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ABSTRACT Faster-than-Nyquist (FTN) is a promising paradigm to improve bandwidth utilization at the
expense of additional intersymbol interference (ISI). In this paper, we apply state-of-the-art deep learn-
ing (DL) technology into receiver design for FTN signaling and propose two DL-based new architectures.
Firstly, we propose an FTN signal detection based on DL and connect it with the successive interference
cancellation (SIC) to replace traditional detection algorithms. Simulation results show that this architecture
can achieve near-optimal performance in both uncoded and coded scenarios. Additionally, we propose a
DL-based joint signal detection and decoding for FTN signaling to replace the complete baseband part in
traditional FTN receivers. The performance of this new architecture has also been illustrated by simulation
results. Finally, both the proposed DL-based receiver architecture has the robustness to signal to noise ratio
(SNR). In a nutshell, DL has been proved to be a powerful tool for the FTN receiver design.

INDEX TERMS Faster-than-Nyquist, receiver design, signal detection, deep learning, intersymbol interfer-
ence, channel coding.

I. INTRODUCTION
The last couple of decades have seen the exponential growth
of wireless devices and data traffic. Nowadays, spectral
efficiency has become extremely valuable. With increas-
ingly demanding requirements for spectral resources, a
promising technology named FTN is rediscovered and has
attracted a lot of attention in both industrial and academic
communities [1]–[15].

As known, in conventional Nyquist-criterion transmission,
when available bandwidth is W Hz, the symbol interval T is
always set as T ≥ TN = 1/(2W ). The strict orthogonality
between transmitted symbols guarantees the signal recovery
in the receiver. In contrast, the symbol interval reduces to
T < TN in FTN signaling to achieve a higher transmis-
sion rate, which, at the same time, destroys the orthogonal-
ity and introduces unvoidable ISI. Although the additional
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interference increases the complexity to recovery original
signals in the receiver, the Mazo limit [1] proves that without
the expansion of bandwidth and loss of BER performance,
the FTN signaling can achieve an up to 25% higher trans-
mission rate than conventional Nyquist-criterion design in the
additive white Gaussian noise (AWGN) channel.

Traditional receiver design focuses on the detection algo-
rithms to eliminate the ISI caused by the smaller symbol
interval. Among time-domain equalizations, [2] and its sim-
plified version [3] formulate the FTN signal as convolution-
ally encoded symbols and applies the Viterbi algorithm for
detection. Reference [4] employs a symbol-by-symbol signal
detection, which achieves the near-optimal performance with
very low complexity. Channel shortening is employed for
maximum-likelihood sequence estimation (MLSE) in [5].
Meanwhile, a few effective frequency-domain detection algo-
rithms for FTN can also be found in the literature. Refer-
ence [6] designs a minimum mean square error (MMSE)
frequency-domain equalization (FDE) for FTN detection.
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An H-ARQ technique for FTN signaling is proposed in [7].
And [8] focuses on iterative FDE architectures to eliminate
the introduced ISI. Recently, an interesting work that focuses
on the blind estimation for the packing ratio in FTN trans-
mission has been addressed [9] and is promising to make the
receiver design more adaptive.

In recent years, a new trend has appeared to merge the two
technologies of communications and DL [16]–[18]. Nowa-
days, DL has been widely employed in conventional com-
munication scenarios, such as orthogonal frequency-division
multiplexing (OFDM) systems [19]–[21], multi-antenna sys-
tems [22], channel estimation and prediction [23]–[25],
channel coding [26]–[28], modulation classification [29],
etc. However, DL-based receiver design for FTN signal-
ing, as far as we know, has not been studied yet in the
literature.

In fact, signal detection for FTN based on sequence esti-
mation (as well as the channel decoding) can be regarded
as a classification problem which aims to divide a multiple
dimension space into several parts. For example, when we try
to recover M transmitted symbols from M received symbols
in BPSK modulation, we practically divide an M -dimension
space into 2M parts. The power of DL in solving such
classification problems has been proved by its successful
application in image and voice recognition. Also, with the
development of artificial intelligence (AI) chips [30], the
DL-based algorithms may show their advance in future com-
munication systems. These facts have inspired us to employ
DL into FTN receiver designs.

The contribution of this paper can be summarized as fol-
lows.

• We propose joint DL-based detection and SIC to replace
traditional FTN detection algorithms, where SIC is used
to eliminate the interference and obtain more accurate
log-likelihood ratio (LLR) values.

• We develop DL-based joint detection and decoding for
FTN signaling, which can replace the whole baseband
part of conventional FTN receivers with the DL-based
architecture.

