
Received March 10, 2020, accepted April 1, 2020, date of publication April 8, 2020, date of current version April 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2986510

USB Transceiver With a Serial Interface
Engine and FIFO Queue for Efficient
FPGA-to-FPGA Communication
GUO-MING SUNG 1,2, (Member, IEEE), LI-FEN TUNG1, HSIN-KWANG WANG1,3,
AND JHIH-HAO LIN1
1Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
2Research and Development Centre for Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
3Bepro Digital Audio Ltd., Taipei 22180, Taiwan

Corresponding author: Guo-Ming Sung (gmsung@ntut.edu.tw)

This work was supported in part by the Ministry of Science and Technology, Taiwan, under Contract MOST 108-2221-E-027-092, and in
part by the Chip Implementation Center, Taiwan, for Fabricating the Test Chip.

ABSTRACT This paper presents a universal serial bus (USB) transceiver with a serial interface engine (SIE)
and an asynchronous first-in first-out (FIFO) queue for packet transformation and data transmission in
field-programmable gate array (FPGA)-to-FPGA communication. The SIE block receives the data to be
transmitted from the central processing unit of a PC and transfers those data to the universal transceiver
macrocell interface, which handles data serialization and deserialization, bit stuffing, clock recovery,
and clock synchronization. An asynchronous FIFO queue of 2 kilobits is designed to guarantee correct
communication between two FPGA development boards. A parallel-in serial-out block converts parallel
input data into serial data. A product identification (PID) check block determines whether the serial data are
in the USB packet format. The cyclic redundancy check (CRC) checksums, namely CRC5 and CRC16,
are presented with data check statements. After passing through the NRZI decoder, bit-unstuffing, PID
check, and CRC16 blocks, the received serial data are converted into parallel output data by using a serial-in
parallel-out block. The FPGA-to-FPGA communication design operates correctly. An application-specific
integrated circuit (ASIC) of the USB transceiver is implemented using TSMC 0.18-µm CMOS technology.
The gate counts, power consumption, operating frequency, and chip area of the ASIC are 14,547, 2.6742mW,
50 MHz, and 0.7 × 0.67 mm2, respectively, at a supply voltage of 1.8 V and total pin number of 38.

INDEX TERMS Universal serial bus (USB), first-in first-out (FIFO), serial interface engine (SIE),
field-programmable gate array (FPGA), application-specific integrated circuit (ASIC), USB physical layer
(PHY), cyclic redundancy check (CRC), CMOS process.

I. INTRODUCTION
The universal serial bus (USB) interface is an interface
for data transmission over the Ethernet. USB is not only
convenient to use but also transmits data rapidly [1]. The
field-programmable gate array (FPGA) implementation of
a USB transceiver macrocell interface (UTMI) with a
half-speed (HS) or full-speed (FS) transmission rate and USB
2.0 specifications is described in [2]. A vendor can easily
select the transceiver that meets their requirements [2]. In [3],
simple interface protocols, such as USB and RS485, were
used for achieving communication between PCs to develop
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a packet bridge between an Ethernet network and a Syn-
chronous Optical Network (SONET) in a smart sensor sys-
tem. The USB interface is preferred due to its power capacity.
A payment device can be powered from the USB interface to
reduce the overhead size [4]. In [4], an initial implementation
of the USB interface was realized to exclusively present a
protection method and to evaluate the performance of the
interface. Prospective implementation can be realized using
a test platform with an FPGA development board [5].

USB interfaces are generally present in PCs that have
been designed by various companies, such as Intel, Com-
paq, NEC, Digital, Northern, IBM, and Microsoft. The USB
Implementers Forum (USB-IF) is a support organization
responsible for the advancement and adoption of USB tech-
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nology. The mission of the USB-IF is to develop compli-
ant USB products as per USB specifications [6]. A USB
can configure the address and implement the phase to
automatically achieve hot swapping or hot plugging. USB is
convenient for connecting electronic devices to a computer
without stopping or shutting down the system, and it provides
considerable business opportunities. An embedded converter
that converts RS232 to USB is convenient for achieving
the advantages of USB without making major changes to a
system that relies on RS232. A first-in first-out (FIFO) logic
interface was developed to bridge the data rate differences
between the USB and RS232 protocols [7], [8]. That FIFO
logic interface is also a useful guide for implementing other
USB devices.

