties of Wk and Vk
in Equation (8).

In general, some arbitrary linear combination of the system
states needs to be estimated; that is, Zk = Lk Xk , where Lk is a
given (N × N ) matrix. Therefore, the system model in Krein

space can be obtained by extending Zk to the measurement
value; it can be expressed as follows [26], [27]:

Xk+1 = f (Xk )+ 0kW k[
Y k
Zk

]
=

[
Hk
Lk

]
Xk + V ′

k (9)

where Wk and V′ k are the noise with bounded energy, and
their statistical characteristics are not assumed to be Gaussian
noise. X0,Wk and V′k satisfy the following relationship:

E

〈 X0
W j
V ′

j

 ,
 X0
W k
V ′

k

〉 =

P0 0 0
0 Iδjk 0

0 0

[
I 0
0 −ξ2I

]
δjk


(10)

where ξ is the robustness factor of the UT-H∞ filter.
According to the simplified UKF algorithm, the sigma

points and their propagation results need to be calculated, and
they can be expressed as follows:

χ0 = X̂k−1

χ i = [X̂k−1]N +
√
(N + γ )Pk−1i i = 1, 2 . . .N

χ i = [X̂k−1]N −
√
(N + γ )Pk−1i−N

i = N + 1,N + 2, . . . , 2N (11)

χk|k−1 = f
(
χk−1

)
X̂k|k−1 =

2N∑
i=0

Wm
i χ i,k|k−1

Pxx,k|k−1 =
2N∑
i=0

W c
i

(
χ i,k|k−1 − X̂k|k−1

)
×

(
χ i,k|k−1 − X̂k|k−1

)T
+ 0k−10

T
k−1 (12)

Then, define the estimation error of the UT-H∞ filter as:

ef ,k = Ẑk − LkXk (13)

Define Tk (Ff ) as the transfer function from the unknown
disturbance {(X0 − X̂0),W k ,V k} in the h2 norm to the
filtering error {ek}.When giving a positive number ξ (ξ > 0),
the goal of the UT-H∞ filter is to search for suboptimal H∞
estimation to satisfy the following relationship [26], [31]:

inf
Ff

∥∥T k (Ff )∥∥2∞
= inf

Ff
sup

X0,W∈h2,V∈h2

×

∥∥ef ,k∥∥22∥∥∥X0 − X̂0

∥∥∥2
P−10

+ ‖W k‖
2
2 +

∥∥V ′
k
∥∥2
2

≤ ξ2 (14)

where the notation ‖A‖2W is defined as the square of the
weighted h2 norm of A, i.e., ‖A‖2W = ATWA. The matrix P0
is a positive definite matrix.

Based on Equation (14), the following theorem can be
given [26]:
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Theorem 1 (Suboptimal H∞ Filter Problem): When given
a positive number ξ > 0, if [8k,k−1 0k,k−1] is full rank, then
the condition that there is a filter satisfying ||Tk ( Ff )||∞ <

ξ if and only if

P−1k +H
T
k Hk − ξ

−2LTk Lk > 0 (15)

where 8k,k−1 is the (N ×N ) state transition matrix.
To apply the recursive Riccati equation of the H∞ filter in

the linear system to the UT-H∞ filter in the nonlinear sys-
tem, the recursive Riccati equation needs to be transformed.
Because Pk|k−1 in the linear system can be obtained by
Pxx ,k |k−1 after UT transformation in the nonlinear system,
the recursive Riccati equation of the UT-H∞ filter can be
represented as follows:

Pk =
(
I − Pxx,k|k−1

[
HT
k LTk

]
R−1e,k

[
Hk
Lk

])
Pxx,k|k−1

(16)

where

Re,k =
[
I 0
0 −ξ2I

]
+

[
Hk
Lk

]
Pxx,k|k−1

[
HT
k LTk

]
.

Therefore, the recursion of X̂k is as follows:

X̂k = X̂k|k−1 + Kk

(
Y k −Hk X̂k|k−1

)
(17)

where

Kk = Pxx,k|k−1HT
k

(
HkPxx,k|k−1HT

k + I
)−1

(18)

Equation (16) needs to be simplified. By defining S∞,k =
Pxx,k|k−1

[
HT
k LTk

]
R−1e,k , Equation (16) can be rewritten

as:

Pk =
(
I − S∞,k

[
Hk
Lk

])
Pxx,k|k−1 (19)

S∞,k can be rearranged as:

S∞,k =
[
Pxx,k|k−1HT

k Pxx,k|k−1LTk
]

×

[
I +HkPxx,k|k−1HT

k HkPxx,k|k−1LTk
LkPxx,k|k−1HT

k −ξ2I + LkPxx,k|k−1LTk

]−1
(20)

Based on the inverse theorem of the partitioned matrix,
we define:

µ11 = I +HkPxx,k|k−1HT
k

µ12 = HkPxx,k|k−1LTk
µ21 = LkPxx,k|k−1HT

k

µ22 = −ξ
2I + LkPxx,k|k−1LTk (21)

Let:

µ−1 =

[
ϕ11 ϕ12
ϕ21 ϕ22

]
(22)

where ϕ 22 = (µ22 − µ21µ
−1
11 µ12)

−1, ϕ 12 = −µ
−1
11 µ12ϕ22,

ϕ 21 = −ϕ22µ21µ
−1
11 , ϕ 11 = µ

−1
11 − ϕ12µ21µ

−1
11 .

