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ABSTRACT Fast detection and high-precision tracking of multiple UAVs are the keys to achieving efficient
low-altitude defense. However, as there are many hyper-parameters which need to be optimized in target
detection network, commonly used methods such as random search method are computationally intensive
and cannot quickly obtain multiple optimal hyper-parameters combinations. In addition, angular random
walk due to low-frequency noise of speed sensor in servo loop can cause target tracking accuracy to
decrease. Fortunately, those two problems can be regarded as a single-mode function optimization problem
and a multi-mode function optimization problem, respectively. In the paper, in order to overcome the
aforementioned problems, GSOM (glowworm swarm optimization mutation) algorithm and GSOMLDW
(glowworm swarm optimization mutation linearly decreasing weight) algorithm are firstly proposed. Fur-
thermore, the global convergence of GSOMLDW has been proven in the paper, which has not been analyzed
in currently available literature. Then, experimental results on four multi-modal benchmark functions have
strongly illustrated that the novel GSOM algorithm can enhance glowworms’ memory ability and improve
peak detection rate effectively. When it is used for optimizing hyper-parameters of multi-target detection
network, it can be expected to obtain much more hyper-parameter combination selections. Meanwhile,
experimental results on ten uni-modal benchmark functions have obviously demonstrated that GSOMLDW
algorithm can balance glowworms’ exploration and exploitation abilities powerfully and obtain superior
global solution accuracy at last. When the GSOMLDW algorithm is used for servo system identification and
drift error model identification, the final position error fluctuation after compensation is almost zero while it
reaches 1500 urad before compensation. Consequently, the proposed method can effectively improve target
tracking precision.

INDEX TERMS GSO, system identification, multi-modal functions, multi-target tracking, anti-UAVs.

I. INTRODUCTION
With the popularization of UAVs (unmanned aerial vehicles,
UAVs) in various fields, their characteristics that they can be
equipped with functional equipments casually and are subject
to subjective awareness make them to be a serious threat to
public safety [1]. Different types of anti-UAV systems exist
in various countries around the world. Among them, the laser
defense systemwill be an important development direction of
low-altitude defense in the future due to its fast speed, high
accuracy, and high cost-effectiveness. It mainly consists of
target image detection and target servo tracking [2], [3].
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However, there exist problems in both of the two parts.
On one hand, current target detection algorithms are mostly
based on neural networks, and hyper-parameters selection
of neural network models has a great impact on the final
target detection results. For example, a complex model may
own good expressive ability to process different types of
data. However, it may be impossible to be trained as gradi-
ent disappears due to too many layers. At present, methods
such as grid search and random search methods are often
used to select appropriate hyper-parameters. However, those
algorithms have disadvantage of large amount of calculation.
Thus, unreasonable selection of hyper-parameters may cause
unsatisfactory detection results especially when the detection
background is complex and there are multiple targets to
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be detected. At present, grid search method and random
search method are often used to obtain hyper-parameters
for target detection network models. Unfortunately, these
methods have certain disadvantages such as large calculation
amount [4]. On the other hand, affected by non-linear drift
error of gyro sensor, servo tracking accuracy is often not ideal.
Usually, a low-frequency drift error model is established.
Based on the error model and classical control methods,
target servo tracking performance can be improved [5]–[7].
Fortunately, the above-mentioned two problems can be clas-
sified as a single-objective optimization problem and a
multi-objective optimization problem, respectively. There-
fore, they can be solved by popular swarm intelligence opti-
mization algorithms.

In fact, swarm intelligence optimization algorithms have
developed greatly and have been well applied in many
fields [8]–[14] during recent years. For example, bee
colony (BC) algorithm is motivated from bee colonies’ nature
behaviors. Genetic algorithm (GA) is inspired by natural
selection and genetic mechanism [15]. Simulated anneal-
ing (SA) algorithm is based on solid annealing principles
proposed by Kirkpatrick in 1983 [16]. Glowworm swarm
optimization (GSO) algorithm is proposed through simu-
lating nature glowworms’ behavior [17]. Compared with
traditional optimization methods, those swarm intelligence
algorithms are more effective and have been utilized to solve
complex non-linear optimization problems [13], [17]–[23].

Different from other swarm intelligence algorithms, GSO
algorithm which is different from FA algorithm [24] owns
both local optimum location ability and global optimum
location ability. That means it is good at solving not only
uni-modal optimization problems but also multi-modal opti-
mization problems. Furthermore, it has many advantages
such as powerful local search ability, several parameters to
adjust, convenient operation and easy implementation [25].

