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ABSTRACT The state-of-the-art trackers using deep learning technology have little special strategy to gain
the bounding box well when the target suffers drastic geometric deformation. In this paper, we take full use of
the convolutional neural network (CNN) features of the deepest layer to represent the semantic featuremodel,
and affine transformation to be as the space information model. A tracking method based on geometrical
transformation region CNN is proposed. Firstly, affine transformation is applied to predict possible locations
of a target, and the candidate bounding boxes obtained by affine transformation sampling can locate the
possible geometric regions of the target more effectively before extracting features from CNN. Furthermore,
RoI pooling with different sizes and shapes are designed to describe the geometric deformation region of the
target. Then, multi-tasks loss function including the affine transformation regression is designed to refine
the affine bounding box. Finally, the affine transformation NMS (Non-maximum suppression) is used to
ensure the tracking bounding box having the largest IoU value. Extensive experimental results show that the
proposed algorithm performs favorably against the compared methods in the public benchmarks.

INDEX TERMS Object tracking, CNN, affinemanifold, affine transformationNMS, geometric deformation.

I. INTRODUCTION
Visual tracking is one of the basic problems of computer
vision, which has a wide range of applications, such as
video surveillance, autonomous driving and behavior anal-
ysis. Given the bounding box of the image target in the first
frame, the tracking task is to locate the position of the target
correctly in subsequent frames. But the target in the subse-
quent video frames may suffer complex situations such as
deformation, occlusion, illumination change and background
change. This makes the tracking problem more difficult.

The key parts for a tracking method are semantic feature
modeling and spatial feature modeling, which could be gen-
eration based or discrimination basedmethod. The generation
based algorithm tracks the target by finding the best matching
image region with the template or the appearance model,
while the method based on discrimination regards target
tracking as a binary classification problem in the local image
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region, with the purpose of separating the tracking target from
the background.

For semantic feature modeling, deep convolution neural
network (CNN) has shown its superior performance in vari-
ous visual tasks [1]–[4]. Nam et al. [5], the target appearance
is represented by CNNs, and by managing the appearance
models in a tree to design the tracking frame. Nam and
Han [6] applies a large set of image videos with ground-truths
for CNN to compute an object representation. Some other
trackers [7], [8] also directly use CNNs as classifiers and
take full advantage of end-to-end training. While Ma et al [9]
extracted features from deep CNNs to gain more accurate
tracking results. And papers [10]–[13] also integrate deep
features into traditional trackingmethods, which benefit from
the expression ability of CNN features. As it is verified in [9],
the highest convolutional layer has the closest relationship to
category-level semantics information while spatial resolution
is gradually reduced with the increase of the depth of convo-
lutional layers, we take full use of the CNN features of the
deepest layer to design semantic feature model and design a
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separate model to represent the spatial feature in the proposed
tracking method.

For spatial feature modeling, it is meaningful to distinguish
object classification and object estimation as two independent
but related subtasks. Object classification is basically to deter-
mine the existence of the target in an image location. How-
ever, only part of the object status information is obtained, for
example, the image coordinates. The object estimation aims
to find the full state which is not only including the coor-
dinates but also including axis aligned or rotated [14], [15]
and a bounding box [16] of an object. The aim of tracking
is to compute and gain the bounding box that fits the object
best. For a rigid object with simple movement, the object
classification algorithm is enough for tracking task. But in
most real tracking applications, the object may suffer drastic
deformation in pose and viewpoint, which brings more diffi-
culty for predicting the bounding box.

In the past few years, target classification methods are
mainly realized by discriminatively on-line training classi-
fier [6], [17], [18]. Correlation filters [19] also have been
developed. For example, paper [20] designs a minimum out-
put sum of squared error filter for the target appearance
for fast visual tracking. And some other correlation track-
ers also be designed for visual tracking, including context
learning [21], kernelized correlation filters [22], scale esti-
mation [23], multiple dimensional features [24], [18], re-
detection [25], and spatial regularization [17] etc. These
method using the reliable confidence scores to determine the
target classification, but no strategy is considered to improve
target estimation accuracy [26], [27]. The full state estimation
of a target is completed only depending on the classifier.