Then:

S∞,k =
[
Pxx,k|k−1HT

k Pxx,k|k−1LTk
] [ϕ11 ϕ12
ϕ21 ϕ22

]
=

[
Pxx,k|k−1HT

k ϕ11 + Pxx,k|k−1L
T
k ϕ21

Pxx,k|k−1HT
k ϕ12 + Pxx,k|k−1L

T
k ϕ22

]
(23)

By defining S∞,k = [SM SN ], firstly, SM can be simplified
as:

SM = Pxx,k|k−1HT
k ϕ11 + Pxx,k|k−1L

T
k ϕ21

= Pxx,k|k−1HT
k (µ
−1
11 − ϕ 12µ21µ

−1
11 )

+Pxx,k|k−1LTk (−ϕ22µ21µ
−1
11 )

= Pxx,k|k−1HT
k µ
−1
11 + Pxx,k|k−1(H

T
k µ
−1
11 µ12 − L

T
k )

× (ϕ22µ21µ
−1
11 )

= Pxx,k|k−1HT
k µ
−1
11 + Pxx,k|k−1(H

T
k µ
−1
11 µ12 − L

T
k )

· ((µ22 − µ21µ
−1
11 µ12)

−1µ21µ
−1
11 )

= Pxx,k|k−1HT
k

(
I +HkPxx,k|k−1HT

k

)−1
+Pxx,k|k−1

(
HT
k µ
−1
11 µ12 − L

T
k

)
·

(
µ22 − µ21µ

−1
11 µ12

)−1
LkPxx,k|k−1HT

k

×

(
I +HkPxx,k|k−1HT

k

)−1
(24)

Substituting Kk = Pxx,k|k−1HT
k

(
I +HkPxx,k|k−1HT

k

)−1
into Equation (24), and SM can be further simplified as:

SM
= Kk + Pxx,k|k−1(HT

k µ
−1
11 µ12 − L

T
k )

×

(
µ22 − µ21µ

−1
11 µ12

)−1
LkKk

=

{
I + (KkHk − I)Pxx,k|k−1LTk

[
−ξ2I + Lk (I − KkHk)

Pxx,k|k−1LTk
]−1

Lk

}
Kk (25)

By defining ϑk = (I − KkHk)Pxx,k|k−1LTk [−ξ
2I +

Lk (I − KkHk)Pxx,k|k−1LTk ]
−1Lk , Equation (25) can be sim-

plified as:

SM = (I − ϑk)Kk (26)

Similarly, SN can be simplified as:

SN = Pxx,k|k−1HT
k ϕ12 + Pxx,k|k−1L

T
k ϕ22

=

[
I − Pxx,k|k−1HT

k

(
I +HkPxx,k|k−1HT

k

)−1
Hk

]
×Pxx,k|k−1LTk
·

[
−ξ2I + Lk

(
I − Pxx,k|k−1HT

k
(
I +HkPxx,k|k−1

× HT
k

)−1
Hk

)
Pxx,k|k−1LTk

]−1
= (I − KkHk)Pxx,k|k−1LTk

[
−ξ2I + Lk (I − KkHk)

×Pxx,k|k−1LTk
]−1

(27)
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Finally, by substituting the simplified S∞,k = [SM SN ] into
Equation (19), Pk can be expressed as follows:

Pk = Pxx,k|k−1 − (I − ϑk)KkHkPxx,k|k−1 − ϑkPxx,k|k−1
(28)

Therefore, the implementation of the UT-H∞ filter algo-
rithm can be presented as follows:

(1) Initialization:

X̂0 = E [X0]

P0 = E
[(
X0 − X̂0

) (
X0 − X̂0

)T]
(29)

(2) Time updating:

χ0 = X̂k−1

χ i = [X̂k−1]N +
√
(N + γ )Pk−1i i = 1,2, . . .N

χ i = [X̂k−1]N −
√
(N + γ )Pk−1i−N

i = N + 1,N + 2, . . . , 2N (30)

χk|k−1 = f
(
χk−1

)
X̂k|k−1 =

2n∑
i=0

Wm
i χ i,k|k−1

Pxx,k|k−1 =
2n∑
i=0

W c
i

(
χ i,k|k−1 − X̂k|k−1

)
×

(
χ i,k|k−1 − X̂k|k−1

)T
+ 0k−10

T
k−1 (31)

(3) Measurement updating:

Kk = Pxx,k|k−1HT
k

(
HkPxx,k|k−1HT

k + I
)−1

X̂k = X̂k|k−1 + Kk

(
Y k −Hk X̂k|k−1

)
ϑk = (I − KkHk)Pxx,k|k−1LTk

×

[
−ξ2I + Lk (I − KkHk)Pxx,k|k−1LTk

]−1
Lk

Pk = Pxx,k|k−1 − (I − ϑk)KkHkPxx,k|k−1 − ϑkPxx,k|k−1
(32)

The parameters for calculating the sigma-points are given
as follows:

γ = α2 (N + κ)− N

Wm
0 = γ / (N + γ )

W c
0 = γ

/
(N + γ )+

(
1− α2 + β

)
Wm
i = W c

i = 1
/
2 (N + γ ) i = 1, 2, · · · , 2N (33)

Compared with simplified UKF algorithm, the UT-H∞
filter algorithm adds robustness when calculating Pk . After
giving the value of the robustness factor ξ , the matrix ϑk can
be calculated. Then, Pk can be adjusted by ϑk , and the filter-
ing gain Kk can be adjusted by Pk . Therefore, therobustness
of the system can be improved.

B. ADAPTIVE UT-H∞ FILTER
From the above analysis, robustness is added when calculat-
ing Pk in the UT-H∞ filter, and the Pk is eventually adjusted
by the robustness factor ξ . Hence, the robustness factor ξ is
crucial to the robustness of the UT-H∞ filter. When the value
of robustness factor ξ is small, the robustness of the UT-H∞
filter is strong, but the filtering accuracy decreases. When the
value of the robustness factor ξ is large, the robustness of the
UT-H∞ filter declines, and the filtering accuracy increases.
However, in each application, the value of the robustness
factor ξ in the UT-H∞ filter has to be artificially chosen
by experience, and once selected, the value of ξ is a con-
stant [19], [27], [31]. This will require significant time in
determining the value of ξ before using the UT-H∞ filter,
and the selected value of ξ is not guaranteed to be optimal
in various situations [7], [30]. Moreover, there are always
external disturbances in a real system, and the disturbances
are time-varying and uncertain [17], [18]. If the value of ξ is
fixed, the dynamic balance between robustness and filtering
accuracy may not be maintained, and the filtering estimation
error may increase when there are large disturbances in the
system. To solve this problem, this paper proposes an adaptive
UT-H∞ filter which can dynamically adjust the value of ξ
under uncertain external disturbances.

In a real system, the filter innovation τ k can reflect the
extent of the uncertain external disturbances. The filter inno-
vation τ k has a positive correlation with the external distur-
bances, and it can be written as follows:

τ k = Y k −Hk X̂k/k−1 (34)

Therefore, the quadratic sum of the filter innovation τ k
can be written as τTk τ k , which is the actual estimation error.
The theoretical estimation error is expressed as E [τTk τ k ].
The filter innovation is a zero mean Gaussian white noise
sequence under ideal conditions. However, the changes of the
system model or the anomaly of observed states will change
the statistical properties of the filter innovation. If the value
of τTk τ k becomes large, it indicates that the system undergoes
a significant external disturbance, and the robustness factor ξ
should be decreased to improve the robustness of the system.
If the value of τTk τ k becomes small, it indicates that there is
a small external disturbance at this moment, and the robust-
ness factor ξ should be increased to improve the filtering
accuracy [7]. Hence, the robustness factor ξ is negatively
proportional to the value of τTk τ k .
Theorem 2 ([33]): Assuming that U and V are two n-order

Hermitian matrices, U > 0, V ≥ 0, then U > V is if and only
if λmax(VU−1) < 1.Here, λmax(U) represents the maximum
eigenvalue of matrix U.
Based on the Theorem 2, the conditional Equation (15) of

the UT-H∞ filter can be transformed to the following form:

ξ2 > λmax(LTk Lk (P
−1
k +H

T
k Hk )−1) (35)

Then, the value of ξ can be represented as:

ξ = (1+ ρ) · [λmax(LTk Lk (P
−1
k +H

T
k Hk )−1)]1/2 (36)
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In Equation (36), the coefficient ρ is greater than 0. Based
on the above analysis, the value of the robustness factor ξ
is proportional to τTk τ k . Then, the relationship between the
coefficient ρ and τTk τ k can be established as follows:

ρ =
∂√
τTk τ k
N

(37)

In the above Equation, ∂ is a correlation coefficient and
∂ > 0. The value of ∂ is determined by the experiment
with a real system. N is the dimension of the system states.
In a real system, the values of κ and N are constants and
remain unchanged. Consequently, the value of the coefficient
ρ only has a relationship with τTk τ k .When τTk τ k becomes
large, the value of coefficient ρ decreases, so the value of ξ
will decrease to improve the robustness of the system. Con-
versely, when τTk τ k becomes small, the value of coefficient
ρ increases; then, the value of ξ will increase to improve the
filtering accuracy [7]. Therefore, the value of ξ can be adap-
tively adjusted when the external environment changes, and
the robustness and the filtering accuracy achieve a dynamic
balance under uncertain disturbances.

