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ABSTRACT The classification of benign and malignant masses in mammograms by Computer-Aided
Diagnosis (CAD) is one of the most difficult and important tasks in the development of CAD systems. This
classification has commonly been automated by extracting a set of handcrafted features from mammograms
and relating the responses to breast cancer. Recently, the application of Deep Learning (DL) technology
in medical imaging informatics has been attracting extensive research interest. However, limited medical
image datasets and feature expression often reduce the performance of DL-based schemes. Therefore, this
study aims to develop a new combined feature CAD method based on DL for classifying mammographic
masses into three classes: normal, benign and cancer (malignant) masses. Three kinds of breast masses
were scored by using Deep Convolution Neural Network (DCNN) as a feature extractor. Then the scoring
features are combined with the image texture features as input to the classifier. This features including the
scoring features, Gray-Level Co-occurrence Matrix (GLCM) and Histogram of Oriented Gradient (HOT)
were employed to extract the breast mass information in mammograms and the classifier of Support
Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost) were trained for the classification task.
Accuracy (ACC), Precision (Pre), Recall (Rec), Fi-score (F;), and Overall Accuracy (Overall ACC) are used
to evaluate the performance of the proposed system and the results show that the proposed multi-features
combination model performs the best results. The performance of the XGBoost classifier has proved to
be better in comparison to the SVM classification algorithms. As a result, when XGBoost was used as a
classifier, the correct identification rate of the Overall ACC was 92.80% and that of malignant tumors was
84%, with reasonable and best results. These results indicate that the proposed method may help in more
accurately diagnosing cases that are difficult to classify on images.

INDEX TERMS Deep learning, computer-aided diagnosis, deep convolution neural network, mammograms

classification.

I. INTRODUCTION

Breast cancer is a huge health threat [1], presenting an
increasing incidence and mortality rate in all age groups in
the past decades [2]. And it is one of the most common causes
of cancer deaths in women worldwide and it is responsi-
ble for 23% of all cancer cases and 14% of cancer-related
deaths amongst women [3]. Early detection is the key to
improve the prognosis of breast cancer [4]. Early diagnosis
can significantly improve the chances of recovery: the 5-year
relative survival rate increased from 24% when breast cancer
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is diagnosed at a distant stage to 99% if it is diagnosed at a
localized stage.

Currently, mammography is the most effective and widely
accepted method among all the imaging techniques for breast
examination, and it is also the world recognized gold stan-
dard tool for breast cancer detection. Mammogram based
diagnosis enables the radiologists to diagnose the breast can-
cer precisely as compared with symptoms based diagnosis.
The improvement of breast cancer treatment methods and
the wide application of breast cancer screening technology.
Especially the wide use of mammography technology can
early detect the occult breast cancer in asymptomatic women,
which greatly promotes this favorable trend of effectively
reducing mortality [2]. When breast cancer is identified as
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an early stage, it is more likely to respond to treatment
and increases the survival opportunities for patients. During
the screening process, radiologists examine mammograms
and look for several important signs of breast cancers, such
as clusters of microcalcifications, masses, and architectural
distortions. All these findings may indicate the presence of
cancer [5].

The clinical research report pointed out that in various
types of breast abnormalities, breast masses are the most
important findings since they may indicate the presence of
malignant tumors [6], and also an important indicator of the
development of early breast cancer [7]-[9]. Mass detection is
a more complex task because it is often unable to distinguish
from adjacent tissues. Moreover, humans are prone to make
mistakes and the wrong diagnosis may lead to the incurable
stage of breast cancer. Mass detection poses more difficult
tasks in locating and identifying quality boundaries because
itis often: (a) very pronounced in size, shape, and density; (b)
low in image contrast and signal-to-noise ratio [10]; (c) high
similarity with the surrounding healthy parenchymal tissue
density, particularly for speculated lesions and (d) surrounded
by no uniform tissue background with similar characteris-
tics [11]. Besides, the morphological information of tumor
shape (irregular, lobular, oval and round) and margin type
(circumscribed, ill-defined, tapered and obscured) also play
crucial roles in the diagnosis of tumor malignancy [12]. That
makes progress to be considerably slow for mass detection.
As a result, detection sensitivity and specificity of screening
mammography is not optimal [13]. Generally speaking, an
inspection of the generated large quantities of mammograms
by experienced radiologists is tedious and subjective, which
suffers from poor inter and intraobserver reproducibility [14],
[15]. Therefore, a large part of the mass was missed by the
radiologist.