All the things have made it very popular in many fields.
For example, it has been effectively used in aspects of
indoor localization [26], dispatching system of public transit
vehicles [27], multi-modal functions for collective robotics
applications [28], signal source localization for multi-robot
system [29], node deployment strategy for WSNs [30],
wiener system identification for three-dimensional ellip-
tical vibration cutting [31], three-dimensional path plan-
ning for unmanned aerial vehicles [32], CWMN spectrum
allocation [33] etc.

Unfortunately, when optimizing multi-mode functions the
algorithm has its own shortcomings, such as premature con-
vergence, low peak detection rate and poor convergence
accuracy [34]. According to current literature, there are few
studies about solving the problem. In this paper, in order
to make up for the deficiency, mutation operation is first
introduced into the original GSO algorithm to preserve its
diversity and enhance its memory ability. Then, based on iner-
tia weight technique [35] glowworm individual’s movement
step is adjusted to avoid premature convergence and improve
optimization accuracy.

This paper is organized as follows. Firstly, section 2
describes composition of target detection and tracking sys-
tem. Section 3 introduces the original GSO algorithm and the
improved GSO algorithms which include GSOM algorithm
and GSOMLDW algorithm. Multi-target detection frame-
work based on GSOM algorithm and target servo tracking
framework based on GSOMLDW algorithm are described
in section 4. Then, analysis of simulation and experimen-
tal results is shown in section 5. Specifically, effective-
ness verification of GSOM algorithm and its application in
hyper-parameter training for multi-target detection network
is shown in section 5.1. Section 5.2 provides effectiveness
verification of GSOMLDW algorithm and its application in
servo system identification and sensor drift error compensa-
tion. Finally, section 6 concludes the work in the paper.

II. COMPOSITION OF TARGET DETECTION
AND TRACKING SYSTEM
As shown in Fig.1, the entire low-altitude defense system
can be divided into three parts, i.e., a multi-target detec-
tion module based on image processing, a target servo
tracking module equipped with a photoelectric turntable,
and a mobile vehicle central control system. Among them,
image processing based multi-target detection module is
mainly composed of a visible light sensor and a GPS sen-
sor. Internal measurement sensor, raster position sensor and
motor drivers form the servo tracking module. Additionally,
the vehicle-mounted central control system is mainly respon-
sible for upper-layer decision-making processing, and it uses
wireless communication equipment to exchange informa-
tion with vehicle-mounted embedded systems. Furthermore,
the vehicle-mounted embedded system contributes to design-
ing the underlying algorithms, which comprises of vision
module controller, rough ring U-frame controller, fast mirror
controller, transmission system controller and drive system
controller.

III. DESCRIPTION OF THE ORIGINAL GSO ALGORITHM,
THE PROPOSED GSOM ALGORITHM
AND GSOMLDW ALGORITHM
A. GLOWWORM SWARM OPTIMIZATION
(GSO) ALGORITHM
In GSO algorithm [17], [18], each glowworm individual has
its own perceptual radius which determines its search range.
After many iterations, most of glowworms cluster at certain
points. These points represent the locally or globally optimal
solutions of the considered objective functions. The whole
principle is composed of three phases and is described as
follows:

1) FLUORESCEIN UPDATE PHASE
At the beginning, each glowworm’s value of fluorescein
is equal. However, the fluorescein volatilizes over time.
In order to simulate the characteristic, at every iteration each
glowworm’s fluorescein value is changed according to the
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FIGURE 1. The composition of target detection and tracking system.

following equation.

gi(t) = (1− d)gi(t − 1)+ α × f (pi(t)) (1)

In the above equation, gi(t) represents the ith glowworm’s
fluorescein level at the tth iteration, pi(t) is the ith glow-
worm’s location and f (pi(t)) is the objective function
value of the ith glowworm at the tth iteration. Additionally,
d(0 < d < 1) and α represent decay constant and fluorescein
enhancement constant, respectively.

2) MOVEMENT PHASE
Each individual i needs to select a better individual jwithin its
sensor radius, and selection probabilistic is depicted as below:

Gij(t) =
gj(t)− gi(t)∑

kεLi(t) gk (t)− gi(t)
(2)

where gi(t) represents the fluorescein value of the
ith glowworm individual at the tth iteration. gj(t) represents
the fluorescein value of the jth glowworm individual at the
tth iteration. Li(t) represents a set of individuals with larger
fluorescein value than glowworm individual i within its
perceived radius at the tth iteration. K is the K th glowworm
individual in the L set.
The detail of Li(t) is shown in the following equation:
Li(t) = {j : ‖pj(t)− pi(t)‖ < r id (t); gi(t) < gj(t)} (3)

It behaves numbers of the ith glowworm’s neighbors
within its decision radius at the tth iteration. In the equa-
tion, ‖pj(t)− pi(t)‖ is euclidian distance between glowworm
i and glowworm j, and r id (t) is the ith glowworm’s deci-
sion radius at the tth iteration. Additionally, gi(t) and gj(t)
are the ith and the jth glowworm’s fluorescein level at the
tth iteration. According to Eq.(2), glowworm i will move to
the next position:,

pi(t + 1) = pi(t)+ s× (
pj(t)− pi(t)
‖pj(t)− pi(t)‖

) (4)

where s is movement step.