IV. TRANSFER ALIGNMENT MODEL
A. SINS NONLINEAR ERROR DYNAMICS MODEL
This paper defines ‘‘east–north–up (ENU)’’ as the navigation
frame, and ‘‘right–forward–up’’ as the body frame. Because
of various error sources, rotation error exists between the
SINS’ calculated mathematical platform n′ frame and the
ideal navigation n frame. The ideal navigation n frame
can be converted to the SINS’ calculated mathematical
platform n′ by three rotations. The three rotational angles
φx , φy, φz are called as Euler platform error angles, and φ =[
φx φy φz

]T . Then, the transformation matrix from the
n frame to the n′ frame can be expressed as [10]:

Cn′
n =CφyCφxCφz

=

cφycφz − sφysφxsφz cφysφz+sφysφxcφz −sφycφx−cφxsφz cφxcφz sφx
sφycφz+cφysφxsφz sφysφz−cφysφxcφz cφycφx


(38)

where sφi and cφi represent sin(φi) and cos(φi)(i = x, y, z),
respectively.
The mathematical relationship between the output of the

accelerometer and the velocity of the carrier can be estab-
lished by the velocity error equation, which can be written in
the navigation frame n as [34]:

δV̇
n
= (Cn′

n − I)f
n
− (2ωnie + ω

n
en)× δV

n
− (2δωnie + δω

n
en)

×Vn
+ Cn

b∇
b (39)

where δVn
=
[
δVE δVN δVU

]T is the velocity error;
δV̇

n
is the derivative of δVn; f n =

[
fE fN fU

]T is
the specific force vector; ∇b

=
[
∇x ∇y ∇z

]T is the
three-axis accelerometer bias in the body frame; Cn

b denotes

the SINS attitude matrix from the body frame to the navi-
gation frame, which is described as Cn

b =
[
Tij
]
3×3; ω

n
ie is

the Earth’s rotation rate; δωnie is the derivative of ωnie; ω
n
en

is the angular rate of the earth frame relative to the naviga-
tion frame; and δωnen is the derivative of ωnen. The concrete
expressions for ωnie and ω

n
en are presented by Equations (40)

and (41), respectively:

ωnie =
[
0 ωie cosL ωie sinL

]T (40)

ωnen =

[
−
VN
RM

VE
RN

VE tanL
RN

]T
(41)

where L is the latitude, RM is the radius of curvature on the
meridian, and RN is the radius of curvature on the prime
vertical.

The SINS’ position error equations can be written as [2]:

δL̇ =
δVN

RM + h
− δh

VN
(RM + h)2

(42)

δλ̇ =
δVE

RN + h
secL + δL

VE
RN+h

tanL secL−δh
VE secL

(RN + h)2

(43)

δḣ = δVU (44)

where δL, δλ and δh are the latitude error, longitude error and
height error, respectively.

By defining the angular rate of the n frame relative to the
n′ frame as ωnnn′ , the relationship between ωnnn′ and the Euler
platform error angle φ can be obtained:

ωnnn′=CφyCφx

 0
0
φ̇z

+ Cφy
 φ̇x0
0

+
 0
φ̇y
0

 = Cω

 φ̇xφ̇y
φ̇z


(45)

From Equation (45), the differential equation of the Euler
platform error angle can be written as follows:

˙φ =C−1ω ωnnn′ (46)

where

Cω =

 cφy 0 −sφycφx
0 1 sφx
sφy 0 cφycφx

 (47)

C−1ω =
1
cφx

 cφycφx 0 sφycφx
sφysφx cφx −cφysφx
−sφy 0 cφy

 (48)

The instrument angular velocity and gyro bias have influ-
ence on the SINS’ attitude angle error, and the gyro bias
leads to the increasing of attitude angle error. The concrete
expressions of attitude error equation can be written in the
navigation frame n as [34]:

φ̇
n
= C−1ω [(I − Cn′

n )ω
n
in + C

n′
n δω

n
in − C

n′
b ε

b] (49)

where φn =
[
φE φN φU

]T is the calculated platform’s
attitude angle error; εb =

[
εx εy εz

]T denotes the
three-axis gyro drift in the body frame; Cn′

b = Cn′
n C

n
b; ω

n
in
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denotes the angular rate of the inertial frame relative to the
navigation frame; δωnin denotes the derivative of ωnin. More-
over, ωnin can be expressed as follows:

ωnin = ω
n
ie + ω

n
en (50)

Generally, the three-axis accelerometer biases and the
three-axis gyro drifts are not considered to be time-varying,
that is [35]:

∇̇b
= 0 (51)

ε̇b = 0 (52)

Based on the above error equations, twelve dimensional
states are chosen to set up state equations. In addition, the sys-
tem states are presented as follows:

X(t) =
[
δL, δλ, δVE , δVN , φE , φN , φU ,∇x ,∇y, εx , εy, εz

]T
(53)

where δVE and δVN are the east and north velocity errors
in the navigation frame, respectively; φE , φN , and φU are
the east, north and azimuth misalignment angles in the
navigation frame, respectively; ∇x and ∇y are the right-axis
and forward-axis accelerometer biases in the body frame,
respectively; εx , εy, and εz are the right-axis, forward-axis,
and up-axis gyro drifts in the body frame, respectively.