Because of the clinical significance and great challenge of
mammographic mass detection, since the 1960s [16], numer-
ous computer-aided diagnosis (CAD) systems and quantita-
tive image (QI) analysis technologies provide an assistive
tool to the radiologist to reduce the false diagnosis rate
and increase the accuracy of diagnosis. A majority of these
approaches extract some certain features by hand-engineered,
which employs a combination of heuristic and mathematical
descriptors. Subsequently, the extracted features and pre-
trained classifiers are used to classify these masses or normal
tissues. This feature extraction step mostly depends on the
features extracted from the data and requires effort and suf-
ficient interpreting knowledge due to the various geometrical
and morphological structures. All these processing steps are
equally important for efficient diagnosis. These systems are
aimed at improved identification of subtle suspicious masses,
calcifications, micro-calcifications and other abnormalities
in mammograms [17], [18]. Using conventional machine
learning methods, various hand-designed descriptors (i.e.,
morphological, topological and textural features) based on
prior knowledge and expert guidance have been developed
for these CAD systems. Previous publications have described
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and compared such approaches for automatic detection and
segmentation of abnormalities in mammographic images
[18]-[20]. First segmented adaptive regions of interest (ROIs)
as suspicious areas, and then, classified each ROI using
complex texture features and stepwise linear discriminant
analysis. However, due to the low signal-to-noise ratio and
variability in shape, size, appearance, texture, and loca-
tion, breast tumor segmentation and classification is still a
problem.

In recent years, to improve the performance of breast mass
classification, many researches based on deep representation
of breast images and combined features have been proposed
[21]. A crucial step towards a new generation of machine
learning approaches is enabling computers to learn the fea-
tures as data representatives. These are expressed as low-level
features such as margin and edge; middle-level features such
as edge junctions and high-level object parts [22]. Texture
is characterized by a set of local statistical properties of
pixel intensities. In mammographic image processing, these
features have been used to distinguish patterns that indicate
different levels of risk to develop lesions. Texture has shown
to be a promising technique in analyzing mammographic
lesions caused by masses [23].

Textural information is important to outline the perfor-
mance of CAD system, is required for the classification that
distinguishes masses from normal tissues [24]. Researchers
apply traditional feature engineering methods to deal with the
breast masses classification task, which generally involves
ROIs segmentation, feature extraction, and classification.
Oliver et al. extracted morphological and texture features
from breast tissue regions which were segmented using a
fuzzy C-means clustering technique, and these features were
then treated as inputs for the classifier [7]. Chen et al. eval-
uated different local features using texture representation
algorithms. After that, they modeled mammographic tissue
patterns based on the local tissue appearances in mammo-
grams [25].

On the other hand, the fast development of the Deep
Learning (DL) field offers a promising CAD method for
medical image analysis [26]—[29]. The challenge is to define a
classification algorithm that can provide the most appropriate
response to the problem, i.e., statistical, artificial intelligence,
support vector machines, or polynomial methods commonly
consider the prediction of the breast cancer pattern [30].
DL approaches termed one of the significant breakthrough
technologies of recent years by the MIT Technology Review
has made headlines in producing semantic information due
to its nature of adaptive learning from input data. Convo-
lutional Neural Networks (CNNs) 8 [31] have become the
technique of choice for supervised approaches. In recent
years, a noticeable shift from conventional machine learning
methods to DL based methods is seen in a wide variety of real-
world, especially medical, applications and several review
papers have been published [26], [31], [32]. DL methods
have multi-levels of representation learning which use raw
data and discover the essential representations for detection or
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classification [31]. At the same time as the DL concepts were
developed, a step-change in processing power through high-
performance GPUs and open source frameworks/libraries
developed on CUDA or OpenCL platforms have made sig-
nificant progress for the implementation of DL based meth-
ods. These open-source frameworks and libraries provide the
chance to optimize the implementation of convolutions and
other related functions. Also, they facilitate the ability to
perform a high number of computations at a relatively low
cost through their massive parallel architectures.