3) LOCAL-DECISION RANGE UPDATE PHASE
Each glowworm i has its own dynamic decision domain:

r id (t + 1) = min{rs,max{0, r id (t)+ β(lt − |Li(t)|)}} (5)

In the above equation, r id (t) satisfies 0 < r id < rs. rs is
its sensor radius, β is neighbor-domain’s change rate and lt is
threshold of neighbor numbers.

B. GLOWWORM SWARM OPTIMIZATION
MUTATION (GSOM) ALGORITHM
GSO algorithm has powerful local search ability and it is
often utilized to solve multi-modal optimization problems.
However, each individual’s movement depends on better indi-
viduals’ existence within its perception range. If there is no
outstanding ones, the individual will move nowhere. Thus,
it may lead to low convergence rate and low peak detection
rate when dealing with multi-modal optimization problems.
That means it may miss many other locally extreme points.

The part of work introduces mutation operation [17] into
GSO algorithm.When a glowworm steps into a trap and there
are no better individuals within its perception range, a new
individual will be produced according to mutation operation
as depicted below:

pi(t + 1) = pi(t)+ s1× (
Globalbest − pi(t)
‖Globalbest − pi(t)‖

)

+ s2× (
Singlebest − pi(t)
‖Singlebest − pi(t)‖

) (6)

where ‘‘Globalbest’’ behaves the best solution ever found
by all the glowworms. ‘‘Singlebest’’ behaves the best solu-
tion ever found by the currently considered glowworm i.
s1 and s2 are both movement steps.

Thus, when the new individual is better, it will replace the
old one. From the above equation, it can be easily seen that
the behavior can make full use of all the glowworms’ search
history to locate local and global solutions.
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C. GLOWWORM SWARM OPTIMIZATION MUTATION
LINEARLY DECREASING WEIGHT
(GSOMLDW) ALGORITHM
During optimization process, each glowworm finds a better
neighbor within its perception range and moves close to
it with a fixed movement step. With increase of iteration
number, the distances between individuals and peaks become
smaller and smaller. If the fixed step is larger than distances
between individuals and peaks, individuals will move to the
other side of a peak. Thus, a shock phenomenon occurs and
individuals fail to reach the optimal solutions eventually.
Under extreme conditions, when fluorescent values of all the
individuals are the same, the algorithm cannot converge to
peaks much more likely.

Here, on the basis of GSOM algorithm, we introduces
inertia weight factor into position update formulas of individ-
uals to overcome the above-mentioned disadvantage. Inertia
weight [35] is described in the following equation:

ω(t) =
tmax − t
tmax

(ωmax − ωmin)+ ωmin (7)

where t behaves current iteration number and ω is inertia
weight.

At the moment, each glowworm can update its position
according to the following formula:

pi(t + 1) = ω(t)× pi(t)+ s× (
pj(t)− pi(t)
‖pj(t)− pi(t)‖

) (8)

where ω(t) changes according to Eq.(7).
With technique of linearly decreasing inertia weight,

movement step is shortened as iteration increases, which is
beneficial to fully balance exploitation ability and exploration
ability of GSO algorithm. The adaptive and variable step size
can improve the algorithm’s convergence speed, enhance its
robustness and improve its convergence precision.

In the following part we will provide a simple proof
about the global convergency of the proposed GSOMLDW
algorithm:

Case1: g[pi(t + 1)] ≤ g[pi(t)] is met, where g is the fitness
function.

Case2: if ∀D ∈ S, there is M (D) > 0 and
∏
∞

k=0(1 −
Pk (D)) = 0, where pi(t + 1) and pi(t) are glowworm i’s
positions at the (t + 1)th and tth respectively, D is the search
domain,M (D) is Lebesgue measure of D, Pk (D) is probabil-
ity measure of the kth iterative solution.

Theorem: If both of the above two cases are met, E[pi] is
guaranteed to converge to the position with the best fitness,
where E represents the finally expected value.

Proof: For case one, as the reason that GSOM algorithm
owns mutation operator, the new solution can replace the old
solution only when it is better than the old one. That means
case one must always be met.