The nonlinear system’s state equation can be constructed
as follows:

Xk = f (Xk−1)+ 0(Xk−1)W k−1 (54)

where f ( · ) and 0( · ) are all nonlinear functions, Xk−1 is (N
× 1) state estimate, Xk is (N × 1) one step predicted state,
and variableW k−1 is process noise.

B. MEASUREMENT MODEL
In the model of transfer alignment, velocity and attitude
matrix differences between M-SINS and S-SINS are chosen
as measurement. Ĉ

n
bm and Ĉ

n
bs are defined as the attitude

matrix calculated by the M-SINS and the S-SINS respec-
tively. bm and bs denote the measurement frame of the
M-SINS and the S-SINS, respectively. Then, the following
matrix can be constructed:

M = Ĉ
n
bm (Ĉ

n
bs )

T (55)

In Equation (55), the second order terms are ignored, and
the M-SINS’ misalignment angles and the installation error
angles between M-SINS and S-SINS are assumed as small
angles. ThenM can be presented as follows:

M =

 1 −Zz Zy
Zz 1 −Zx
−Zy Zx 1

 ≈ I + (ZDCM×) (56)

where ZDCM = [Zx Zy Zz]T and Zz = M (2, 1), Zy =
M (1, 3), Zx = M (3, 2),−Zz = M (1, 2),−Zy = M (3, 1), and

−Zx = M (2, 3). Therefore, the measurement of velocity plus
attitude matrix matching can be expressed as follows:

Y(k) =


δVE
δVN
Zx
Zy
Zz

 =


Ṽ s
E − V

m
E

Ṽ s
N − V

m
N

1/2 [M (3, 2)−M (2, 3)]
1/2 [M (1, 3)−M (3, 1)]
1/2 [M (2, 1)−M (1, 2)]

 (57)

where Y(k) is the measurement matrix; δVE and δVN are
the M-SINS’ east velocity error and north velocity error,
respectively; Ṽ s

E and Ṽ s
N are the S-SINS’ east velocity and

north velocity, respectively;Vm
E and Vm

N are the M-SINS’ east
velocity and north velocity, respectively.

The system’s measurement equation can be presented as
follows:

Y k = HkXk + V k (58)

where Vk is the measurement noise, Hk is the measurement
matrix and

H(k) =

02×2 02×5 02×5
05×2 I5×5 05×5
05×2 05×5 05×5

 (59)

C. SENSOR ERROR COMPENSATION MODEL
When conducting the transfer alignment, the sensor errors of
gyros and accelerometers play an important role in the align-
ment accuracy [1], [5]. The subsequent navigation accuracy is
also seriously influenced by the sensor errors. Consequently,
calibrating and compensating the sensor errors of gyros and
accelerometers is necessary. The gyro drift consists of three
parts, and it can be expressed as follows:

εbi = ε
b
bi + ε

b
ri + ω

b
gi (i = x, y, z) (60)

where εbi is gyro drift, εbbi is random constant drift, εbri is
random slowly varying drift, and ωbgi is varying drift that is
uncorrelated with itself. In the three parts of gyro drift, εbbi is
a random constant each time the gyro starts, εbri is a slowly
changing quantity, and ωbgi is a rapidly changing quantity. For
the configuration envisioned for this study, εbbi is the main
error source for the gyro drift. This study uses the adaptive
UT-H∞ filter to estimate εbbi, and the compensated gyro drift
can be written as:

εbi_cpt = ε
b
bi + ε

b
ri + ω

b
gi − ε

b
bi_clt (i = x, y, z) (61)

where εbi_cpt is the compensated gyro drift and εbbi_clt is the
estimated random constant drift.
The accelerometer bias consists of two parts, and it can be

expressed as follows:

∇b
i =∇b

bi + ω
b
ai (i = x, y, z) (62)

where ∇b
i is the accelerometer bias, ∇b

bi is random constant
bias, and ωbai is random rapidly varying bias. In the two parts
of the accelerometer bias, ∇b

bi is a random constant each
time the accelerometer starts, and ωbai is a rapidly chang-
ing quantity. For the configuration envisioned for this study,
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TABLE 1. Specifications of the inertial sensors (1σ ).