However, the target classifier is not sensitive to some
aspects of the object state, for example. The width and
height of the target. Accurate bounding box estimation is a
complicated question in object tracking field, which often
needs advanced prior knowledge. Many recent methods have
therefore integrated prior knowledge in the form of offline
learning [6], [28], [29]. In particular, paper [28]–[30] have
been shown capable of bounding box regression. Yet, the
shape of the bounding box is always a rectangle that can’t
adapt to the geometric deformation of the target. Many classic
tracking methods [31] use affine transformation to describe
the geometric deformation of the target. Considering that
affine transformation manifold can describe the deformation
of the target more accurately when the target experiences
drastic geometric deformation, we apply affine transforma-
tion manifold to design the separate spatial feature model for
geometric deformation of the target.

In this paper, CNN is combined with affine transforma-
tion manifold for the tracker design. Inspired by RPN and
considering the bounding box for consecutive frames being
closely related, instead of RPN, we use affine transformation
bounding box of the former frame to predict the possible
target bounding boxes. For every frame, we compute the
affine transformation samples according to the affine trans-
formation vectors of the former frame, the samples are input

FIGURE 1. Example tracking bounding boxes of the proposed tracker,
when the object suffers drastic geometric deformation.

to CNN network to abstract feature maps. Moreover, a multi-
tasks loss function is designed to regress the affine transfor-
mation parameters. Furthermore, different RoI pooling sizes
and affine transformation NMS are adopted in our tracker.
As shown in Figure 1, when the target has significant geo-
metric transformation, our tracker still has high performance.

The main contribution of the proposed tracker are as
follows.

(1) Affine transformation is applied to predict possible
locations and geometric deformation of a target, which
makes the tracked bounding box more accurately.

(2) Compared with region proposal networks (RPN),
the candidate boundary box obtained by affine transfor-
mation sampling can locate to the effective range of the
target more accurately before extracting CNN features.

(3) Features from the deepest CNN layers being seman-
tic information model combines with affine manifold
being spatial information model, which forms comple-
mentary advantages.

(4) Multi-tasks loss function including the affine transfor-
mation regression is designed to optimize CNN net-
works performance.

(5) Different Region of Interest (RoI) pooling sizes are
adopted to assist in describing the deformation of the
target.

(6) Affine transformation NMS is applied to ensure the
tracking bounding box having the largest IoU value.

The rest of this paper is organized as follows: In section2 we
build affine manifold and the geometric transformation
model. In section 3 we propose the geometrical region
CNN tracking approach. Then, we design the implementation
details and evaluate the experimental effectiveness by com-
paringwith other state-of-the-art trackers in section 4. Finally,
conclusions are drawn in section 5.

II. AFFINE MANIFOLD
A. AFFINE MANIFOLD AND ITS METRIC
In this paper, we apply affine transformation manifold to
represent the object full state estimation. Let I (X ) represent
the gray value of the template image position X = (x, y)′. The
Cartesian coordinate system is established with the center
of the target as the coordinate origin. The gray value of the
target in the input image after affine transformation is I (W (x :
r)), where W (x : r) represents the affine transformation of
the object in the input image with respect to the template,
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FIGURE 2. Schematic overview of the proposed framework based on Affine Transformation and Convolutional Features. It consists of the following six
stages: (1) affine sampling (2) CNN feature extraction (3) RoI pooling with kernels of different sizes (4) multi-tasks loss (5) Non-maximum
suppression (6) tracking result.

r = (r1, r2, r3, r4, r5, r6)′ is a parameter vector.