According to the location update equation, the following
equation can be easily deduced:

pi(t + 1) = w(t)× pi(t)+ s×
pj(t)− pi(t)

L
(9)

where L = ‖pj(t)− pi(t)‖.

Let SL = φ, accordingly,

pi(t + 1) = [w(t)− φ]× pi(t)+ φ × pj(t) (10)

Thus,

E[pi(t + 1)]− [w(t)− φ]× [pi(t)] = ϑ (11)

where ϑ = φ × pj(t).
If position expectation of each glowworm is calculated,

the following equation can be easily obtained:

m2
− [w(t)− φ]× m+ ξ = 0 (12)

where m = E[pi(t + 1)].
Therefore, the glowworms’ position convergence problem

can be transformed into an second-order equation problem.

As long as |w(t)−φ±
√

(w(t)−φ)2−4ϑ
2 | < 1 is satisfied, position

trajectories of glowworms can be expected to converge to an
optimal location finally.

Let ζ ti is the solution support set when glowworm i
searches at the tth iteration. Therefore, when a better solu-
tion cannot be produced, the algorithm generates a random
solution with the proposed method. That will make ζ ti = P
real and lead to

⋃N
i=1 ζ

t
i ⊇ P finally. For further analysis,

∀D ∈ S, 0 <
∑N

i=1 pk (D) ≤ 1 and
∏
∞

k=0(1 − pk (D)) −→
limk−→∞(1 − 0 <

∑N
i=1 pk (D) ≤ 1)k = 0 can be deduced.

At this time, case 2 is met. The conclusion that glowworms
will finally converge to the optimal position has been proofed
so far.

IV. MULTI-TARGET DETECTION AND TRACKING
FRAMEWORK BASED ON GSOM AND
GSOMLDW ALGORITHMS
On one hand, when the infrared sensor detects multiple tar-
gets in space, the targets’ characteristic information can be
obtained through signal processing and related algorithms.
In order to identify targets in real time and reduce the false
alarm rate, it is necessary to collect targets’ off-line fea-
ture information, establish a target detection network and
train the network based on the proposed GSOM algorithm.
Specifically, after initializing GSOM’s parameters, establish-
ing fitness function, updating individuals’ fluorescein and
performing mutation operation, the deep network model is
trained and the best model is obtained.

On the other hand, as high-frequency noise is mostly white
noise, it is easier to remove. However, the low-frequency
noise involved in the speed signal is random and uneven, and
its energy is mainly concentrated in the low-frequency band.
Therefore, conventional band-pass filters perform poorly
and a low-frequency drift error compensation model needs
to be established. In this paper the proposed GSOMLDW
algorithm is used to identify the model’s parameters.
As Fig.2 shows, firstly it is necessary to perform frequency
sweep processing on the photoelectric turntable to obtain
parameters of the servo model. Then, gyroscope’s data in
different states is collected and preliminary low-pass fil-
tering is performed. After that, GSOMLDW algorithm is
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FIGURE 2. The framework for multi-target detection and tracking based on GSOM and GSOMLDW algorithms.

performed, during which dynamic inertia weight is used
to adjust the moving step size in time so as to achieving
a high-precision identification model for gyro error com-
pensation. Finally, the steady-state error of the speed loop

can be obtained and the target tracking accuracy can be
expected.

At last, according to the upper-layer decision-making strat-
egy, the target tracking priority is determined. Immediately,
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off-target amount of the selected target is converted into
the azimuth error and elevation error. Then, the turntable is
controlled to continuously point and track the target until the
target detection accuracy meets the requirements.

V. ANALYSIS OF SIMULATION AND
EXPERIMENTAL RESULTS
A. EFFECTIVENESS VERIFICATION OF GSOM ALGORITHM
AND ITS APPLICATION IN MULTI-TARGET DETECTION
1) EFFECTIVENESS VERIFICATION OF GSOM ALGORITHM
In order to test GSOM algorithm’s multi-polar location abil-
ity, this section utilizes four multi-modal benchmark func-
tions. Those functions have been shown in table 1.

TABLE 1. Multi-modal benchmark functions.

As depicted in literature [36], ff1 contains four optimums
which are located at (3.0, 2.0), (−3.87,−3.28), (3.58,−1.85)
and (−2.81, 3.13), respectively. ff2 which is ever used as a
benchmark function in literature [9], [10] owns four opti-
mums totally. ff3 owns 778 unequal maxima [37]. ff4 has
36 unevenly spaced but similar optimums. For more details
regarding to those functions, please refer to literature [37].