∇b
bi is the main error source for the accelerometer bias. This

study uses the adaptive UT-H∞ filter to estimate ∇b
bi, and

the compensated accelerometer bias can be written as:

∇b
i_cpt =∇b

bi + ω
b
ai −∇b

bi_clt (i = x, y, z) (63)

where ∇b
i_cpt is the compensated accelerometer bias and

∇b
bi_clt is the estimated random constant bias.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. EXPERIMENTAL SETTINGS
To verify the proposed adaptive UT-H∞ filtering method,
this study designs a vehicle transfer alignment experiment
in an actual system. The vehicle experiment was carried out
outdoors in Beijing. The approximate location is east longi-
tude 116◦ and north latitude 39◦. The experimental equip-
ment included a test vehicle, navigation computer, M-SINS,
S-SINS, power source and communication lines. The three-
axis gyro random constant drifts ofM-SINS and S-SINSwere
0.02 ◦/h and 1 ◦/h, respectively. The three-axis accelerometer
random constant biases of M-SINS and S-SINS were 50 µg
and 100 µg, respectively. The accuracy of M-SINS is two
orders of magnitude higher than the S-SINS. The detailed
specifications of the inertial sensors are listed in Table 1. The
M-SINS provides the reference baseline information, includ-
ing attitude angles, velocities, and position during the process
of transfer alignment. The update frequencies of M-SINS and
S-SINS were all 200 Hz, and the cycle of attitude solution
was 5 ms. To intentionally add large initial attitude errors,
the S-SINS’ heading angle error, pitch angle error, and roll
angle error were set to increase by 10◦, 1◦, 1◦, respectively.
The whole trajectory of the vehicle transfer alignment exper-
iment is shown in Figure 1.

When the test vehicle ran on the road, the power source
powered the M-SINS and S-SINS, and they began to work.
Before transfer alignment, the M-SINS firstly completed
self-alignment. Then, the real-time data that were output
by M-SINS and S-SINS were transmitted to the navigation
computer by communication lines. In this transfer alignment
experiment, the navigation computer recorded the sensor data
for subsequent processing. First, the vehicle experiment spent
350 s on the transfer alignment of S-SINS. Then, after 350 s,
the S-SINS started pure inertial navigation for 600 s. During
the whole process, the test vehicle ran randomly on the road.
Figure 2 shows the heading angle, pitch angle and roll angle

FIGURE 1. The trajectory of the vehicle transfer alignment experiment.

FIGURE 2. The attitude curves of master SINS (M-SINS).

of the M-SINS in the whole experiment. The heading angle
fluctuates between −130◦ and 100◦, and the attitude angles
change with the road surface in the experiment.

TheM-SINS’ east velocity and north velocity are presented
in Figure 3. The east velocity and north velocity fluctuate
between −20 m/s and 20 m/s, and both of them change
randomly during the experiment.

B. EXPERIMENTAL RESULTS AND DISCUSSIONS
In the vehicle transfer alignment experiment, the transfer
alignment accuracy is positive with the pure inertial naviga-
tion accuracy. And the optimal value of ∂ can be chosen by
comparing the position errors in pure inertial navigation using
different values of ∂ . Figure 4 shows the position errors by
using different values of ∂ . It can be seen from Figure 4 that
when the value of ∂ is set as 1.5, the position error in pure
inertial navigation is smaller compared with that when the
value of∂is bigger or smaller than 1.5. Therefore, the value
of ∂ was set as 1.5 in the experiment. Since the external
disturbances in specific application scenarios are in certain
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FIGURE 3. The east velocity and north velocity of M-SINS.

FIGURE 4. The curves of position errors in pure inertial navigation by
using different values of ∂ .

range respectively, the value of ∂ only needs to be set once in
each application scenario.

When conducting the transfer alignment experiment,
the robustness factor of the proposed adaptive UT-H∞ filter
was adjusted adaptively with the change of the unknown
external environment. If the system is affected by large
external disturbances, the robustness factor will decrease to
enhance the robustness of the system. If the system is affected
by small external disturbances, the robustness factor will
increase to improve the system’s accuracy. For the process
of transfer alignment, the change of the robustness factor ξ is
shown in Figure 5.

To compare the transfer alignment effect under different
filtering methods, UKF, CKF, and the adaptive UT-H∞ filter
were separately applied in the actual experiment. Figures 6–8
show the change of east misalignment angle, north misalign-
ment angle, and azimuth misalignment angle when using the
different filtering methods.

FIGURE 5. The value of robustness factor in the adaptive UT-H∞ filter.

FIGURE 6. The estimation curves of the east misalignment angles. CP
denotes ‘‘compensate gyro’s drift and accelerometer’s bias’’.

FIGURE 7. The estimation curves of the north misalignment angles.

In the figures, the blue lines represent the estimation curves
of the UKF, the black lines represent the estimation
curves of the CKF, and the red lines represent the estimation
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FIGURE 8. The estimation curves of the azimuth misalignment angles.

curves of the adaptive UT-H∞ filter. Figure 6 shows the esti-
mation curves of the east misalignment angle (φE ) during the
transfer alignment experiment. When using the UKFmethod,
the convergence rate of φE is slow, and it begins to converge
to 1.4◦ after approximately 250 s. However, there are still
fluctuations in the curve after 250 s. When using the CKF
method, the estimation curve of φE has a fast rate of conver-
gence, and it begins to converge to 1.24◦ after 150 s. There
are still fluctuations, but they are smaller than those observed
using the UKF method. By contrast, when using the adaptive
UT-H∞ filtering method, the estimation curve of φE also has
a fast rate of convergence, and it begins to converge after
180 s. The estimation curve tends to be stable at 1.32◦ even-
tually, and the fluctuation is the smallest among the three fil-
tering methods. In other words, the estimation curve obtained
by using the adaptive UT-H∞ filtering method is more stable
than those obtained using UKF method and CKF method.
Since the stability of the estimated misalignment angle is an
important criterion to evaluate the accuracy of transfer align-
ment, it can be verified that the proposed adaptive UT-H∞
filtering method has better alignment performance compared
with the other two methods.