Studying the implementation of the USB standard with
an FPGA-based development board is crucial. An FPGA-
based development board is used to connect a peripheral
device to a computer through a USB cable. The USB inter-
face comprises two units—the UTMI and parallel interface
engine (PIE) [9]. The UTMI can connect to USB cables
and can be used for time frame synchronization, and serial
data transmission. PIE is responsible for packet construc-
tion or extraction and communication with the peripheral
device. The aforementioned modules were designed using a
finite state machine and implemented using Verilog hardware
description language (HDL), which is synthesized using Xil-
inx ISE tools [10], [11]. However, a low-cost programmable
logic device has a low speed. A fast version of the USB
is always in demand because the communication speed of
the FPGA circuit is rapidly increasing [9]. The plug and
play operation of a peripheral interface is the primary target.
Moreover, FPGA circuits have important application value
for realizing automatic detection by using USB 2.0. The USB
circuit transfers a digital image, which is stored in a FIFO
queue, to a computer for image processing. The FPGA-based
USB interface has high detection efficiency and accuracy in
an aircraft engine blade detection system [12].

A general schematic of the serial interface engine (SIE)
block is displayed in Fig. 1 [13]. The SIE block can be divided
into two types of sub-blocks—the SIE control logic and
endpoint logic sub-blocks. The SIE control logic sub-block
contains USB product identification (PID) logic, address
recognition logic, and other sequencing logic for managing
USB packets and transactions. The endpoint logic sub-block
contains the endpoint number recognition, FIFO, and FIFO

FIGURE 1. General schematic of the SIE block.

control logic. The SIE block receives data from the central
processing unit of a PC and sends the transferred data to the
UTMI [13], [14]. TheUTMI block handles the low-level USB
protocol and data signing. The UTMI block performs tasks
such as data serialization, data deserialization, bit stuffing,
clock recovery, and clock synchronization. The primary task
of the UTMI is to transfer data from a USB to another USB
compatible with the physical logic, such as a differential
signal—D+ and D−. The SIE module can be developed
using peripheral vendors or purchased from intellectual prop-
erty (IP) vendors. The standardization of the UTMI allows
compatible SIE HDL to be integrated into an ASIC with a
macrocell.

In this study, a USB transceiver ASIC was implemented
with an SIE and a FIFO queue by using TSMC 0.18-µm
CMOS technology. The integration technology of the pro-
posed ASIC can shorten the delay times and improve the data
transportation speed. Simulations and measurements were
performed to verify the correctness and flexibility of the pro-
posed USB transceiver. The aim of this study was to guaran-
tee correct communication between two FPGA development
boards. Section II describes the circuit design of the USB
transceiver with an SIE and a FIFO queue. The simulation
results and FPGA verification are presented in Section III,
and the conclusion is presented in Section IV.

II. CIRCUIT DESIGN OF A USB TRANSCEIVER
WITH AN SIE AND A FIFO QUEUE
Figure 2 displays the system architecture of aUSB transceiver
with an SIE and a FIFO queue for efficient FPGA-to-FPGA
communication. The transceiver comprises two Altera FPGA
development boards (DE2-70) with a general purpose input
or output (GPIO) port connection, two data read-only mem-
ory (ROM) modules, and two external USB port physical
layers (PHYs) [11]. One FPGA development board is used

FIGURE 2. System architecture of the USB transceiver with an SIE and a
FIFO queue for efficient FPGA-to-FPGA communication.
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as the transmitter, and the other is used as the receiver. The
SIE deals with the data transmitted between the ROM and
the PHY and is programmed in Verilog HDL. The FPGA
development board is used to verify the proposed function
through a USB blaster, which is connected to a PC. Thus,
data transmission can be completed between a transmitter
and a receiver after the proposed function is verified. The
transmitter reformats the received data into a serial code by
using the SIE block and sends the code to the following
receiver via a USB cable. The proposed SIE block should
guarantee the correctness of data transportation through a
USB PHY.