• We investigate the robustness of both the proposed
receiver designs to SNR values. And results show that
after training by the FTN data set under a specific SNR
value, the proposed designs can fit the scenarios with
different SNRs and achieve near-optimal performance in
the offline recovery.

• We have carried out comprehensive evaluations to verify
and analyze the proposed DL-based FTN receiver archi-
tectures.

Herein, we give the definition of notations which we will
encounter throughout the rest of the paper. Bold-face lower
case letters (e.g. x) are applied to denote column vectors.
Light-face italic letters (e.g. x) denote scalers. xi is the ith
element of vector x. x(t) ∗ y(t) denotes the convolution oper-
ation between x(t) and y(t). bxc is the maximum integer less
than or equal to x. And P(·) means the probability.

FIGURE 1. Waveform and the sampled symbols in Nyquist and FTN
transmission.

II. SYSTEM MODEL
We consider the communication system with the complex-
valued quadrature amplitude modulation (QAM) scheme and
AWGN channel. As known, after constellation mapping,
the baseband signal should pass through a shaping filter h(t).
Hence, the transmitted signal s(t) can be written as

s(t) =
√
Es
+∞∑

k=−∞

xkh(t − kτTN ), (1)

where Es is the average energy of constellation symbols, xk
(k = 0,±1,±2, · · · ) is the kth transmitted symbol and τ is
the time acceleration factor which satisfies 0 < τ ≤ 1. Due to
the existence of τ , practical symbol interval T is smaller than
Nyquist limit TN , which helps the system achieve a higher
transmission rate.

Actually, when τ = 1, benefiting from the orthogonality
between any two symbols, each sample of the symbols will
not be influenced by the others. However, when 0 < τ < 1,
each sample becomes a weighted sum of different symbols,
which will make it difficult to recover the transmitted sig-
nals. The intersymbol effect of FTN has been illustrated
in Fig. 1.

Fig. 2 shows the block diagram of the traditional communi-
cation system with channel coded FTN signaling, where τTN
is not only the practical symbol interval of the symbols pass-
ing through the shaping filter but also the sampling interval
for the signal which has passed through the matched filter.
The LLR values can be calculated by PSK/QAM demapping
as

LLRi = ln
P(xi = 0|ŷj)
P(xi = 1|ŷj)

, (2)

where i = {1, 2, 3, . . .}, j = bi/rc+1 and r is the modulation
order. x and ŷ represent the transmitted bits and detected
symbols respectively.

The received signal after passing through thematched filter
can be written as

y(t) = (s (t)+ n (t)) ∗ h(t)

=

√
Es
+∞∑

k=−∞

xkg(t − kτTN )+ ñ(t), (3)
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FIGURE 2. Block diagram of the traditional communication system with channel coded FTN signaling.

FIGURE 3. The architecture of the proposed FTN receiver with joint DL-based detection and SIC.

where g(t) =
∫
h(x)h(t − x)dx, ñ(t) =

∫
n(x)h(t − x)dx,

and n(t) is a zero mean complex-valued Gaussian random
process with variance σ 2. Throughout this letter, time syn-
chronization error is not taken into consideration. Hence,
the nth sample of received signal y(t) can be obtained as (4).

As seen, each sample of the received waveform contains
not only the expected symbol but also the weighted sum of
both its previous and upcoming symbols. A key problem
for receivers is eliminating the ISI from both directions and
recover the transmitted sequence x from the received symbols
y. It will certainly increase the complexity of signal detection,
which can be regarded as the price of the higher transmission
rate.

yn =
√
Es
+∞∑

k=−∞

xkg(nαTN − kαTN )+ ñ(nαTN )

=

√
Es

n−1∑
k=−∞

xkg ((n− k) αTN )︸ ︷︷ ︸
ISI from previous L−1 symbols

+

√
Esxng(0)

+

√
Es
+∞∑

k=n+1

xkg ((n− k) αTN )︸ ︷︷ ︸
ISI from upcoming L−1 symbols

+ ñ(nαTN )). (4)

III. THE PROPOSED FTN RECEIVER DESIGN WITH
DL-BASED DETECTION AND SIC
The proposed FTN receiver architecture with joint DL-based
detection and SIC has been illustrated in Fig. 3. The conven-
tional signal detection is replaced by the proposed DL-based
detection and SIC whose detailed structures have been shown
in the part surrounded by the dotted line. In this section,
we provide a detailed explanation of the proposed new
architecture.