CNNs are one type of these deep networks that have
already shown excellent performance in image classification
[33], detection, and segmentation. CNNs can learn highly
nonlinear relationships between the inputs and outputs with-
out human intervention and was used to classify masses using
texture features extracted from mammography based descrip-
tors of image crops of mass area. These textural features could
be interpreted as inputs to a classifier. The classifier is a tool
that receives the extracted feature values as input and provides
the classes related to available tissue as output. However,
depending only on texture feature is not sufficient to classify
the breast cancer masses from mammograms. Thus, some
studies attempt to use morphological information of tumor
shape in classifying breast cancer masses.

In this paper, we propose a Deep Convolution Neural Net-
work (DCNN) based method for automatic extraction of the
scoring feature of three kinds of breast masses. Subsequently,
multi-features of Gray Level Co-occurrence Matrix (GLCM)
and Histogram of Oriented Gradient (HOG) [34], [35] are
extracted to focus the texture points of ROI. Subsequently,
a set of texture features and scoring features corresponding
to each breast image are combined into multi-features. Then,
the extracted features are introduced into different classifiers
and classified into the desired classes. For classifier, we use
Support Vector Machine (SVM) [36] or eXtreme Gradient
Boosting (XGBoost) [37], [38] classification algorithm to
define the ROI as normal, benign or malignant. Therefore, the
proposed system consists of three main stages: scoring fea-
ture extraction, texture extraction, and lesion classification.
The classification accuracy (ACC), Precision (Pre), Recall
(Rec), Fi-score (F;), and Overall Accuracy (Overall Acc) is
used to evaluate the performance of the proposed system.

Il. MATERIAL AND METHODS

A. DATASETS

The Digital Database for Screening Mammography (DDSM)
is the largest public mammography database and is a joint
effort of professional researchers from the Massachusetts
General Hospital (D. Kopans, R. Moore), the University of
South Florida (K. Bowyer), and the Sandia National Lab-
oratories (P. Kegelmeyer). The DDSM database has been
widely used as a benchmark for numerous research on the
field of mammography, for being free of charge and having
a large number of and diverse quantity of cases. It has 2604
cases, and each case consists of four views which contained
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TABLE 1. Experimental data.

Samples Benign Cancer Normal Total
Train 677 764 5530 6971
Validation 225 254 1844 2323
Test 217 248 1803 2268
Total 1119 1266 9177 11562

a mixture of Mediolateral oblique (MLO) and Craniocaudal
(CC) view from the left and right breast (i.e., LEFT-CC,
LEFT-MLO, RIGHT-CC, and RIGHT-MLO) [39], [40]. Each
mammographic images have its corresponding technical and
clinical information, including diverse shapes, margins, sizes,
breast densities of the masses, which annotations labeled by
experienced radiologists, as well as exam dates, digitalization
equipment, lesion types (according to BI-RADS) [41], [42],
and existent pathologies, patients’ ages and races of mam-
mography.

The experimental dataset used in this study encompasses
the ROIs of mammographic screen digitized images retrieved
from DDSM by Jiang er al. [42], Heath et al. [43]. Because
the significant part of the whole mammographic image com-
prises the pectoral muscle and the background with a lot of
artifacts, the classification decomposition was performed on
a limited ROIs that contains the prospective abnormality. The
ROIs are just the rectangular area around the lesion. The size
of the ROIs is chosen to ensure that the ROIs covers the entire
lesion without including too much normal tissue surrounding
the lesion. Therefore, mammograms were first cropped to
remove the parts that affect classification. Image cropping
was performed according to the comments of professional
radiologists provided in the DDSM dataset.