FIGURE 3. System topology of the USB transceiver with an SIE block and
a FIFO queue.

Figure 3 presents the system topology of the USB
transceiver with an SIE block and a FIFO queue. In the first
FPGA board (Transmitter), the input data are stored in a flash
memory and then sent to an asynchronous FIFO queue. The
SIE block, which includes the SIE control logic and UTMI,
transforms the input data into a serial packet according to
the USB standard and sends it to the next FPGA board
through a USB cable. The second FPGA board (receiver)
receives the serial code packet from the USB cable and
reassembles the code into the desired data format by using the
proposed SIE block. After passing through the FIFO queue,
the received data can be displayed on a seven-segmented
display on the second FPGA board. If the output data, which
are displayed on the second FPGA board, are the same as the
input data, which are stored in the flash memory on the first
FPGA board, the proposed transceiver operates accurately.
If not, the source code must be rewritten in Verilog HDL
until the designed function performs correctly. The regular
operating frequency of the FIFO queue was 50 MHz; how-
ever, the frequency of the FIFO queue for the USB PHY
was 26 MHz, which was realized using the CY7C68003
commercial chip (Cypress Semiconductor Corporation, San
Jose, CA, USA).

Figure 4 illustrates the operating frequencies in the relative
blocks of the USB transceiver. The FPGA board provides an
operating frequency of 50 MHz, which is used in the flash
memory (ROM) and FIFO module. By passing through the
phase-locked loop (PLL) IP and frequency divider circuit,

FIGURE 4. Operating frequencies in the relative blocks of the USB
transceiver.

FIGURE 5. Schematic of the ROM data module.

an operating frequency of 26 MHz can be obtained. The
down-converted clock frequency of 26 MHz is used in the
SIE control logic, UTMI (USB PHY), and FIFO module.
The asynchronous FIFO module accepts both the operating
frequencies (i.e., 50 and 26 MHz). The flash memory sends
the received data to the FIFO module at 50 MHz, and the
FIFOmodule transmits the stored data to the SIE control logic
at 26 MHz.

A. ROM DATA MODULE
As depicted in Fig. 2, the ROM data module provides the
address to store the transmitted data. Figure 5 displays the
schematic of the ROM data module. This module includes
the En_data, address counter, and ROM IP submodules. The
dominant function of the ROM IP submodule is to store
the transmitted data in amemory initialization file (MIF). The
address counter submodule provides an address control signal
to specify the address of the ROMdata. The En_data submod-
ule enables data transmission and counts the ROM operation
times in the address counter submodule. A simulation is
conducted to guarantee that the ROM data module operates
normally. As displayed in Fig. 5, the data points 10000000,
00101101, and 01111000 can be displayed correctly in the
MIF file with the addresses+0,+1, and+2 in the simulation
results, respectively.
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FIGURE 6. Schematic of the asynchronous FIFO module.

B. ASYNCHRONOUS FIFO MODULE
Figure 6 displays the schematic of the asynchronous FIFO
module used in this study. An asynchronous FIFO module
was adopted in this study because the read clock rd_clk is
different from the write clock wr_clk. The proposed asyn-
chronous FIFO module includes three submodules. The mid-
dle submodule is a dual-port RAM for accessing the write
data (wr_data) and write address (wr_addr). The left submod-
ule controls the write address (wr_addr) by using the write
enable signal (wr_en) and read address (rd_addr). The right
submodule is a read data block, which primarily controls the
read enable signal (rd_en), read address (rd_addr), and null
signal (empty). The full signal (full) is obtained in the left
submodule by comparing the read address (rd_addr), whereas
the null signal (empty) is obtained in the right submodule by
comparing the write address (wr_addr).

C. SIE MODULE
The system architecture of the proposed SIE module is illus-
trated in Fig. 7. The input data are input to the transmitter
end. Packet format analysis and packet classification should
be conducted in advance for the incoming data. After the
aforementioned processing is completed, the input data are
sent to the receiver end. The receiver end is responsible for
verifying whether the received data are correct. If the received

FIGURE 7. System architecture of the proposed SIE module.