When optimizing the above-mentioned functions, swarm
population is set to be 500. For different functions, search
domain, perception radius rs and decision radius ro are dif-
ferent. When the maximal iteration number is set to be 70,
optimization results for ff1, ff2, ff3 and ff4 are presented
in Fig.3 and Fig.4, respectively. a and b in Fig.3 exhibit
glowworms’ position distribution for function ff1 with GSO
algorithm and GSOM algorithm. c and d in Fig.4 exhibit
glowworms’ position distribution for function ff2 with GSO
algorithm and GSOM algorithm. a and b in Fig.3 exhibit
glowworms’ position distribution for function ff3 with GSO
algorithm and GSOM algorithm. c and d in Fig.4 exhibit
glowworms’ position distribution for function ff4 with GSO
algorithm and GSOM algorithm. Additionally, each red star
represents one glowworm’s position.

Optimization results illustrate that both GSOM and GSO
algorithm can locate the four optimal points of function ff1.
However, optimization results for the other three multi-modal
functions fully illustrate that the improved GSOM algorithm
is more superior than the original GSO algorithm in solving
multi-modal problems.

2) GSOM ALGORITHM FOR MULTI-TARGET DETECTION
NETWORK TRAINING
For detection of multiple UAV targets in the air, the cur-
rent method is to achieve the best combination of hyper-
parameters for the detection network model. This makes

FIGURE 3. Glowworms’ positions distribution for ff1 and ff2.

the network detect multiple UAV targets quickly and com-
pletely, facilitating subsequent targeting and tracking. Essen-
tially it is a multi-mode function optimization problem.
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FIGURE 4. Glowworms’ positions distribution for ff3 and ff4.

In order to simply and intuitively illustrate the superiority of
the GSOM algorithm in solving multi-target detection prob-
lems, a complex multi-mode function is used here instead

of the detection network. The function is shown in Eq.(13).
There are 25 maxima in the function and among them only
one is the global maxima.

f = 500−
1

0.002+
∑24

i=0
1

1+i+(x1−a(i))6+(x2−b(i))6

,

a(i) = 16× ((imod5)− 2), b(i) = 16× (b(i/5)c − 2) (13)

Optimization results of GSOM algorithm and GSO algo-
rithm at different iterations have been shown in Fig.5 and
Fig.6. In Fig.5, a, b, c and d exhibit glowworms’ position
distribution at iteration 1, 90, 100 and 200 with GSOM
algorithm, respectively. In the Fig.6, a, b, c and d exhibit
glowworms’ position distribution at iteration 1, 90, 100 and
200 with GSO algorithm, respectively. As can be seen from
Fig.5, there are 25 optimal positions found finally by GSOM
algorithmwhile the original GSO algorithm only finds 6 opti-
mal points.

From above discussion, we can deduce that the improved
GSOM algorithm is superior in solving multi-modal opti-
mization problems and it strongly indicates that GSOM
algorithm has a better application prospect in the field
of multi-target detection. Specifically, with the proposed
GSOMLDW algorithm many excellent hyper-parameter
combinations for multi-target detection network can be
obtained. That means an optimal model can be selected as
the final network detectionmodel among the obtainedmodels
according to our preference for other indicators such as cal-
culation time cost, target detection accuracy, target detection
position accuracy, model sensitivity to detection background,
and model sensitivity to light interference. For example,
among a bunch of effective models with low calculation time
cost, a model with a higher accuracy rate may be selected
as the final target detection network model for detecting
multi-UAVs. Therefore, compared with GSO algorithm, bet-
ter multi-UAVs detection results can be obtained with help of
the proposed GSOM algorithm.

B. EFFECTIVENESS VERIFICATION OF GSOMLDW
ALGORITHM AND ITS APPLICATION IN TARGET
TRACKING SERVO SYSTEM
1) EFFECTIVENESS VERIFICATION OF
GSOMLDW ALGORITHM
Ten functions have been given in table 2 to test GSOMLDW
algorithm’s performance.

Meanwhile, search domain and minimum value corre-
sponding to each function have also been listed in the same
table. Among the ten functions, several functions have a
number of different locally optimal points such as f8. The
locally optimal points constitute masses of traps. Under
the circumstance, it is usually difficult for the primitive
GSO algorithm to avoid premature and achieve a globally
optimal value. Experimental results have been compared
among GSO, LWGSO algorithm [38] and LWGSODE algo-
rithm [38]. For more detailed information about LWGSO
(linearly weight glowworm swarm optimization) algorithm

VOLUME 8, 2020 119615



X. Xu et al.: Improved GSO Algorithms and Their Applications in Multi-Target Detection and Tracking Field

FIGURE 5. Glowworms’ positions distribution for GSOM algorithm.

and LWGSODE (linearly weight glowworm swarm opti-
mization differential evolution) algorithm, please refer to
literature [38].

FIGURE 6. Glowworms’ positions distribution for GSO algorithm.