To simulate practical scenarios, a series of ROIs [42]
depicting benign, cancer, and normal masses are extracted
following the conventions in [44]-[46]. To make our exper-
imental setup more consistent with practice and more chal-
lenging, we divide these data into training set, verification
set and test set by 60%, 20% and 20% (as shown in Table 1),
which is composed of 6971 images, 2323 images, and 2268
images, respectively. In these datasets, the three classes are
realistic, which contains 1119 benign ROIs, 1266 cancer
ROIs, and 9177 normal ROIs. 677 benign ROIs, 764 cancer
ROIs, and 5530 normal ROIs are randomly selected as the
training dataset; 225 benign ROIs, 254 cancer ROIs, and
1844 normal ROIs are selected as the validation dataset; the
remaining 217 benign ROIs, 248 cancer ROIs, and 1803
normal ROISs is used as the test dataset, 11562 ROIs in total,
form a large database. The database ROIs are selected from
different cases to avoid positive bias.

B. DEEP CONVOLUTIONAL NEURAL NETWORK (DCNN)

GoogleNet [47] is the first implementation using the Incep-
tion module. The main idea of this module is based on the
authors’ finding out how an optimal local sparse structure in
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FIGURE 1. Evolution of inception module.

a convolutional network can be approximated and covered
by dense components [48]. They aimed to find the optimal
local structure and repeat it, constructing a multi-layer net-
work, which assuming translation invariance means that our
network will be built from convolutional building blocks.
According to Arora et al. [49], the author assumes that each
unit from the earlier layer corresponds to some region of the
input image, and these units are grouped into filter banks. In
the lower layers (the ones close to the input) correlated units
would concentrate in local regions, which means they can be
covered by a layer of 1*1 convolutions in the next layer, as
suggested in [50]. However, one can also expect that there
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will be a smaller number of more spatially spread out clusters
that can be covered by convolutions over larger patches, and
there will be a decreasing number of patches over larger and
larger regions. To avoid patch-alignment issues, the original
incarnations of the Inception architecture are restricted to
filter sizes 1x1, 3*3 and 5*5, but this decision was based more
on convenience rather than necessity. Besides, since pooling
operations are essential for the success in the convolutional
networks, it suggests that adding an alternative parallel pool-
ing path in each such stage should also have additional ben-
eficial effect (see Figure 1(a) the original incarnations of the
Inception module).
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A big problem of the above modules is that even a modest
amount of 5*5 convolutions can be prohibitively expensive
on top of a convolutional layer with a large number of filters.
Once pool units are added to the mix, the problem becomes
more prominent. Although this architecture might cover the
optimal sparse structure, it would do it very inefficiently,
resulting in a computational blow up within a few stages.
The author applies the dimension reductions and projections
where the amount of computational cost would increases.
Before expensive 3*3 and 5*5 convolutions, 1*1 convolutions
are used to reduce computation [47]. As shown in Figure 1(b),
the Inception module consists of four branches that get the
same input. The first branch uses 1*1 convolution to filter
the input, and this convolution plays as a linear transforma-
tion on the input channels. The second and third branches
perform 1*1 kernels convolutions for dimensionality reduc-
tion performed by 3*3 and 5*5 kernels convolution layers,
respectively. The fourth branch performs max-pooling fol-
lowed by convolution with 1*1 kernels. Finally, the outputs
of each branch are concatenated and fed as input to the next
block [51].