FIGURE 8. State diagram of the PID check block.

data are correct, the data are sent to the UTMI (PHY). If the
data are incorrect, the received data are disposed. As dis-
played in Fig. 7, the proposed SIE module can be divided into
many blocks: the data control, parallel-in serial-out (PISO,
PID check, cyclic redundancy check 5 (CRC5), CRC16, bit-
stuffing, NRZI encoder, NRZI decoder, bit-unstuffing, and
serial-in parallel-out (SIPO) blocks [15].

D. PID CHECK BLOCK WITH THE PISO FUNCTION
The data control block controls the data processing function
by providing the enable signal to blocks such as the bit-
stuffing, NRZI encoder, bit-unstuffing, and SIPO blocks.
If these blocks do not receive the enable signal, they would
be in an idle state without action. In the PISO block, parallel
communication is transformed into serial communication.
Initially, the input parallel datum is stored in a register. The
stored datum is sent to the next block (PID check) bit by bit
until the register is empty. The least significant bit (LSB)
is transmitted first. In general, the PISO block is always
integrated with the PID check block.

Figure 8 presents the state diagram of the PID check
block. If the input datum is 8’b1000_0000, an 8-bit delay
is required to complete the PISO function. Then, the PID
check is initiated with an enable signal En_PID that has a
‘‘high’’ value (1). After the PID check is completed, the
signal En_PID becomes low (0) and the PID check block is
idle. Figure 9 illustrates the functional flowchart of the PID
check block. First, the 8-bit input data (Data_in) are stored
in a register with the symbol Data_out[7:0]. If the enable
signal of the PID check block is high (i.e., En_PID = 1),
the high half-byte (i.e., Data_out[7:4]) is compared with the
1’s complementary of low half-byte (i.e., ∼Data_out[3:0]).
If the high and low half-bytes are the same, packet analysis
and classification are conducted using the lookup table, which
is established in advance. If the two half-bytes are not the
same, the error signal is set to high (Error = 1) and the input
data are discarded.

E. CRC5 AND CRC16 BLOCKS
The CRC was proposed by Peterson and Brown [16]. The
CRC calculation is only applied to a predetermined serial
data field. In general, CRC5 is used to check the token
field, whereas CRC16 is used to check the input data field.
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FIGURE 9. Functional flowchart of the PID check block.

CRC5 calculation is applied only to all the USB address and
endpoint data fields except the SYNC, USB command, and
CRC data fields. A hash function is used to reduce the data
size by mapping data with an arbitrary size to data with a
fixed size. The hash value, which is returned by the hash
function, is a word string that comprises random characters
and numbers. Figure 10 displays the general structure of the
CRC block, where the polynomial functions of the CRC5 and
CRC16 blocks are x5 + x2 + 1 and x16 + x15 + x2 + 1,
respectively. The check procedure is completed bit by bit.
First, an exclusive OR (XOR) calculation is conducted using
the input data (Data_in) and the most significant bit (MSB),
which is 0 for CRC5 [6] and 1 for CRC16 [16] in the initial
state. Second, 5 and 16 D-type flip-flops (DFFs) are used
to generate the output data CRC5[4:0] and CRC16[15:0],
respectively, by delaying 5 and 16 clocks, respectively.

F. BIT-STUFFING AND BIT-UNSTUFFING BLOCKS
A long series of no-transition bits can be difficult for a
receiver to count accurately; thus, some methods are gen-
erally used for forcing a transition at reasonable intervals.
A USB uses bit stuffing by inserting an additional bit of
‘‘0’’ after six consecutive bits of ‘‘1.’’ The bit-stuffing block
is designed to block input data by holding the data at a
high-level state for a long time. The highest value of 6-bit

FIGURE 10. General structure of the CRC block: (a) CRC5: x5+ x2 + 1
block and (b) CRC16: x16+ x15+ x2 + 1 block.

