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ABSTRACT In this paper, we propose an energy-saving framework for Wireless Sensor Networks (WSN)
using machine learning techniques and meta-heuristics according to environmental states. Unlike conven-
tional topology-based energy-saving methods, we focus on the energy savings of the sensor node in theWSN
itself. We attempt two-phase energy savings on the sensor nodes. First, network-level energy saving, called
N1-energy saving, is achieved by finding the minimum sensor nodes needed to ensure the performance of
the WSN. To find the minimum sensor nodes, we apply hybrid filter-wrapper feature selection, a typical
machine learning method, to find the best feature subsets. Second, we achieve energy savings of the WSNs
by manipulating the sampling rate and the transmission interval of the sensor nodes to achieve node-level
energy saving, which is referred to as N2-energy saving. To do so, we propose an optimization method
based on Simulated Annealing (SA), which is an efficient method that can find the approximate global
optimum in datasets where it is difficult to collect precise values due to noise problems, such as sensor
data. Some numerical examples are shown with respect to several control parameters. We conduct several
experiments with real-world sensor data in a smart home to prove the superiority of the proposed method.
Through these experiments, the sensor nodes are shown to be selected by a method performing N1-energy
savings effectively while minimizing the loss of performance compared to the original WSN. In addition,
we demonstrate that N2-energy savings can be achieved while maintaining the QoS of the WSN through an
optimal sampling rate and transmission interval determined by the SA.

INDEX TERMS Wireless sensor network, energy-saving, machine learning, hybrid filter-wrapper method

I. INTRODUCTION
The explosive growth of services using Wireless Sensor
Networks (WSN) has led to an exponential increase in the
number of sensor nodes powered by non-rechargeable batter-
ies with limited capacity. So, energy savings of the sensor
nodes and the WSN itself is one of the main challenges
to sustain WSNs [1]. To implement energy-efficient WSNs,
researchers have developed optimal routing protocols [2], [3],
detected faults of the nodes [4], or constructed the topol-
ogy of WSNs [5]. Some also save energy by manipulating
the sampling rate of each sensor node [6]. These meth-
ods manipulate the sampling rates by using mathematical
optimization models or heuristic models for topology con-
trol [5], coverage preservation [7] or localization [8], [9].
However, such model-based WSN management has some
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limitations as follows. The model-based WSN topology is
constructed using predefined functional specifications of the
sensor nodes. However, the performance of the sensor nodes,
which are deployed in the real-world, greatly depends on
the environment in which they operate (e.g., weather, time,
location, etc.), and the environment directly affects the qual-
ity of the collected sensor data [10]. For example, a light
sensor or an image sensor shows a higher resolution and
precision during the day than at night. A sound sensor varies
in performance depending on the degree of the surround-
ing sound noise. Nevertheless, a WSN topology configured
without considering these environmental states may result
in unnecessary energy consumption. In addition, due to the
exponential increase in the number of sensor nodes and the
emergence of high-performance sensors [11], it is difficult
to expect dramatic energy-savings simply by reconfiguring
the topology of the WSN without considering the energy
consumption of the sensor node itself.
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In order to solve such problems, this paper proposes a
new method that significantly reduces energy consumption
in WSNs by implementing a combination of machine learn-
ing techniques and meta-heuristics. The proposed method
executes the energy-savings in two phases. In the first
phase, it tries to achieve network-level energy-savings, called
N1-energy saving. To do so, the proposed method determines
the best subset of the sensor nodes depending on the environ-
mental states in which they operate to configure the WSN
topology. In the second phase, it tries to achieve additional
energy savings by adjusting the sampling rate and transmis-
sion interval of the sensor nodes constituting theWSN (which
hereafter we refer to as N2-energy saving).

In the N1-energy savings phase, it is essential to select
the minimum subset of sensors from the original sensor set
depending on the environmental states. To do so, we propose
a sensor selection method based on hybrid filter-wrapper
methods in feature selection [12]. To recognize the patterns of
data that occur in specific environmental states, the proposed
method selects the necessary sensor nodes using information
theory and classifier predictive performance. The proposed
method seems similar to selective sensing, which turns on
only the sensors needed in certain environmental states [13].
However, the proposed method differs from conventional
methods when selecting sensor nodes based on the predic-
tive performance of the classifiers. It can minimize the loss
of information in the sensor data needed to discriminate
patterns, and it further allows for a trade-off between the
information loss and the energy savings.