W (x : r) =
[
r1x + r2y+ r5
r3x + r4y+ r6

]
(1)

The transformation matrix is represented with homogeneous
coordinates as: x ′y′

1

 =
 r1 r2 r5
r3 r4 r6
0 0 1

 xy
1

 , (2)

The affine transformation matrix

T (r) =

 r1 r2 r5
r3 r4 r6
0 0 1


has the structure of Lie groupGA(2), and ga(2) is Lie algebra
corresponding to affine Lie groupGA(2). And matrixGi(∀i ∈
{1, 2, · · · 6}) is the generators ofGA(2) and the basis of matrix
ga(2). For matrix GA(2), the generators are

G1 =

 1 0 0
0 0 0
0 0 0

 G2 =

 0 1 0
0 0 0
0 0 0

 G3 =

 0 0 0
1 0 0
0 0 0


G4 =

 0 0 0
0 1 0
0 0 0

 G5 =

 0 0 1
0 0 0
0 0 0

 G6 =

 0 0 0
0 0 1
0 0 0

 .
(3)

For Lie group matrix, Riemann distance is defined by matrix
logarithmic operation:

d ′(X ,Y ) =
∥∥∥log(YX−1)∥∥∥ . (4)

where X and Y are the elements of Lie group matrix. Given
N symmetric positive definite matrices {X i}

N
i=1,the intrinsic

mean is defined as

µ∗
= exp(

1
N

N∑
i=1

log(X i)). (5)

For more knowledge of the Lie group, please refer to the
reference [32].

B. DESIGN THE GEOMETRIC TRANSFORMATION MODEL
In this paper, affine transformation is applied for design-
ing the special information model. It can reflect the geo-
metric transformation properly. And the geometrical change
between two adjacent frames is equivalent to the move-
ment of corresponding points of affine matrices on Riemann
manifold, because affine transformation matrix is a positive
definite symmetric manifold, which belongs to Lie group
structure and doesn’t obey Euclidean space. The basic idea
for establishing the model of the target deformation is to
find the transformation relationship between two adjacent
points on the manifold. The tangent vector of the point on the
manifold can be used to describe this relationship. The affine
transformation model is designed in Riemannian manifold
and its tangent space, respectively,

St = St−1 exp (vt) (6)

vt = avt−1 + µt−1, (7)

where the vector St = [x1, x2, x3, x4, x5, x6]T is the affine
transformation parameter of the target geometric deforma-
tion. vt represents as the velocity vector from point St−1 to
point St on the tangent space, and it describes the movement
of the target, which is the tangent vector from point St on
manifold. Suppose vt obeys the Gauss distribution, µ1:t is
Gauss white noise, and a is autoregressive coefficient.

III. THE PROPOSED AFFINE GEOMETRICAL
REGION CNN APPROACH
Themain strategy for the current effective deep learning algo-
rithm for classification and recognition is two-stage object
detection strategy. They use region proposal network (RPN)
and region classification network. In the proposed algorithm,
we also adopt a two-stage strategy, but we use affine trans-
formation region to replace RPN region. Based on Faster
R-CNN [2] and R2CNN [3], we design our tracking frame-
work. As shown in figure 2. According to the results of
t-1 frame, M transformation vector samples are computed,
which is instead of the function of RPN. Then reshape
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the image region corresponding to the samples to rectangle
regions with the same size. For each sample, deep learn-
ing network is used to compute feature maps. Then, three
different RoI poolings are built to make the most of object
appearance characteristics. And multi-task Loss function is
designed to optimize CNN networks. Finally, affine transfor-
mation NMS is applied to ensure the tracking bounding box
having the largest IoU value.

A. AFFINE MANIFOLD SAMPLING
For image tracking, there is a close relationship between two
consecutive images. Therefore, we preliminarily determine
the approximate target positions of the current frame accord-
ing to the bounding box tracked to the previous image frame.
By using the principle of affine transformation, the possible
positions are sampled by affine transformation sampling.
Compared with RPN, the candidate bounding box obtained
by affine transformation sampling can more accurately sam-
ple the effective region of the target.

For the tracking bounding box of frame t, the initial value
is set as the same with the tracked bounding box of frame t-1,
which is St−1 = [r1, r2, r3, r4, r5, r6]. Affine transformation
sampling is to compute M samples of St−1. For each sample,
it corresponds to a bounding box. Random walk model were
applied to sample vt in equation (7). The steps are as follows:

(1) Initialize k = 1, while k <= M , randomly gen-
erate a 6-dimensional vector between(−1, 1) as
µ = (µ1, µ2, µ3, µ4, µ5, µ6)(−1 < µi < 1, i =
1, 2, . . . . . . , 6).