A. DL-BASED DETECTION
The proposed DL-based detection is essentially a deep neural
network (DNN) which includes six layers (an input layer,
an output layer and four hidden layers). As shown in Fig. 3,
each hidden layer is composed of a fully connected (FC)
sublayer and a rectifier linear unit (ReLU) function while the
output layer is simply an FC sublayer. The numbers of neu-
rons in each layer are L, 320, 160, 80, 40 and m, respectively.
L and m are sliding window parameters which will be further
introduced in the next subsection. It should be noted that
these numbers of layers and neurons are employed for all the
scenarios in the following part of this paper and are applicable
for other general FTN signalings. The performance gain by
simply enlarging the size of the network is disappointing.
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FIGURE 4. The architecture of the proposed FTN receiver with DL-based joint signal detection and decoding.

The input and output of the DL-based detection are real
numbers. When BPSK is taken into consideration, one DNN
should be employed on the real part of the received symbols.
While in QPSK or higher QAM modulations, two identical
structures (or multiplexing of one DNN) should be combined
to detect both the real and imaginary parts of the received
symbols.

B. DATASET
The training and testing data sets share the same structure.
The input data set is composed of the real and imaginary
parts of received symbols which have been downsampled and
sliced by block length L and step size m. And the label set
contains the real and imaginary parts of corresponding trans-
mitted symbols sliced by m. All these symbols are generated
by the software simulation. Also, the structure of the data set
has been shown visually in Fig. 5.

C. WORKFLOW
A notable feature of our proposed DL-based detection is the
sliding window, as shown in Fig. 5. The input in each recovery
is a sliding window with length L on the real or imaginary
part of the received symbols y. During each recovery, the
DL-based detection tries to recover the middle m symbols of
the input window. Then, the input window slides forward over
m symbols to start the next recovery. This special architecture
results from the uncertainty of edge symbols of the input
window. They always suffer from severe ISI from either
the previous or subsequent symbols while these symbols are
unknown since they are not contained in the input.

Similar to most DL methods, our proposed detection
includes two stages named offline training and online
recovery.

• Offline training: During this stage, the model is trained
by known transmitted symbols and the corresponding
received symbols which are generated with the given β
and τ . The process called back-propagation is required

FIGURE 5. Workflow of the proposed DL-based signal detection for FTN
signaling.

to calculate the loss function and its derivative to each
neuron to update the network.

• Online recovery: During this stage, the DL-based detec-
tion can directly produce the estimated symbols by the
received signals with the previously determined neural
network. The back-propagation is not required, which
can greatly reduce the delay and computational com-
plexity of the detection.

It is worth noting that the two stages do not need to work
iteratively. Once the offline training is completed, the neural
network will be determined and does not need to be trained
any more in the practical FTN detection.

D. SIGNAL RECONSTRUCTION BY SIC
Benefiting from the correcting and anti-interference ability,
channel coding, nowadays, has become a necessary part of
wireless communications. To gain the benefit of large rate
enhancement from the FTN signaling with start-of-the-art
channel coding technologies, we introduce SIC to obtain
more accurate LLR values from the proposed DL-based
detection. The main idea of the reconstruction is to calculate
the interference and subtract it from the received symbols.
The reconstructed symbols can be written as

ỹ = s1 − (D(s2) ∗ g̃− D(s2)), (5)

where s1 and s2 represent the received symbols and detected
symbols respectively, as illustrated in Fig. 3. D(·) means the
hard decision of a certain symbol sequence. The convolution
operation is completed by the FTN filter, where the g̃ is the
ISI vector and g̃k = g ((k − K )τTN ), k = {0, 1 · · · 2K }.
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IV. THE PROPOSED FTN RECEIVER DESIGN WITH
DL-BASED JOINT SIGNAL DETECTION AND DECODING
We propose a hybrid DL-based architecture, which has been
illustrated in Fig. 4, to replace both the signal detection
and channel decoding in conventional FTN receivers. In this
section, the proposed new architecture is detailed presented.

A. DL-BASED JOINT SIGNAL DETECTION AND DECODING
In this section, we introduce the low-latency belief-
propagation (BP) polar code decoder [31] into the FTN
receiver design and proposed a DL-based complete baseband
part in FTN receivers. The proposed DL-based joint signal
detection and decoding is a cascade of a detection subnet,
an SIC subnet, a BP subnet and finally a decision compo-
nent. The detection subnet shares the same structure of the
proposed DL-based detection in Section III. The SIC subnet
eliminates the interference among different symbols by (5)
with a convolution layer, a subtraction layer and an addition
layer. Besides, a buffer is employed to output a complete polar
code block so that the BP subnet can work normally.