FIGURE 11. Functional flowchart of the bit-stuffing block.

data (111111) causes clock disorder in a transceiver. The
bit-stuffing block in this study is designed to overcome this
fault. Figure 11 presents the functional flowchart of the
bit-stuffing block used in this study. First, the reset signal is
set to zero, and the initial state is status 0, which is numbered
as ‘‘01.’’ In this initial state, the counter value (cnt) is zero,
and the enable signal (en_ok) is zero. Second, if the input
data (data_in) are high (1), the output data (data_out) are
the same as the input data and the counter is incremented.
Because the counter value is equal to 6, the state is changed
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FIGURE 12. Functional flowchart of the bit-unstuffing block with an idle
detection.

to status 1, which is numbered as ‘‘10.’’ Then, the enable
signal is changed to high (1) and the output data are clear
to empty (0). In other words, the output data are changed
to low (0) after six consecutive bits of ‘‘1’’ (111111). The
aforementioned procedure is continued at status 1 but is
terminated at status 0.

The bit-unstuffing block is designed to remove the addi-
tional zero bit (0), which is added in the previous bit-stuffing
block to resolve the clock disorder. Figure 12 displays
the functional flowchart of the bit-unstuffing block. First,
the reset signal is set to zero (reset= 0), and the initial state is
‘‘Setup.’’ Second, the count value is zero (count = 0), count
value of the idle state is zero (Idle_cnt = 0), and valid bit
is high (valid = 1). Third, if the input data (data_in) are
high, the count and idle values are incremented. Because the
count value is equal to 6, the state is changed to ‘‘Mark.’’
When the valid bit is marked as 0, the bit is considered to
be invalid, and the count value is set to 0. Because the count
value is less than six, the state is changed to ‘‘Determine,’’

and the bit is valid. Conversely, the input data are discarded
when the input data are zero (data_in = 0) and the bit is
invalid. If the input data are zero and the bit is valid, the count
and idle values are cleared. A state diagram for idle time
detection is displayed in Fig. 13. The state diagram is used
to avoid long-term high levels, such as 3 ms. If the clock
frequency is 50 MHz, 150,000 clock pulses are completed
in 3 ms. Because the number of idle clock pulses is more than
150,000, a reset signal is set to zero (rest = 0) and the initial
state is ‘‘Setup.’’ The bit-unstuffing function is then restarted.
The bit-stuffing function causes a variable data rate because
it requires a marginally longer time to send a long string of
‘‘1’’ bits than to send a long string of ‘‘0’’ bits.

G. NRZI ENCODER AND DECODER BLOCKS
NRZI is a method of mapping a binary signal to a physical
signal for transmission [17]. A logical 1 is transmitted for
a transition, and a logical 0 is transmitted for no transition.
In the NRZI encoder, the output signal is transmitted if the
input signal (data_in) is logical 0. Conversely, if the input
signal is logical 1, no transition occurs in the output signal. In
the NRZI decoder, the output signal is logical 0 when a tran-
sition occurs in the input signal. Conversely, the output signal
is logical 1 when no transition occurs in the input signal. The
DFF circuit can be used to overcome the problems associated
with glitch waves in the NRZI encoder and decoder blocks.

III. SIMULATION RESULTS AND FPGA VERIFICATION
As displayed in Fig. 7, the PISO block is integrated with the
PID check block. If the incoming data point is 8’b1000_0000
(SYNC field), a PID check is initiated to check the packet
type by using the control signal En_PID. When En_PID
returns to the low level (0), the PID check block is idle.
In other words, the SIE module enters the suspended state
whenever the received data are continuously at a high level.
In the suspended state, the valid data control line becomes
low (0), and the received data are unchanged. When the full
flag appears and the reset signal turns high (1), the SIE mod-
ule restarts and continues the data processing steps. When the
transmitted data are valid, the SIE module operates in the idle
state without receiving the next input data point. The PISO
block converts the parallel input data into serial data, and
the PID check block determines whether the serial data are
in accordance with the USB packet format. If the serial
data are certificate packets (token), the CRC5 check is con-
ducted; otherwise, the CRC16 checksum is presentedwith the
information packet (data). Thus, data are passed through the
bit-stuffing and NRZI encoder blocks after passing through
the multiplexer [18]. After the aforementioned checks are
completed, the serial data are sent to the receiver end. The
received data are passed through the NRZI decoder, bit-
unstuffing, PID check, and CRC16 blocks. Then, the SIPO
block converts the received serial data into parallel data and
outputs the data (Data_out).