In [52], a revised version of the initial module along with
a slightly modified network architecture have been proposed.
Batch normalization (BN) [52] was proposed by authors and
incorporated it into the Inception network. BN is a technol-
ogy that takes normalization part of the model architecture
and performs normalization for each training mini-batch. In
the author’s opinion, BN has higher learning rates and sim-
pler initialization techniques without experiencing adverse
effects. The network used in [52], namely Inception-V2, was
a slight modification of GoogLeNet. In terms of computation,
convolutions with larger spatial filters tend to be dispropor-
tionally expensive. Apart from the incorporation of BN, the
most important change is that the 5*5 convolutional layers of
the Inception module were replaced by two consecutive 3*3
layers (Figure 1(c)). The author constructs a vision network
by using translation invariance and replace the fully con-
nected components by a two-layer convolutional architecture:
the first layer is a 3*3 convolution, and the second layer is the
fully connected layer above the 3*3 output grid of the first
layer. Sliding this small network over the input activation grid
boils down to replacing the 5*5 convolution with two layers
of 3*3 convolution (compare Figure 1(b) with (c)).

Whether one should factorize larger filters into smaller, for
example, 2*2 convolutions. However, by using asymmetric
convolutions n*1, it can even do better than 2*2. For exam-
ple, using a 3*1 convolution followed by a 1*3 convolution
is equivalent to sliding a two-layer network with the same
receptive field as in a 3*3 convolution. Still, the two-layer
solution is 33% cheaper for the same number of output fil-
ters, if the number of input and output filters is equal. By
comparison, factorizing a 3*3 convolution into a two 2*2
convolution represents only 11% saving of computation. It is
further demonstrated that a 1*n convolution followed by an
n*1 convolution can be used to replace any n*n convolution
and, as n grows, the computational cost savings increase
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FIGURE 2. Eight nearest neighbor resolution cells in four different
directions.

significantly (see Figure 1(d)). Inception-v3 [53] also uses
the auxiliary classifier as the regularizer based on Inception-
V2. If the side branch is batch normalized [52] or has a
dropout layer, the performance of the main classifier of the
network performs better will be better.

C. TEXTURE FEATURE

1) GREY-LEVEL CO-OCCURRENCE MATRIX (GLCM)

One of the important characteristics is the texture feature
used in identifying objects or ROI in an image. Because of
the difference and diversity of messes, the shape of breast
masses in mammography is different. The edge of the mass
can reflect the type and degree of the cancer. In the large mass
area, the edge is long, and the more irregular and different
protrusions become a texture feature of a certain type of mass.
In this paper, some easily computable textural features based
on the gray tone spatial dependence are used in the classifica-
tion of mammography image data [54]. GLCM describes the
texture of an image by calculating the frequency of pixel pairs
with specific values and spatial relationships. Suppose that
the image to extract features is rectangular, with n resolution
cells in the horizontal direction and m resolution cells in the
vertical direction.

A resolution cell has eight nearest neighbor resolution
cells in four different directions, as shown in Figure 2. The
texture context information in the image I is adequately spec-
ified by the matrix of relative frequencies P; j, in which two
neighboring resolution cells are separated by distance d on
the image, one is gray tone i and the other is gray tone j.
The gray tone spatial dependence frequencies matrices are a
function of the angular relationship between the neighboring
resolution cells and a function of the distance between them
(PG, j,d,0); P(i,j,d,45); PG, j, d, 90); P3,j,d, 135)) [54].

We extract the eighty of the GLCM features from each
image. These features are the mean and variance of four dif-
ferent angles of contrast, correlation, entropy and inverse
different moment (homogeneity), which are measured at ten
different distances. These various features are all functions
of distance and angle. It is assumed that image I has features
A, B, C and D of 0°,450°, 900°, and 135° angles, respec-
tively (as shown in Figure 2). We take the functions of a, b,
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¢, and d, their average and variance, be used as inputs to the
classifier.

Contrast: The contrast feature is the contrast or local vari-
ation in an image. It shows the clarity of the image and the
depth of the texture groove.

feon =3, > (1= )* P, j) (1)

Correlation: The correlation feature is the gray tone linear
dependencies in the image.
o2 i WP, ) — iy
f Corr = o 2

0i0j

where (;, itj, 0; and o; are the means and standard deviations
of P(i) and P(j).