The BP subnet, which can be considered as the unfolding
of the conventional BP decoding structure, contains several
left-to-right (LTO) and right-to-left (RTL) propagations. The
value of each layer can be obtained by

L ti,j = g
(
L ti+1,2j−1,L

t
i+1,2j + R

t
i,j+N/2

)
L ti,j+N/2 = g

(
Rti,j,L

t
i+1,2j−1

)
+ L ti+1,2j

Rti+1,2j−1 = g
(
Rti,j,L

t−1
i+1,2j + R

t
i,j+N/2

)
Rti+1,2j = g

(
Rti,j,L

t−1
i+1,2j−1

)
+ Rti,j+N/2,

(6)

where L ti,j and R
t
i,j represent the values of j-th node in i-th

layer of RTL and LTR during the t-th iteration. g(x, y) =
0.9375 ∗ sign(x)sign(y)min(|x|, |y|). Before running the iter-
ations, the decoder should be initialized by

R11,j =

{
0, if j ∈ A,
+∞, if j ∈ Ac (7)

and

L1n+1,j =
P
(
yj|xj = 1

)
P
(
yj|xj = 0

) , (8)

where A and Ac are the information bits set and frozen bits
set respectively.

Finally, a decision component is employed for the last layer
to realize

f (x) =

{
0, x ≤ 0
1, x > 0,

(9)

where the sigmoid function, which is used to limit the output
to [0, 1], can be written as

f (x) =
1

1+ e−x
. (10)

FIGURE 6. Workflow of the proposed FTN receiver design with the
DL-based joint detection and decoding.

TABLE 1. Training and testing parameters of the proposed DL-based FTN
detection.

B. DATASET
As can be seen from the previous analysis, only the detection
subnet contains trainable parameters. Hence, it is not the
whole model but simply the detection subnet that needs to
be trained. And the dataset of training and testing has been
provided in Section III.

C. WORKFLOW
Fig. 6 illustrates the workflow of the proposed DL-based
joint signal detection and decoding. Similar to Section III,
the input in each recovery is a sliding window with length
L on the received symbols while the output is the corre-
sponding m estimated symbols. Aided by the buffer in the
SIC subnet, every Lb/(Rbr) LLRs are sent to the BP sub-
net, where Lb is the code length and Rb is the code rate.
Finally, a complete uncoded bit block is obtained after BP and
decision.

V. SIMULATION RESULTS
In this section, we assess the performance and robustness
of our proposed two DL-based FTN detection and decoding
architectures. All the simulation results are obtained on the
test data set. The square root raised cosine (SRRC) filters with
different roll-off factors are taken into consideration. A more
detailed list of the parameters is provided in Table 1.

A. ROBUSTNESS TO SNR MISMATCHING
It is very important for the proposed DL-based detection to
be robust to the SNR values, without which the proposed
DL-based detectionwill be trained and employed for different
SNR values independently and suffer from high complexity
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FIGURE 7. Performance of the proposed DL-based signal detection versus
some baselines for uncoded FTN signaling.

resulting from SNR estimation and the store of massive DL
network parameters corresponding to different SNR values.

Throughout a lot of simulations, fortunately, we find an
interesting point that the DL network trained with Eb/N0@
{BER = 2 × 10−4} (e.g. 7.9dB in QPSK) always shows
the near-optimal performance in the offline prediction stage.
Eb/N0@{BER = x} here means the Eb/N0 value under
which the ideal QAM modulation with Nyquist-criterion can
achieve a BER performance of x in the AWGN channel.

B. PERFORMANCE OF THE PROPOSED DL-BASED
DETECTION IN UNCODED SCENARIOS
To better evaluate the performance of our proposed DL-based
detection, we choose three traditional algorithms maximum a
posteriori (MAP) [15], MMSE FDE [6] and SSSgbKSE [4]
as the baselines. And MAP algorithm is generally considered
as the optimal detection scheme.

Fig. 7 compares the BER performance of our proposed
DL-based detection with the baselines. As shown, all the
detection schemes show similar performances when α = 0.5
and τ = 0.8. The SNR gain of our proposed DL algorithm
over FDE is about 0.9dB, considering BER = 10−4. And as
ISI becomes more severe, the SNR gains of the proposed DL
algorithm over SSSgbKSE and FDE get larger.Whenα = 0.5
and τ = 0.6, the gains increase to more than 10dB, while
the performance of the proposed DL algorithm and MAP
just appears to differ and the distance of their SNR at BER
= 10−4 is only 0.28dB. The simulation result confirms that
the DL-based detection is applicable to FTN signal detection
problems.