Figure 7 shows the estimation curves of the north mis-
alignment angle (φN ) during the transfer alignment experi-
ment. The convergence rate of φN determined using the three
methods is almost the same. When using the UKF method,
the estimation curve of φN tends to converge after 150 s.
However, the value of φN has the tendency to grow slowly
after 150 s, and it fluctuates between −1.38◦ and −1.26◦.
When using the CKF method, the estimation curve of φN
after 150 s has smaller fluctuations than that produced using
the UKF method, and the value of φN converges to −1.41◦.
Comparatively, when using the adaptive UT-H∞ filtering
method, the estimation curve of φN is more stable than those
produced using the UKF method and CKF method, and the
value of φN converges to −1.37◦. When using the adaptive
UT-H∞ filtering method, the range of fluctuations between

FIGURE 9. The estimation curves of the random constant drift of the
gyros in the vehicle transfer alignment experiment.

150 s and 350 s is the smallest among the three meth-
ods, which can effectively improve the accuracy of transfer
alignment.

The estimation curves of the azimuth misalignment angle
(φU ) produced using the three methods are shown in Figure 8.
Due to the theory of SINS’ error propagation, the estimation
value of φU has the slowest convergence rate compared to
the estimation value of φE and φN [35]. When using the
UKF method, the estimation curve of φU fluctuates between
−5.18◦ and −3.99◦, and the estimation curve of φU has
the fluctuation which is approximately 1.2◦. When using the
CKF method, the estimation curve of φU fluctuates between
−4.95◦ and −3.79◦, and the range of fluctuations is almost
the same as that observed using the UKFmethod. By contrast,
when using the adaptive UT-H∞ filtering method, the esti-
mation curve of φU has small fluctuations after 250 s, and
the estimation value of φU eventually converges to −3.68◦.
The stability of the estimated φU is obviously better than that
observed using the other two filtering methods. This verifies
that the proposed adaptive UT-H∞ filter has a significant
advantage for the SINS’ transfer alignment under uncertain
external disturbances.

In the process of vehicle transfer alignment, the proposed
adaptive UT-H∞ filtering method can simultaneously cali-
brate the gyro’s random constant drifts and the accelerome-
ter’s random constant biases online. When the transfer align-
ment is completed, the random constant errors of the gyros
and accelerometers will be compensated for at once. The
estimation curves of the gyros’ random constant drifts are
shown in Figure 9. When calibrating online, the random
constant drifts of the X-axis gyro, Y-axis gyro, and Z-axis
gyro are 0.83◦/h, 1.04◦/h, and −0.90◦/h, respectively. They
are approximately within the range of the S-SINS’ sensor
errors.

The estimation curves of accelerometers’ random con-
stant biases during the vehicle transfer alignment experi-
ment are shown in Figure 10. When calibrating online, the
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FIGURE 10. The estimation curves of the accelerometers’ random
constant biases in the vehicle transfer alignment experiment.

FIGURE 11. The curves of east velocity errors in pure inertial navigation.

random constant biases of the X-axis accelerometer and
Y-axis accelerometer are approximately 0.07 mg and
0.06 mg, respectively.

With the same sensor errors, the transfer alignment accu-
racy has a positive correlation with the pure inertial naviga-
tion accuracy. The higher the transfer alignment accuracy is,
the smaller the pure inertial navigation error is.

Therefore, to further compare the performance of the three
filtering methods when conducting the transfer alignment,
a pure inertial navigation experiment was conducted immedi-
ately after the transfer alignment. The pure inertial navigation
experiment lasted 600 s, and Figures 11–13 show the curves
of east velocity errors, north velocity errors, and velocity
errors when using the three filtering methods. The values of
east velocity errors, north velocity errors, and velocity errors
after 600 s are listed in Table 2.

From Figure 11–13 and Table 2, the east velocity errors
after 600 s of pure inertial navigation determined by using
the UKF method, the CKF method, and the adaptive
UT-H∞filteringmethod are 3.95m/s, 3.37m/s, and 2.28m/s,

FIGURE 12. The curves of north velocity errors in pure inertial navigation.

FIGURE 13. The curves of velocity errors in pure inertial navigation.