The data transmission function from a computer to
the FPGA development board should be confirmed.
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FIGURE 13. State diagram of the idle detection. Because the idle time is
larger than 3 ms, a reset signal is required to restart the bit-unstuffing
function.

FIGURE 14. Transmitted data of the USB blaster.

A test number, 8, is sent to the FPGAboard from the computer
through a USB blaster. Figure 14 displays the data trans-
mission function of the USB blaster. The number 38, which
corresponds to the American Standard Code for Information
Interchange (ASCII) code of 8, is displayed on the FPGA
board. An LED array displays the same ASCII code with the
binary code ‘‘00111000,’’ which corresponds to the number
38. Both the seven-segmented display and LED array verify
that the data transmission from the computer to the FPGA
board is correct. Thus, input data can be correctly transferred
from a computer to the FPGA board.

To increase the speed of the proposed procedure, numerous
IPs can be taken from Quartus II software (Altera Corpora-
tion, San Jose, CA, USA). A PLL IP is used to generate an
operating frequency of 26MHz for the USB PHY. Originally,
a clock frequency of 50MHz is provided by the FPGA board.
After data are passed through the PLL IP, a synchronous clock
frequency of 130 MHz is obtained. Subsequently, the fre-
quency of 130 MHz is divided by 5, which is a clock divider.
Thus, a frequency of 26 MHz is obtained. Figure 15 displays
the simulated waveforms for the clock frequencies of 50, 130,
and 26 MHz. A clock frequency of 26 MHz is input into the
USB PHY when the enable signal has a high level (1).

FIGURE 15. Simulated waveforms for the clock frequencies of 50, 130,
and 26 MHz. A clock frequency of 26 MHz is input into the USB PHY when
the enable signal has a high level (1).

FIGURE 16. Experimental results for the address and memory data on the
FPGA development board.

Subsequently, the FPGA board inputs the address and data
into the ROM module. Figure 16 displays the experimental
results for the address and memory data on the FPGA board.
The memory data are 3F, 4d, 55, and 66, which correspond
to the addresses 0, 1, 2, and 3, respectively. The exper-
imental results are correct. Furthermore, an asynchronous
FIFO block is used to complete the queue function with two
clock frequencies: wr_clk and rd_clk. Figure 17 displays the
simulation results of the asynchronous FIFO block, which
includes the write, memory, and read parts. Because the write
enable signal (wr_en) and read enable signal (rd_en) are high,
the data write and read operations are completed using the
same addresses, due to which the same data are presented at
both clock frequencies. When the full or empty signal is high,
the enable signal is low not only in the write part but also in
the read part.

Figure 18 displays the simulation results of the PISO and
SIPO blocks. When a parallel input word ‘‘00101101’’ is
input into the PISO block, the LSB ‘‘1’’ is output first and the
MSB ‘‘0’’ is output last. Then, the serial data are input into
the SIPO block, and an output word ‘‘00101101’’ is finally
reconstructed. The input word of the PISO block is the same
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FIGURE 17. Simulation results for the asynchronous FIFO block.

FIGURE 18. Simulation results for the PISO and SIPO blocks.

as the output word of the SIPO block. The simulation results
verified that the PISO and SIPO blocks operated successfully.

Figure 19 displays the simulation results of the PID check
block. As presented in Fig. 19, the data point ‘‘10010110’’
is displayed if the reset signal (tb/rst) is high (1). Then, the
two check signals, pid_p and pid_n, are assigned to ‘‘1001’’
and ‘‘0110,’’ respectively. If the 1’s complement of pid_p
is equal to pid_n, the lookup table provides the following
parameters: the token, data, and handshake packets. The term
pid_p[0:1] indicates the type of packet. For example, ‘‘01,’’
‘‘11,’’ ‘‘10,’’ and ‘‘00’’ represent the token, data, handshake,
and special packets, respectively. Moreover, pid_p[2:3] rep-
resents the packet name. For example, ‘‘00,’’ ‘‘10,’’ ‘‘01,’’ and
‘‘11’’ represent OUT, IN, SOF, and SETUP, respectively, for a
token packet. Other packet names can be deduced by analogy
by considering the names in the data and handshake pack-
ets. Thus, ‘‘00,’’ ‘‘10,’’ ‘‘01,’’ and ‘‘11’’ represent DATA0,
DATA1, DATA2, and MDATA, respectively, for the data
packet and ACK, NAK, STALL, and NYET, respectively, for
the handshake packet.