C. PERFORMANCE OF THE PROPOSED DL-BASED
DETECTION IN HIGH ORDER MODULATIONS
Actually, signal detection for FTN will be difficult in high
order modulations since the SNR gains are negligible. How-
ever, when parameters with relatively slight interference are
employed, the FTN can still work well and contributes a rate
enhancement. Fig. 8 illustrates the BER performance of the
proposed DL-based detection in high order modulations with

FIGURE 8. Performance of the proposed DL-based signal detection in
high order modulations with β = 0.5 and τ = 0.8.

β = 0.5 and τ = 0.8, where the dashed lines represent the
performance in conventional Nyquist-criterion systems. The
result reveals the potential of DL-based detection for FTN
signaling with high order modulations.

D. PERFORMANCE OF THE PROPOSED RECEIVER WITH
JOINT DL-BASED DETECTION AND SIC
Fig. 9 illustrates the performance of our proposed DL-based
receiver design with detection and SIC versus other baselines
in FTN signaling with (64800, 32400) LDPC code [32]. The
dashed lines show the performance in conventional coded
and uncoded Nyquist-criterion systems. Since the SSSg-
bKSE method can not produce soft information indepen-
dently (as stated in [4]), it is not taken into consideration
here.

As shown, the proposed receiver design can achieve great
performance gainswith the help of the start-of-the-art channel
coding scheme. Compared to other baselines, the proposed
design achieves an SNR gain over FDE by 0.9dB and is only
0.1 dB worse than MAP detection, considering β = 0.5,
τ = 0.7 and BER= 10−4. Moreover, the proposed DL-based
detection and SIC can be directly cascaded with the existing
channel decoders without changing their original structures
or getting involved in their iterative decoding process, which
is convenient for the practical implementation.

E. PERFORMANCE OF THE PROPOSED RECEIVER WITH
DL-BASED JOINT DETECTION AND DECODING
Fig. 10 illustrates the performance of our proposed DL-based
joint detection and decodingwith (1024, 512) polar code [33].
The BP subnet with 50 iterations is taken into consideration.
And similar to Fig. 9, the dashed lines are the performance of
conventional coded and uncoded Nyquist-criterion systems.

As shown, compared to other baselines, the proposed
DL-based joint detection and decoding can achieve an SNR
gain over FDE by 1.16dB and is only 0.3dB worse than MAP
detection, considering β = 0.5, τ = 0.7 and BER = 10−4.
Additionally, the complete DL-based receiver design is appli-
cable to the implementation by AI chips in the future.
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FIGURE 9. Performance of the proposed joint DL-based detection and SIC
versus some baselines for (64800, 32400) LDPC-coded FTN signaling.

FIGURE 10. Performance of the proposed DL-based joint signal detection
and decoding versus some baselines for (1024, 512) polar-coded FTN
signaling.

TABLE 2. Computational complexity of different FTN detection schemes.

F. THE COMPLEXITY ANALYSIS OF DIFFERENT FTN
DETECTIONS
To compare the computational complexity of different FTN
detections, for each scheme, we count the numbers of addi-
tion and multiplication operations consumed for every single
estimated symbol and list them in Table 2. Also, the par-
allelizability of each scheme is taken into consideration to
show whether the parallel implementation can be carried out
to convert the computational complexity into space occu-
pation to reduce the detection delay. In view of the fact
that the offline training does not involve in the FTN signal
detection in practical communication systems, as described

in Section III, we do not include the training process into the
evaluation about computational complexity of the proposed
DL algorithm.

As shown, among the schemes, the complexity of the pro-
posed DL algorithms is very close to that of FDE detection.
And both these two schemes can be implemented in paral-
lel to reduce the detection delay. Although MAP algorithm
requires fewer multiplications than FDE and the proposed DL
algorithm, the lack of support for parallel implementationwill
lead to severe detection delay, which has been proved by its
application in turbo decoders.

VI. CONCLUSION
FTN is a promising technology to improve spectrum effi-
ciency. This paper, as far as we know, is the first attempt
to apply DL into channel coded FTN detection and decod-
ing. In this paper, we propose two DL-based FTN receiver
designs, which have shown a near-optimal performance
over some traditional algorithms. In particular, the pro-
posed DL-based joint detection and decoding architecture
can replace the whole baseband part of the FTN receiver,
which can effectively improve the integration of the FTN
receiver design. Moreover, with the rapid development of
AI chips, the proposed DL-based FTN receiver designs are
promised to show their advantages in the future imple-
mentation for AI-aided communications. Finally, in our
future work, we will conduct more researches to extend the
DL-based FTN detection to other practical channel environ-
ments (e.g. the multi-path fading channel).
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