(2) Standardize u as

µ′ = µ/

√∑6

i=1
µ2
i . (8)

(3) Compute vkt = avt−1 + µ′, where vt−1 is the velocity
vector from frame t-1.

(4) Let k = k + 1, Repeat the above steps, until k = M.
vt = [v1t , v

2
t , . . . , v

M
t ].

(5) According to vt = [v1t , v
2
t , . . . , v

M
t ], the M samples

of affine transformation parameters are generated as
{S1t , S

2
t , . . . . . . , S

M
t } according to equation (6).

After all the affine samples are obtained, we draw each candi-
date region on the current image frame. Then, the size of each
candidate target region is normalized, and the normalized
results are input into the trained deep learning network to
obtain the feature maps.

B. RoI POOLINGS WITH DIFFERENT SIZES
The RoI pooling layer uses maximum pooling to transform
the features in any effective region of interest into a small
feature map with a fixed spatial extent of H ×W . Where H
andW are layer height and width parameters independent of
any specific RoI.

According to the different tracking targets, different shapes
of the RoI pooling may be designed aiming to capture
more feature information. For most deformable targets,

FIGURE 3. The flowchart for affine transformation sampling. Firstly,
generating affine matrix samples according to the affine matrix of frame
t-1. Then, drawing the bounding box on image of frame t. Finally,
computing the rectangular area before input into CNN network.

FIGURE 4. Illustrates the detection results after horizontal rectangle NMS
and affine transformation NMS are performed. (a) The candidate
horizontal rectangle boxes and affine transformation boxes; (b) the
detection result based on horizontal rectangle NMS on horizontal
rectangle bounding boxes;(c)the detection results based on affine
transformation NMS on affine transformation bounding boxes.

the deformation of horizontal and vertical directions is not
particularly severe in the adjacent two frames. So three RoI
pools with different sizes (7 × 7, 5 × 9, 9 × 5) are executed
on the convolution feature maps, and the pooled features are
concatenated for further classification and regression. With
concatenated features and fully connected layers, we predict
object/non-object scores, the horizontal rectangle bounding
box and the affine transformation bounding box. After that,
the affine transformation parameters are post-processed by
affine transformation non-maximum suppression to get the
best tracking results.

C. AFFINE TRANSFORMATION NON-MAXIMUM
SUPPRESSION
In the current object detection methods, Non-Maximum sup-
pression (NMS) is widely used in post-processing detection
candidates. While estimating both the horizontal rectangle
bounding box and the affine transformation bounding box,
we can perform normal NMS on the horizontal rectangle
bounding box or affine transformation NMS on the affine
transformation bounding box. In affine transformation NMS,
the calculation of traditional intersection (IoU) is modified to
IoU between two affine transformation bounding boxes. The
IoU calculation method used in [33] is used.
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D. MULTI-TASKS LOSS
The loss function we define on each proposal is the sum
of appearance classification loss and box regression loss.
Box regression loss consists of two parts: loss of horizontal
rectangle bounding box and loss of affine transformation
bounding box. Themulti-tasks loss function for each proposal
is defined as:

L
(
p, t, vi, v∗i , ui, u

∗
i
)

= Lc (p, t)+ λ1t
∑

i∈(x,y,w,h)
Lreg

(
vi, v∗i

)
+ λ2t

∑
i∈(r1,r,2,r3,r4,r5,r6)

Lreg
(
ui, u∗i

)
, (9)

where λ1 and λ2 are the balancing parameters that con-
trol the trade-off between three terms. And the parameter
p = (p0, p1) is the probability over target and background
classes calculated by the softmax function. The logarithm loss
of true class t is

Lc (p, t) = −logpt . (10)

And the parameter v = (vx , vy, vw, vh) is a tuple of true
rectangle bounding box regression targets including the coor-
dinates of the center point and its width and height, v∗ =(
v∗x , v

∗
y , v
∗
w, v
∗
h

)
is the predicted tuple for the targets.

u = (ur1, ur2, ur3, ur4, ur5, ur6) the predicted tuple
for the affine transformation bounding box, while u∗ =
(u∗r1, u

∗

r2, u
∗

r3, u
∗

r4, u
∗

r5, u
∗

r6) is the predicted tuple for the affine
transformation bounding box.