An input binary code ‘‘10101010’’ is considered to verify
the functions of CRC5 and CRC16, which are displayed
in Fig. 10. For the CRC5 data, the power is 5; the divisor
is ‘‘100101,’’; and the dividend is ‘‘1010101000000,’’ which
is generated by combing the input code ‘‘10101010’’ and
5-bit zeros (‘‘00000’’). If the dividend is divided by a divisor,
we obtain a remainder of ‘‘11000.’’ Thus, the CRC5 code

is ‘‘11000.’’ The CRC16 code can be deduced by analogy
with the CRC5 code. When the input code is ‘‘10101010’’,
the CRC16 code is ‘‘0001010010100000.’’

Figure 20 displays the functions of the bit-stuffing and bit-
unstuffing blocks. If the input data are high (1), the count
function is initiated. For the bit-stuffing block, an additional
zero bit (0) is added to avoid the clock disorder after six con-
secutive bits with a high value (1). This function is verified in
the data_out signal presented in Fig. 20. Because the counter
value (cnt_6_high) is 6, the state is changed to status 1, which
is numbered as ‘‘10.’’ Then, the enable signal (en_ok) is
changed to high (1) and the output data signal (data_out) is
changed to empty (0) in the next clock. The bit-unstuffing
block is designed to remove the additional zero bit (0), which
is added in the previous bit-stuffing block to resolve the clock
disorder. The input data signal (data_in) is the same as the
output signal (data_out) of the bit-stuffing block. If the input
data (data_in) are high, then the count value is incremented.
Because the count value is 6, the state is changed to ‘‘10.’’
When the valid bit is marked as 0, the bit is considered to be
invalid, and the count value is set to 0. As presented in Fig. 20,
the zero bit (0) in the output data signal (data_out) is removed
when the valid bit is zero (0). This implies that the real output
data are a string of high values (1); thus, the output data are
the same as the input data (data_in) in the bit-stuffing block.

The NRZI blocks are the most important blocks for map-
ping a binary signal to a physical signal for transmission.
In the NRZI encoder block, the output signal (DP) is changed
from high (1) to low (0) if the input signal (data_in) is low
(0). Conversely, if the input signal (data_in) is high (1),
no transition occurs in the output signal (DP). This implies
that the output signal (DP) is zero, which is the same as the
previous zero value (0 → 0). In the NRZI decoder block,
the output signal (data_out) is low (0) when a transition (1
→ 0 or 0→ 1) occurs in the input signal (DP_in). Moreover,
the output signal (data_out) is high (1) if the input signal
(DP_in) has no transition (1→ 1 or 0→ 0). The simulation
results are presented in Fig. 21. The output data (data_out) of
the NRZI decoder block are maintained to be the same as the
input data (data_in) of the NRZI encoder block by delaying
the clock by one cycle.

After the designed functions have been verified, an SIE
module is established using the proposed NZRI blocks.
Figure 22 displays the functional block diagram of the pro-
posed SIE module for register-transfer-level (RTL) simula-
tion. A control block is proposed using many enable signals,
including en_nrzi, en_sipo, en_stuf, and en_unstuf, for the
NRZI, SIPO, bit-stuffing, and bit-unstuffing blocks, respec-
tively. When the proposed control block was used, the RTL
simulation of the SIE module operated correctly. In addition
to the control block, an additional input (crc_in[15..0]) is
considered to transform the parallel data in the bit-unstuffing
block into serial data (data_out). The serial data are then input
into the SIPO block.

Figure 23 presents the verification of the designed
USB transceiver with an SIE module and a FIFO queue.
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FIGURE 19. Simulation results for the PID check block.

FIGURE 20. Simulation results for the bit-stuffing and bit-unstuffing blocks.