Entropy: Entropy in physics is the regularity of objects.
The entropy also is the amount of information in the image.
It shows the degree of complexity in the texture of the image.

fom ==, > PG D1og PG ) 3)

Homogeneity: Homogeneity is the inverse distance differ-
ence of image texture, which measures the local change of
image texture.

fipE = Z ZJ

2) HISTOGRAM OF ORIENTED GRADIENT (HOG)

As a feature descriptor, HOG has the force to describe the
structure of the object and has a strong identification effect on
the description of the local area. It is very sensitive to the gra-
dient and direction and can describe the appearance edge and
structure characteristics of the mass quickly and accurately.
HOG has different types of spatial organization, gradient
calculation and normalization methods. By calculating the
horizontal and vertical gradients of the image, the image is
divided into equal cell units, and the histogram within the unit
is counted to better express the relationship between pixels.
The dense representation of the image at a specific resolution
is defined according to the structure in [55]. First, the image
is divided into 16*16 nonoverlapping pixel regions or cells.
For each cell, we accumulate a one-dimensional histogram
of the gradient directions on the pixel. The gradient at each
pixel is dispersed to one of the nine orientation bins. Each
pixel “votes’ the orientation of its gradient, and its strength
depends on the gradient magnitude at that pixel. Finally, the
histogram of each cell is normalized to the gradient energy of
the neighborhood around it. We use the four 2*2 block cells
with specific cells, and normalize the histogram of a given cell
with the total energy in each of these blocks. This produces
a 9*4 dimensional vector that represents the local gradient
information in the cell.

The gradient direction value of each pixel position is calcu-
lated according to the gradient of image abscissa and ordinate
direction. The derivative can not only obtain the contour
and some texture information but also further weaken the
influence of brightness.

PG, j)

4
1+ (i —j)? @
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The gradient of pixels (i, j) in an image is defined as:
Gi(i,) =H(i+1,)) —H(@—1,)) &)
Gi(i, ) =H(U,j+1)—HGj—-1) (6)
where the horizontal gradient, vertical gradient and pixel
value of the pixel (i, j) in the input image is G_i(i, j), G_j(i, j)
and H (i, j), respectively. The gradient and gradient direction
at pixels (i, j) is defined as:

Gi.j) = \JGili.j)* + Gy(i.j) )
/(N
Ghj) = tan” (G ®)

IIl. EXPERIMENTAL MODEL

Four strategies were conducted to assess the abilities of ROIs
of the DDSM in mass classification within the DCNN frame-
work equipped with or without transfer learning, as well as
to explore an eligible combination strategy of DCNN with
the SVM and XGboost framework in enhancing classification
performance. This mass classification task was to categorize
a target into cancer, benign or normal.

Strategy 1: The DCNN can be either equipped with or
without transfer learning, i.e., the network was first initial-
ized with the trained parameters from ImageNet and then
trained with the ROIs datasets (i.e., transfer learning), or
directly trained by the ROIs datasets (i.e., no transfer learn-
ing), and their classification performance were examined
(termed as ‘DCNN-ROIs-TL”, and ‘DCNN-ROIs’ as shown
in Figure 3(a)). After an image is input into the DCNN
network, through a series of convolution and pooling oper-
ations, the final prediction classification layer at the end
converts the information output from the full connection
layer into the corresponding classification score, which plays
a classification role. This experiment was to compare the
classification capabilities of with or without transfer learning,
as well as to confirm the role of transfer learning in DCNN
training.

Strategy 2: the strategy of combining DCNN and SVM or
XGboost training on ROIs data set is discussed. The classi-
fication score of the DCNN network is taken as the feature
vector (i.e., Feature-Class Score in Figure 3(b)), which is
input into SVM or XGboost to train the model. Based on
two DCNN models, two combined classification models will
be obtained, including two models using two DCNN training
modes (Figure 3(b), Score-Classifier model based on transfer
learning or non-transfer learning).