Let (w,w∗) denotes (vi, v∗i ) or (ui, u∗i ), Lreg (w,w∗) is
defined as:

Lreg (w,w∗) = smoothL1(w− w∗), (11)

smoothL1 (w− w∗) =

{
0.5x2 if |x| < 1
|x| − 0.5 else.

(12)

E. OBJECT TRACKING ALGORITHM
On the observation that the last layer of CNNs encodes the
semantic abstraction of objects and their outputs are robust to
appearance variations, the proposed method uses the highest
layer information to predict the target appearance. Mean-
while, we apply affine transformation to predict possible
locations of a target instead of RPN. In order to catch more
features of the target, 3 different sizes of RoI poolings are
made on the output of CNN features.
The main steps for the proposed tracking algorithm based

on affine transformation and CNN feature map is as follows.
Initialization: when t = 1, initialize the affine transfor-

mation parameter S1 = [r1, r2, r3, r4, r5, r6].
Step 1: draw the bounding box for t-th image frame,

according to the target position of the t-1 frame. That’s the
initial bounding box in t frame has the same position and the
same shape with that is in t-1 frame.

Step 2: According to formulas (6)-(8), M candidate affine
transformation vectors are generated.

Step 3: The candidate image regions determined by M
affine parameters are transformed into rectangular regions,
and input into deep convolution neural networks.

Step 4: The RoI pooling kernels of three different sizes are
designed in consideration of the deformation of the target.
Then on the output feature maps of the convolution neural
network, the RoI (Region of Interest) pooling operation is
performed.

Step 5: With concatenated features and fully connected
layers, we predict object appearance scores.

Step 6: After Non-maximum suppression is computed, the
tracking result for frame t is obtained.

Step 7: t = t+ 1, if t is smaller than the total frame of the
video to track, return to step one.

Step 8: it ends until all the frames have been tracked.

IV. EXPERIMENTS
A. IMPLEMENTATION DETAILS
1) CNN FRAMEWORK
The proposed method uses Faster RCNN network as the
base network, which applies 13 convolutional layers, 13 Relu
non-linear function of the hidden layers, and 4 max pool-
ing layers to generate feature maps before different size
RoI pooling.

2) TRAINING
In our implementation, the target image has a dimension
of 127∗127∗3. And the model is trained offline on the video
dataset ImageNet [34]. The training consists of more than
50 epochs, each consisting of 50000 sampling pairs. The
gradients of each iteration are estimated by 10 mini-batches
size, and the learning rate is from 10−2 to 10−5 at each period
from.

The proposed tracker is implemented in TensorFlow
2.0 framework on the computer with a single NVIDA GTX
1080 and an Intel Core i7 at 4.0 GHz CPU and 256GB mem-
ory. Furthermore, the parameters of each compared meth-
ods is set in accordance with the original of the respective
method.

B. DATASETS AND EVALUATION METRICS
1) THE OTB BENCHMARKS
The benchmarks OTB-2013 [35] and OTB-2015 [15] are
most widely used in visual tracking, which contains 50 and
100 image sequences with various challenging factors respec-
tively. They are divided into eleven attributes, such as illumi-
nation, deformation and scale change.

The metrics standards on the OTB benchmark include two
aspects: the average per-frame success rate and precision.
On the one hand, if the intersection-over-union (IoU) between
its estimation and the truth is beyond a certain threshold,
the tracker is successful in a given frame. It includes success
of spatial robustness evaluation (SRE), success of temporal
robustness evaluation (TRE) and success of one-pass evalu-
ation (OPE). Normally, the area-under-curve (AUC) of the
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TABLE 1. Results of the proposed method under different settings on some image sequences in VOT2015.

TABLE 2. Comparison of state-of-the-art trackers on OTB-2013 and OTB-2015 benchmarks.