TABLE 2. The velocity errors (m/s) after 600 s of pure inertial navigation.

respectively. The north velocity errors determined by using
the three filtering methods are 1.67 m/s, 1.53 m/s, and
1.53 m/s, respectively. The velocity errors determined by
using the three filtering methods are 4.29 m/s, 3.68 m/s,
and 2.60 m/s, respectively. After calculation, it is known
that the velocity error determined by using the adaptive
UT-H∞ filtering method decreased by 39.39% compared
with that determined by using the UKFmethod and decreased
by 29.35% compared with that determined by using the
CKF method. This occurs because, under the uncertain exter-
nal disturbances, the purposed adaptive UT-H∞ filter adds
robustness to the system, and the robustness factor ξ can be
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FIGURE 14. The curves of east position errors in pure inertial navigation.

TABLE 3. The position errors (m) after 600 s of pure inertial navigation.

adaptively adjusted with the change of the external distur-
bance. Accordingly, Figures 14–16 show the curves of the
east position errors, the north position errors, and the position
errors that occurred when using the three filtering methods.
The values of the east position errors, north position errors,
and position errors after 600 s of pure inertial navigation are
listed in Table 3.

Figure 14–16 and Table 3 show that the east position errors
after 600 s of pure inertial navigation using the UKF method,
the CKF method, and the adaptive UT-H∞ filtering method
are 897.15 m, 744.92 m, and 483.46 m, respectively. The
north position errors by using the three filtering methods
are 313.49 m, 285.44 m, and 234.67 m, respectively. The
total position errors determined by using the three filtering
methods are 950.13 m, 797.76 m, and 537.32 m, respectively.
Therefore, the position error determined by using the adaptive
UT-H∞ filtering method decreased by 43.45% compared
with that determined by using the UKFmethod and decreased
by 32.65% compared with that determined by using the CKF
method. Since the transfer alignment accuracy finally dis-
plays in the pure inertial navigation accuracy, the results of
pure inertial navigation adequately reflect the superiority of
the purposed adaptive UT-H∞ filtering method. Meanwhile,
as the adaptive UT-H∞ filter adds the robustness to resist
uncertain external disturbances when conducting the transfer
alignment, the bigger the external disturbance is, the more
obvious the advantage of the adaptive UT-H∞ filter is.
For the purpose of fully comparing the UKF method,

the CKF method and the adaptive UT-H∞ filtering method
during the process of transfer alignment under uncertain

FIGURE 15. The curves of north position errors in pure inertial navigation.

FIGURE 16. The curves of position errors in pure inertial navigation.

disturbances, this study designed a total of 20 groups of vehi-
cle transfer alignment experiments in the real system. The
test vehicle’s moving trajectories, M-SINS’ attitude angles,
M-SINS’ running speeds and conditions of road surface are
entirely different in the 20 groups of experiments. In each
experiment, the M-SINS and S-SINS were restarted before
working. The time required to conduct the transfer alignment
was 350 s and, after transfer alignment, the S-SINS began
600 s of pure inertial navigation. Figure 17 shows the his-
tograms of the position errors after 600 s of pure inertial
navigation in 20 groups of vehicle transfer alignment exper-
iments. The position errors in 20 groups of vehicle transfer
alignment experiments are listed in Table 4.

Figure 17 and Table 4 show that, in 20 groups of vehicle
transfer alignment experiments, the position errors deter-
mined by using the adaptive compensation H∞ filter are
obviously smaller than those determined by using the UKF
method and the CKF method. By calculation, the mean
position errors of 20 groups of vehicle transfer alignment
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FIGURE 17. The line charts of position errors in 20 groups of vehicle
experiments.

TABLE 4. The position errors (m) in 20 groups of vehicle experiments.

experiments by using the UKF method, the CKF method
and the adaptive compensation H∞ filter are 958.280 m,
768.537 m, and 498.687 m, respectively. Consequently,
the mean position errors of 20 groups determined by using
the adaptive UT-H∞ filtering method were decreased by
47.96% compared with those determined by using the UKF
method and were decreased by 35.11% compared with those
determined by using the CKF method. The results of the
20 groups of vehicle transfer alignment experiments further
illustrate that the proposed adaptive compensation H∞ fil-
ter can effectively improve the accuracy of transfer align-
ment, and it has obvious advantages compared with the
UKF method and the CKF method under uncertain external
disturbances.

VI. CONCLUSION
In this work, an adaptive UT-H∞ filter is proposed for SINS
transfer alignment with large attitude errors under uncertain
disturbances. The adaptive UT-H∞ filter combines the UKF
technology and a H∞ filter to increase the robustness of the
nonlinear transfer alignment system. The robustness factor
of the adaptive UT-H∞ filter is adaptively adjusted with
changes of the external disturbances. The nonlinear transfer
alignment model, including the SINS nonlinear error model,
the velocity plus attitude matrix measurement model and the
sensor error compensation model, were established. More-
over, 20 groups of vehicle transfer alignment experiments
were conducted to verify the proposed filtering method. The
experimental results show that the adaptive UT-H∞ filter
has a significant advantage compared with the UKF method
and the CKF method under uncertain disturbances. When the
external disturbances increase, the advantage of the proposed
adaptive UT-H∞ filter will be further presented.
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