Strategy 3: Texture is one of the important character-
istics used in identifying objects or regions of interest in
an image. This strategy describes some easily computable
textural features based on Gray-level Co-occurrence Matrix
(GLCM) and Histograms of Oriented Gradient (HOG) (as
shown in Figure 3(c), Feature-GLCM and Feature-HOG).
The classification ability of image texture features is also
evaluated on SVM or XGboost. These two image texture
features are extracted from ROIs for training (Figure 3(c),
Feature-Classifier).
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FIGURE 3. The model configurations of DCNN combination with multi-features for strategy 1-4.

Strategy 4: This strategy combines strategy 2 and strategy
3 to integrate the classification score of DCNN network with
the GLCM and HOG texture features of images, and input the
integrated feature vectors into SVM or XGboost for model
training (Figure 3(d), Score-Feature-Classifier).
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IV. EVALUATION METRICS

The DCNN models outputted the prediction score of each
of the three classes (cancer, benign, and normal) from the
softmax layer. Currently, most measures to evaluate the per-
formance of classification algorithms focus on the ability of
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the classifier to correctly identify the class [56]. In a two-class
problem, accuracy is a commonly used metric [57].

However, accuracy is particularly prone to bias in multi-
class classifications that are sensitive to training data. Thus,
to evaluate the performance of the classification models, the
classification ACC, Pre, Rec, and F; statistical measures are
used. For each class, the confusion matrix was generated
which reported the number of true positive (TP), true neg-
ative (TN), false positive (FP) and false negative (FN). The
classification ACC, Pre, Rec, and F; of each class were com-
puted from the confusion matrix according to the following
statistical formulas:

K
> i1 IPi

Acc = —=———
doim1 i I

©))
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FIGURE 6. Comparison performance of these all models in the training
dataset.

1 K p;

Pre = — — 10
K 2 i +1pi 1o
1 K p;

Rec = — — 11
K Zi:l p; + fn; (an
2P R

F = Srexnec (12)
Pre + Rec

where K is the number of classes, and #p; represents the
number of data objects correctly grouped into the i class,
Jp; represents the number of objects that do not belong to
the i class but have been partitioned into the i class, and fn;
represents the number of objects that belong to the i class but
have not been partitioned into the i class.

V. RESULTS AND DISCUSSION

A. IMPACT OF TRANSFER LEARNING AND NO TRANSFER
LEARNING

As shown in Figure 4 and Figure 5, DCNN-ROIs-TL sig-
nificantly outperformed DCNN-ROIs for ROIs in terms of
classification loss, ACC and Rec. Especially when the epoch
was 100000, i.e., Figure 4 (c), DCNN-ROIs-TL was signifi-
cantly better than DCNN ROIs in terms of the classification
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TABLE 2. Comparison of different feature combination strategies in three
categories.

Pre Rec ACC F
Category ~ Model %) %) %) (%1)
S-SVM 40.81 52.14 45.78 88.01
F-SVM 47.68 99.99 64.57 89.34
SF-SVM 98.26 99.99 99.12 99.83
) S- 65.61 25.23 36.44 91.69
Caring XGBoost
F- 92.24 50.61 65.36 94.94
XGBoost
SF- 96.93 57.60 72.26 95.83
XGBoost
S-SVM 76.88 17.41 28.39 90.37
F-SVM 89.77 90.71 90.23 97.85
SF-SVM 97.57 99.74 98.64 99.70
S- 68.90 44.43 54.02 91.72
Cancer  XGBoost
F- 92.12 55.18 69.02 94.58
XGBoost
SF- 94.20 72.35 81.84 96.49
XGBoost
S-SVM 89.85 96.40 93.01 88.51
F-SVM 99.99 86.42 92.72 89.23
SF-SVM 99.99 99.48 99.74 99.58
S- 87.39 98.04 92.41 87.18
Normal  XGBoost
F- 89.81 99.57 94.44 90.66
XGBoost
SF- 92.39 99.78 95.95 93.29
XGBoost

loss. Furthermore, DCNN-ROIs-TL achieved significantly
higher classification ACC and Rec than DCNN-ROIs. As
shown in Figure 5 (a) and (b), considering the stability and
rationality, DCNN-ROIs-TL with the epoch of 100000 has
good performance.