FIGURE 5. Bounding box overlap success rate plots and the center location error precision plots under SRE, OPE and TRE over benchmark
sequences. The overlap success contains AUC score for each tracker, and the distance precision contains threshold scores at 20 pixels.

success plot is reported. On the other hand, the precision
plot can be gained in the same way. In most papers reports,
the threshold for the precision plot is set to 20.

2) THE VOT BENCHMARKS
For our experiments, we use the latest versions of the Visual
Object Tracking (VOT) toolkits. They are VOT2015 [36],

VOT2016 [37] and VOT2017 [38]. VOT2015 and VOT2016
contain the same sequences, while the ground truth labels
in VOT2016 are more accurate than those in VOT2015. The
60 image sequences contained in VOT2016 including illumi-
nation change, camera motion, motion change, occlusion and
scale change. And ten sequences are different between the
former versions and VOT2017.
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FIGURE 6. The center location error precision plots under SRE, TRE and OPE over sequences with scale variation and in-plane rotation respectively,
and the distance precision contains threshold scores at 20 pixels.

The evaluation on the VOT benchmark is based on the re-
initialized methodology that a tracker will be reset after five
frames of no overlap with the ground truth. The evaluation
focuses on the short-term effectiveness, and the metrics stan-
dards on the VOT benchmark include accuracy (A), robust-
ness (R) and expected average overlap (EAO). The higher
A and EAO scores and the lower R scores, the better the
tracker’s performance is. For the tracking speed evaluation,
to reduce the influence of the hardware, the VOT2014 [39]
proposes a new unit called equivalent filter operations (EFO)
that reports the tracker speed in terms of a predefined filtering
operation that the toolkit automatically carries out prior to
running the experiments. The same tracking speed evaluation
is used in VOT2016 [37]. At the same time, the value of
raw frames per second (FPS) is given in the VOT benchmark
reports, which is the speed at which the algorithm runs on an
individual computer.

C. ABLATION ANALYSIS
In this section, the function of different parts in the proposed
method is analyzed. The Results under different settings on
some image sequences in VOT2015 are shown in table 1.

1) HORIZONTAL RECTANGLE BOX AND AFFINE
TRANSFORMATION BOX
In the proposed method, there are three kinds of regress
function according to the different values of λ1 and λ2 in
formula (9).

The first setting is λ1 = 1 and λ2 = 0, the detection outputs
are horizontal rectangle box. The second setting is λ1 = 0 and
λ2 = 1, it only regresses affine transformation box, which
leads to about 6% performance improvement over the first
setting. The reason is that the outputs of the first setting are
only the horizontal rectangle boxes, however, the geometrical
transformation information is ignored. The third setting is
λ1 = 1 and λ2 = 1, the detection outputs are the both,
which leads to another 5% performance improvement over
the second settings. This means that learning the additional
horizontal rectangle box could help to detect the affine trans-
formation box.

2) SINGLE POOLING SIZE VS. MULTIPLE POOLING SIZES
The third and fifth settings are used to analyze the function of
multi-scale pooling. As shown in Table 1, with three pooled
sizes (7 × 7, 5 × 9, 5 × 91), the performance of the fifth
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FIGURE 7. Bounding box results for the proposed algorithm and the compared algorithms.

setting is much better than that of the third setting. This con-
firms that utilizing more features is helpful for transformation
target detection.

3) NORMAL NMS ON HORIZONTAL RECTANGLE BOXES VS.
AFFINE TRANSFORMATION NMS ON AFFINE BOXES
By comparison between the third setting and the fourth set-
ting, and the comparison between the fifth setting and the
sixth setting, we analyze the function of the affine trans-
formation NMS. Because we regress both the horizontal
rectangle box and the affine transformation box, each hor-
izontal rectangle box is associated with an affine transfor-
mation box. We can conclude that affine transformation
NMS under both single pooling size test and multi-scale
pooling size test consistently perform better than their
counterparts.

4) TEST TIME
The running environment is consistent with the training envi-
ronment described earlier. Under single-scale pooling size
test, our method only increases little affine transformation
sampling time compared to the baseline.