In the study, each function is in 20 dimensions and each
function’s fitness is its own value. Furthermore, all the func-
tions’ optimization experiments are conducted under the
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TABLE 2. High-dimensional benchmark functions.

same condition, e.g. they all are conducted with the same
MATLAB 2009 software and a windows 7 system.

Additionally, each experiment’s swarm size is 40 and
maximum iteration is set to be 1000. For GSO algorithm,
the position update of each glowworm is based on Eq.(4)
while for LWGSO, LWGSODE and GSOMLDW algorithms
ω is adjusted according to Eq.(8). Especially, for GSOMLDW
algorithm s1 is set to be 0.001 and s2 is set to be 0.0001.

Statistical results of 30 independent experiments are pre-
sented in table 3 and table 4.

In the experiment, each function itself is its own objective
function. Our aim is to locate the point which makes the func-
tion value the smallest. Thus, a smaller optimization result
means a better solution, and vice versa. Best solution, worst
solution, mean solution, average standard deviation as well
as consumed time over 30 runs for each algorithm have been
given in the table 3 and table 4. From the numerical optimiza-
tion results, it can be easily observed that GSOMLDW algo-
rithm greatly outperforms GSO, LWGSO and LWGSODE
algorithms with better optimization results. Meanwhile, stan-
dard deviations indicate the improved GSOMLDWalgorithm
has stronger robustness with lower or comparative standard
deviations than GSO, LWGSO and LWGSODE algorithms.

Besides, each function’s mobility of average fitness eval-
uation has been shown in Fig.7-Fig.9. As table 3 and
table 4 illustrate, from the figures it can be obviously seen
that experimental results are significantly different in aspects
of average convergence speed and average convergence pre-
cision among the four algorithms.

As a short conclusion, although GSOMLDW needs a litter
more time than GSO and LWGSO algorithm, it is faster
than LWGSODE algorithm. Furthermore, it has faster con-
vergence speed, higher convergence accuracy and stronger
robustness when compared with other algorithms. The main
reason exists in that the glowworm swarm diversity is pre-
served through mutation operation and moving step is adap-
tive based on dynamic inertia weight.

2) GSOMLDW ALGORITHM FOR SERVO
SYSTEM IDENTIFICATION
In order to improve target tracking accuracy, the proposed
GSOMLDW algorithm is firstly used to identify servo

TABLE 3. The performance comparison of GSO, LWGSO, LWGSODE and
GSOMLDW algorithms for ten benchmark functions. In the table ‘‘Best ′′ ,
‘‘Worst ′′ , and ‘‘Mean′′ indicate the best value, the worst value, and the
mean value over 30 independent experimental runs.

system. In the part the GSOMLDW algorithm is used to
identify a SISO system and a MISO system. In essential,
identification is to search for the best non-linear combination
of neural network’s parameters so that the objective function
value can reach a minimum. Consequently, the identification
problem is actually a uni-modal optimization problem.

In detail, using neural networks to identify a nonlinear
system is to approximate the systemwith the strong nonlinear
mapping ability of the neural network. A neural network’s
feed-forward or regression structure, the neuron numbers in
its input layer, hidden layer or output layer, its activation
function types in the hidden layer as well as values of weights
and biases of the neural network determine its nonlinear char-
acteristics together. Essentially, this is a combinatorial opti-
mization problem with constraints. Fortunately, the swarm
intelligent algorithms can be used to solve the problem.
Specifically, each glowworm individual’s position is consid-
ered as a potential solution in the multidimensional solution
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TABLE 4. The performance comparison of GSO, LWGSO, LWGSODE and
GSOMLDW algorithms for ten benchmark functions. In the table
‘‘Std .dev .′′ indicates the standard deviation value over 30 independent
experimental runs. ‘‘times(s)′′ denotes time cost by the corresponding
function and algorithm.

space. Here, each individual represents a combination of neu-
ral network’s weights and thresholds. Through establishing
the objective function, after several iterations glowworms
gather at the optimal solution finally. Thus, the optimal com-
bination of neural network parameters is achieved. Under
this situation the specified neural network with the optimized
parameters can approximate the identified system with the
smallest mean square error.

Specifically, objective function in this paper is sum of
mean square error, and variables are weights and thresholds
of neural network. It is supposed that there is a three-layer
feed-forward neural network with M inputs, N hidden layers,
and K output units. The number of variables that need to be
identified is (M + 1)N + (N + 1)K .
The fitness function is depicted as follows:

g =
1
Q
6
Q
i=16

K
q=1(1/2)(Pi − P

′
i)
2 (14)

FIGURE 7. Average mobility of fitness comparison for f 1− f 4.

where Q is the number of samples, Pi is the target output and
P′i is the output inferred from neural network.