The transceiver includes two Altera FPGA development
boards (DE2-70) with a GPIO port connection and two exter-
nal USB port PHYs. The upper board acts as the transmitter,

and the lower board acts as the receiver. A clock divider is
used to reduce the clock frequency for visually examining
the correctness of data transmission. The transmitted data of
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TABLE 1. Performance Summary and Difference with Other USB Transceivers.

FIGURE 21. Simulation results for the NRZI block.

FIGURE 22. Functional block diagram of the proposed SIE module.

‘‘Cb,’’ which is stored in the ROM, is sent to the receiver
board through a USB cable. The green LEDs display the
ROM address ‘‘11100000’’ (E0) on the upper FPGA devel-
opment board. The received data point, ‘‘11001011’’ (Cb),
is displayed on the red LEDs of the lower FPGA development
board. The measurement results indicated that the designed
SIE module operated successfully.

FIGURE 23. FPGA verification of the designed USB transceiver with an SIE
module and a FIFO queue.

After the FPGA-to-FPGA communication had been veri-
fied by burning the Verilog HDL code into the Altera DE2-
70 development board, the fabrication process of the ASIC
was started. The RTL and gate level designs and simulations
were completed with source code that had been designed
with NC-Verilog software (Cadence Company, San Jose, CA,
USA). Logic synthesis and chip layout were completed using
the Design Compiler and IC Compiler tools, respectively
(Cadence Company). The NC-Verilog software was used
again to perform the post-layout simulation. After design
rule check and layout versus schematic steps were com-
pleted using the Calibre RVE software (Cadence Company),
the designed ASIC was taped out and fabricated using TSMC
0.18-µm CMOS technology. Figure 24 displays a micropho-
tograph of the designed ASIC of the USB transceiver with an
SIE module and a FIFO queue.

The performance comparison presented in Table 1 reveals
that the maximum operating frequency and the data rate of
the designed USB transceiver with an SIE module and a
FIFO queue are lower than those of the models proposed
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FIGURE 24. Microphotograph of the designed USB transceiver with an SIE
module and a FIFO queue.

in [2], [19], and [20]. However, the gate counts and on-chip
power consumption of the proposed transceiver are superior
to those of the USB topologies presented in [19] and [20].
In this study, the designed USB transceiver is integrated with
an SIE module and a FIFO queue into an ASIC. The small
chip size and low power consumption of the proposed ASIC
improve its performance and allow it to compete commer-
cially with existing models. The asynchronous FIFO queue is
used to guarantee correct communication between two FPGA
development boards. After the FPGA verification had been
completed, the proposed ASIC performed correctly because
the performance of the fabricated ASIC was similar to that of
the FPGAs.

IV. CONCLUSION
In this study, a USB transceiver with an SIE module and a
FIFO queue was designed using Verilog HDL. Two FPGA
development boards (Altera DE2-70) and two external USB
port physical layer boards (PHYs) were introduced to ver-
ify the designed function. The simulation results and FPGA
verification proved that the FPGA-to-FPGA communication
design operated correctly. A clock frequency of 50 MHz was
used for the FPGA development board, and a synchronous
clock frequency of 130 MHz was obtained using the PLL
IP. A clock divider of 5 was introduced to generate a clock
frequency of 26 MHz, which is used in the USB PHY.
After the designed USB transceiver was verified using the
FPGA development board, the Verilog HDL code could be
implemented into an ASIC by using TSMC 0.18-µm CMOS
technology. The ASIC had a chip area of 0.7 × 0.67 mm2

(including pads) and power consumption of 2.6742 mW. The
small chip size and low power consumption of the ASIC grant
the ASIC relatively high performance and enable it to com-
pete commercially with existing models. The architecture

of the proposed USB transceiver is more complicated than
those of previously proposed USB topologies. The proposed
architecture was designed to guarantee correct data trans-
mission with a trade-off of large gate counts. The merits of
the proposed ASIC, including its low power consumption,
high speed, small size, and short delay, enhance its industrial
applicability considerably.

APPENDIX
The authors have shared their HDL codes and RTL models
online on GitHub BitLocker (link: https://github.com/Yan-
Zhang-Yi/source_code.)
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