D. COMPARISON WITH STATE-OF-THE-ARTS
The widely used benchmarks for object tracking are OTB
benchmarks [34], [35], and VOT benchmarks [36]–[38].
Our tracker is evaluated with state-of-the-art trackers on
the benchmark datasets OTB-2013 [34], OTB2015 [35], and
VOT2015 [36], VOT2016 [37] respectively.

1) OTB BENCHMARKS
We compare our tracker with the 29 default trackers in OTB-
2013 andOTB-2015 benchmarks and 6more popular trackers
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TABLE 3. Performance comparison of state-of-the-art trackers on VOT-2016 benchmarks.

including SRDCFdecon [40], Staple [41], DSST [23],
SCM [42],Struck [43],and TLD [44].

The tracking results of all the algorithms to be compared
are obtained through the files published by the authors. All
the success plots and precision plots on OPE evaluation
are summarized in table 2. For more results on bounding
box overlap success rate plots and the center location error
precision plots under SRE, OPE and TRE over benchmark
sequences are illustrated in Figure 6. Figure 7 shows the
tracking bounding boxes results on some challenging video
sequences. The main challenges of sequence 1 is geomet-
ric transformation. For sequence 2, the object suffers illu-
mination variation and background clutter. For sequence 3,
the object experiences temporary occlusion. And the main
challenge of sequence 4 are drastic geometric transformation,
motion blur and fast motion. All the tracking results suggest
that our affine transformation strategy can bound the target
more accurately than the rectangle boxes, when the target
suffers from large geometric deformation.

2) VOT BENCHMARKS
VOT benchmarks include VOT2015 [36], VOT2016 [37] and
VOT2017 [38]. They are also themost popular object tracking
benchmarks. In our experiments, we choose VOT2016 [37]
to evaluate the tracking performance. The proposed method
is compared with 6 state-of-the-art trackers including
C-COT [12], SSAT [37], MLDF [37], Staple [41], DDC [37],
EBT [45]. The performance comparison of these trackers are
shown in Table 3. The EAO value of our tracker is 0.464,
which out-performs all the compared trackers. Figure 8 shows
the EAO curve of all the compared trackers, which also verify
the high performance of our tracker. And the speed report for
experiment baseline is also shown in Table 3. Except C-COT
tracker whose accuracy is worse than our tracker, our tracker
is faster than all the other trackers. The reason is that we
further improve the implementation method of the second
step (CNN feature extraction) in Figure 2. The algorithm first
extracts feature maps on the whole image, and then locates
M feature maps corresponding to M affine sampling regions,
so that the feature maps are extracted only once for M affine
sampling regions. This greatly improves the speed efficiency
of the algorithm.

Moreover, we choose other more trackers given on the
VOT2016 benchmark, which are compared with our tracker
on the Accuracy-robustness plot for experiment baseline

FIGURE 8. Expected Average Overlap(EAO) curve for 6 state-of-the-art
trackers on the VOT-2016 dataset. Our tracker has much better
performance than the compared trackers.

FIGURE 9. Accuracy-robustness plot. Best trackers are closer to the top
right corner.

(mean), the results are shown in Figure 9, and best trackers
are closer to the top right corner, which also demonstrates the
effectiveness of our tracker.

V. CONCLUDING REMARKS
The key to a tracking algorithm is its semantic and spatial
models. We take full use of the CNN features of the deepest
layer to design semantic feature model, and apply affine
transformation as the space information model. Combing
CNN with affine transformation manifold, we have proposed
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a geometrical region CNN based method for object tracking.
Affine transformation is applied to predict possible locations
and geometric deformation of a target. And the candidate
bounding box obtained by affine transform sampling can
more accurately locate to the effective region of the target
before extracting CNN features. Furthermore, different RoI
pooling sizes can assist in describing the deformation of the
target. Then, multi-tasks loss function including the affine
transformation regression is designed to optimize CNN net-
works performance. Finally, the affine transformation NMS
is applied to ensure the tracking bounding box having the
largest IoU value. All the analysis results show an outstanding
performance of the proposed trackers.
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