In the glowworms’ population, location of each glow-
worm individual can be expressed using those variables.
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FIGURE 8. Average mobility of fitness comparison for f 5− f 8.

Through the whole searching process, glowworm individuals
will eventually gather at the position where the fitness func-
tion reaches the extreme value. Finally the network can be
obtained, which can approximate the identified model.

FIGURE 9. Average mobility of fitness comparison for f 9 and f 10.

In the study, except for GSOMLDW algorithm, PSO, GSO
and LWGSO [38] algorithms have also been utilized to iden-
tify systems.

Here, SISO system is a nonlinear function which is
depicted as below:

y = sin(2x)e−2x (15)

In order to identify the system, the population size is set
to be 30. The maximum iteration is set to be 2000. Moving
step s is set to be 0.01. For the GSOMLDW algorithm, except
for the above mentioned parameters, moving step s1 is set to
be 0.02 and moving step s2 is set to be 0.005. The derived
statistical results over 10 times of independent experiments
for the four algorithms have been shown in table 5.

TABLE 5. Training performance comparison for SISO system
identification. In the table, ‘‘Best ′′ , ‘‘Worst ′′ , ‘‘Mean′′ and ‘‘Std .dev .′′

denote the best value, the worst value, the mean value and the standard
deviation among multiple runs, respectively.

From table 5, it can be easily concluded that GSOMLDW is
undoubtedly the best one compared with the other four swarm
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intelligence algorithms. Specifically, it can be clearly seen
from table 4 that the optimal solution obtained during 10 runs
is 8.4e−5. It is the minimum solution obtained among PSO,
GSO, LWGSO, and GSOMLDW algorithms. Furthermore,
the GSOMLDW algorithm is also one of the best perform-
ing algorithms in terms of other items of statistical results,
such as worst solution, mean value, and standard deviation.
Unfortunately, the original GSO algorithm is worse than other
algorithms in terms of worst solution, optimal solution, aver-
age value, and standard deviation items. In addition, the time
of each simulation run has been recorded for 10 independent
simulations. The average running time of each algorithm is
obtained. As shown in the last row of table 5, it can be
clearly seen from the results that the calculation time of the
GSOMLDW algorithm, the GSO algorithm, and the LWGSO
algorithm is equivalent.

Fig.10 shows fluctuation of the fitness function when the
SISO system is identified using the GSOMLDW algorithm.
Here, the squares sum inverse of the difference between the
neural network output and the actual value of the function is
selected as the fitness function during the training process.
As can be seen from this figure, the function drops rapidly
as the number of iterations increases, and it is soon close
to zero. This phenomenon fully demonstrates that the search
efficiency of the algorithm is high.

In Fig.10, figure b provides comparison of the real model
and the best approximation result. The blue line is relation-
ship of the independent variable x and the dependent variable
y for the actual model. The red line is relationship of the
independent variable x and the output of a three-layer neural
network optimized byGSOMLDWalgorithm. It can be easily
seen from the figure that the identified model obtained by the
proposed algorithm can approximate the actual system.

The approximation error is also shown in Fig.10. Figure c
is the error between actual outputs and outputs of identified
model. The figure illustrates that the approximation error is
up to 0.05 and the minimum approximation error is below
0.01. Therefore, effectiveness of the proposed identification
method is fully explained.

Different from identification of a SISO system, identifica-
tion of a MISO system is much more complex. The expres-
sion of the MISO system is written as below:

x(t + 1) =
x(t)x(t − 1)[x(t)+ 2.5]

1+ x2(t)+ x2(t − 1)+ sin( 4π t25 )
(16)

In the identification experiment for MISO system, fifty
pairs of data from t = 0 to t = 50 are used as training
samples. Glowworm swarm size andmaximum iteration is set
30 and 200, respectively. Moving step s is set to be 0.01. For
the GSOMLDW algorithm, except for the above mentioned
parameters, moving step s1 is set to be 0.01 and moving
step s2 is set to be 0.008. In the section, when the neural
network’s structure is the same as 1 × 10 × 1, optimization
results with different intelligence optimization algorithms are
compared in table 6.

FIGURE 10. Experimental results for SISO system identification.

TABLE 6. Training performance comparison for MISO system
identification. In the table, ‘‘Best ′′ , ‘‘Worst ′′ , ‘‘Mean′′ and ‘‘Std .dev .′′

denote the best value, the worst value, the mean value and the standard
deviation among multiple runs, respectively.