B. MASSES CLASSIFICATION WITH DIFFERENT FEATURE
COMBINATION STRATEGIES

As shown in Figure 6, the Score-Feature-Classifier (i.e.,
SF-SVM and SF-XGBoost) models achieved better classifi-
cation performances (especially in terms of Pre, ACC, and
Rec) for the benign and cancer. However, no statistical differ-
ences were observed in Fi. Furthermore, it should be noted
that there was an overfitting on the SF-SVM models, which
achieved abnormally high classification performances (in
terms of all metrics) for all classes.

Similar observations were made by using SVM and
XGBoost as classifiers, evidenced by the superior perfor-
mance (in terms of Pre, ACC, and Rec) of the XGBoost
model in the classification of the benign and cancer, although
this superiority was not evident for the normal. Again, the
SF-XGBoost was comparable to the DCNN in terms of Fj.
Moreover, for all models, using the score feature and texture
feature as the multi-features (i.e., Score-Feature-Classifier)
achieved significantly better performance than only using
the score feature or texture feature (i.e., Score-Classifier or
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FIGURE 7. Comparison performance of these all models in the testing
dataset.

Feature-Classifier) in the classification of the benign and can-
cer, as listed in Table 2, but for normal it was not significantly
superiority.

C. EXPERIMENT ON THE TEST DATASETS

As shown in Figure 7, When experimenting on test datasets,
the XGBoost with multiple features (i.e., SF-XGBoost) mod-
els achieved better classification performances in terms of
Pre, ACC, and Rec for the benign and cancer. The perfor-
mance was not superior outstanding in distinguishing the nor-
mal for SF-XGBoost. Similar observations were evidenced
by the superior performance of the SF-XGBoost model in
the classification of the masses, although this superiority was
not evident in comparison with DCNN. Figure 7(e) shows
that our multi-feature (i.e., SF-XGBoost) model achieved
the higher Overall ACC among other strategies of models.
In Table 3 the experimental result shows that the Over-
all ACC of the SF-XGBoost model, owing to its ability
to integrate multi-feature information, outperforms all other
approaches, and achieves improvements of at least 4.1% for
the CDNN.
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TABLE 3. Comparison of Overall ACC of DCNN model and multi-features
with XGBoost models.

Model %Zl)n {;OS )t
DCNN 82.84 80.38
S-XGBoost 85.3 81.92
F-XGBoost 90.09 80.38
SF-XGBoost 92.8 84.48

VI. CONCLUSION

To elevate the classification performance of the networks, in
this study, we proposed a method to classify breast masses
into benign, cancer and normal in mammography by using
multi-feature and combine the classification results based
on DCNN as features. The multi-feature should be selected
if the amount of data is large and has multiple features.
Meanwhile, the machine learning methods can be consid-
ered if the amount of data is small. This study showed that
the multi-feature model generally outperformed the single
feature model or only DCNN model when based on DCNN
equipped with transfer learning and using the XGBoost
model generally achieved higher ACC than that others. As
a result, multi-features are extracted from mammographic
and are then input XGBoost framework can perform bet-
ter than conventional deep learning networks in problems
of object classification. This also proves that the XGBoost
classifier is more effective than deep learning networks when
dealing with the problem of a limited number of available
training samples and texture features. The key advantages of
the proposed method are that it employs an integration of
DCNN trained to extract classification score features from
mammography images and integrate them with other texture
features, and then uses XGBoost framework to achieve a
better classification performance despite the limited num-
ber of breast cancer samples and imbalanced training data,
which are the challenging problems. In the training model
and testing model, the improvement rate of Overall ACC is
9.96% and 4.10% respectively. Besides, we plan to use a
method that can classify all masses in mammography, and
then consider the relevant features that can more fully express
the mass features in mammography based on the existing
texture features GLCM and HOT, to improve the performance
of breast mass classification.
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