It can be clearly seen from table 6 that during 10 inde-
pendent runs, the GSOMLDW algorithm obtains the optimal
solution of 0.0174, the worst value of 0.2450, and the average
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FIGURE 11. Experimental results for MISO system identification.

value of 0.1232. In these three aspects, GSOMLDWperforms
better than the other three methods. In terms of standard
deviation, the results of the GSOMLDW algorithm and the
LWGSO algorithm are comparable, and both of them are
close to 0.05. However, the GSO algorithm performs the
worst, and the result is far worse than the other methods in
all aspects. The LWGSO algorithm is relatively better than
the PSO algorithm, but is slightly worse than GSOMLDW
algorithm. In addition, we recorded the time of each simu-
lation run for 10 independent simulation times and obtained
the average running time of each algorithm, as shown in the
last row of table 6. It can be clearly seen from the results that

FIGURE 12. Experimental results for target tracking.

calculation time of the GSOMLDWalgorithm, the GSO algo-
rithm, and the LWGSO algorithm is equivalent, and the PSO
algorithm runs the longest time. Therefore, table 6 illustrates
GSOMLDW algorithm is obviously the best one among the
four swarm intelligence algorithms.

Fig.11 provides mobility of fitness when using the
GSOMLDW algorithm to identify the MISO system. Here
again, the inverse square sum of difference between the neural
network output and the actual value is selected as the training
fitness. As can be seen from the figure, fitness value drops
rapidly from 700. After about 25 iterations, fitness value
is close to zero. This phenomenon fully demonstrates that
search efficiency of the algorithm is high.

In Fig.11, figure b shows the real output and the best
identification result by using GSOMLDW algorithm. As can
be seen from this figure, the red line and the blue line are
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basically coincident. It illustrates that the proposed algorithm
is effective for not only SISO system but also MISO system.
It fully demonstrates applicability of the proposed algorithm.

The approximation error is shown in Fig.11. In Fig.11
figure c is approximation error between the actual outpt
and the output of the neural network model. It can be seen
from the figure that approximation error is up to 0.5 and at
most of time the error is concentrated around 0.3. The result
fully explains the effectiveness of the identification algorithm
proposed in this paper.

3) GSOMLDW ALGORITHM FOR TRACKING
ACCURACY IMPROVEMENT
The closed-loop velocity response of azimuth axis before
and after compensation of gyro error and the corresponding
spectrum curves have been shown in figure 12. It can be
clearly seen from the figure that the steady-state error of
the speed step response after compensation is satisfactory.
From the spectrum analysis curve in figure b, it is easier to
see that the low-frequency energy of the gyro signal after
compensation is significantly reduced, indicating that the
low-frequency error compensation method is significantly
effective. Additionally, position error fluctuation comparison
before and after compensation has been shown in figure c.
It can be easily concluded that without compensation position
error range is within 1500 urad , while the position fluctuation
is almost to zero after compensation.

VI. CONCLUSION
In order to improve target detection rate and tracking accu-
racy, in regard to GSO’s shortcomings of low peak detection
rate and low optimization accuracy, there are two methods
proposed in the paper to improve GSO’s performance. Firstly,
as to GSO’s deficiency of lack of search history memory,
a GSOM algorithm is proposed. When an individual gets into
traps and there are no better neighborhoods, the proposed
GSOM algorithm will produce a new individual according to
the best solution found during search history. Experimental
results of four multi-modal benchmark functions have illus-
trated that the proposed GSOM algorithm can make fully use
of all glowworms’ search histories and locate more optima
than GSO algorithm. Then, based on the proposed GSOM
algorithm, a complex multi-modal function is optimized. The
optimization results show that GSOM algorithm can obtain
more optimal hyper-parameter combinations, which is ben-
eficial for detecting multi-target. Secondly, for the problem
that fixed movement step causes shock phenomenon near
peaks, which may reduce algorithm’s convergence rate and
weaken accuracy of the final optimization result, glowworms’
positions are updated based on dynamic inertia weight.Mean-
while, the proposed GSOMLDW algorithm’s convergency
proof has been provided in the paper. Experiments on opti-
mization of ten classic uni-modal benchmark functions have
been conducted. After that, aiming at improving target servo
tracking accuracy a multi-layer feed-forward network is con-
structed to identify servo systems. Comparison results with

other intelligent algorithms in terms of identification accu-
racy, fastness, robustness and computational complexity have
fully confirmed the proposed GSOMLDW algorithm’s supe-
riority. Importantly, the proposed GSOMLDW algorithm is
used to compensate for the drift error. Final results show that
the position error fluctuation after compensation is almost
zero while before compensation it reaches 1500urad . Conse-
quently, the proposed methods can effectively improve target
detection rate and tracking precision. In future work we will
apply both of the improved algorithms to solve many other
complex mechanical engineering problems.
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