To achieve N1-energy savings, it is necessary to determine
the optimal sampling rate and the transmission interval of
the sensor nodes considering the operating environments and
the quality of service (QoS) of the WSN. Intuitively, energy-
efficiency can be achieved by configuring low sampling rates
and long transmission intervals. However, it may result in a
deterioration of the QoS using WSNs due to communication
delays between the sensor nodes and the lack of the sensor
data. In this light, for N2-energy savings, the sampling rate
and transmission interval must be adjusted considering the
between energy-efficiency and the QoS. To do so, we pro-
pose an optimal sampling rate and a transmission intervals
adjustment method that combines Simulated Annealing (SA)
with supervised learning. To do this, we define the objective
function of the SA considering the energy consumption of
the WSNs and we identify additional constraints to preserve
the information of the sensor data for QoS of the WSN using
machine learning techniques.

The contributions of this paper can be summarized as
follows. First, we consider the environmental states when
selecting the sensor subset to reflect the performance of the
sensors that change with the environment. In previous work
[14], we proposed a method to select the sensor subset and
manipulate the sampling rate and the transmission interval
for them. However, the method does not account for the
environmental states of the sensor nodes, which significantly
affect the quality of the sensor data. Therefore, it may result

in an infeasible solution for real-world applications. To over-
come this problem, we propose a Fuzzy c-means (FCM)
clustering-based data shardingmethod that canmake an adap-
tive framework according to changes in the environmental
states. In addition, the wrapper method has been adopted to
select the best sensor subset. It may cause excessive compu-
tational costs for many sensor nodes in the WSN. We pro-
pose an advanced sensor subset selection method by using a
hybrid filter-wrapper feature selection method. The new filter
measure is proposed using the distances between the sensor
nodes, not information theory, and a sensor nodes batching
method is developed to reduce the exhaustive wrapper evalu-
ations. Second, we proposed a novel framework to reduce the
energy consumption using N1-energy savings and N2-energy
savings. Through these two phases of energy savings, we can
achieve drastic energy savings in the WSN.

This paper is organized as follows. In Section 2, we review
the related research. Section 3 offers the overall framework
and detailed process. In Section 4, the experimental results
are suggested to demonstrate the effectiveness of the frame-
work. Finally, Section 5 presents the conclusions and further
research.

II. RELATED WORK
Energy consumption is one of the main constraints cur-
rently affecting WSNs, so many studies have been carried
out on energy-awareness routing. First, some researchers
attempted to design a routing protocol [16]–[19]. The rout-
ing protocol finds the best energy efficient paths from the
source node to the destination node in the WSN [15].
Brar et al. [16] proposed energy an efficient direction
transmission-based energy aware routing protocol called
PDORP, which is developed through a hybridization of
genetic algorithms and bacterial foraging optimization.
It shows a high throughput, reduced delay, and less energy
consumption in the WSN. Haseeb et al. [17] proposed secret
sharing to resolve the high energy consumption problem
of a multi-hop routing protocol. Xu at al. [18] proposed a
source routing-based energy-efficient region routing proto-
col called ER-SR, which reduces the energy consumption
of the data transmission and balances the energy consump-
tion among different nodes jointly. Furthermore, to minimize
the energy consumption, they introduced a distance-based
ant colony algorithm to find the optimal transmission path.
Zhang et al. [19] proposed E-BEENISH, a balanced energy
efficient network, by integrating super-heterogeneous pro-
cessing and a routing protocol. E-BEENISH uses single-hop
communication for heterogeneous WSNs. It is based on the
weighted election probabilities of each node to overcome
heterogeneity between them.

There is another way to reduce the energy consumption,
the topology control of the WSN. The topology control
algorithm is divided into two different problems: topology
construction and topology maintenance. The topology con-
struction builds an energy efficient topology of theWSN [20].
Saha and McLauchlan [21] proposed an energy-aware
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topology construction protocol named EAST. EAST builds
on the minimal spanning tree method. This protocol places
weaker (or unconnected) nodes into a sleep mode while
maintaining connectivity and coverage of the network.
Gong et al. [22] proposed a distributed algorithm called
toward source tree (TST), which builds approximate
minimum-length multicast trees in WSNs to improve the
efficiency of the data dissemination. Yu et al. [23] proposed
a cluster tree topology construction method based on particle
swarm optimization (PSO) for WSNs. They use the PSO
to solve optimization problems by constructing an evalua-
tion function that reflects the energy consumption. All of
these topology construction methods can reduce the energy
consumption and can consequently prolong the lifetime of
the WSNs. The topology maintenance is an iterative pro-
cess of constructing, restoring and switching to obtain the
best topology according to changes in the WSN. Rajeswari
and Seenivasagam [24] proposed a topology maintenance
protocol that conserves energy. The proposed protocol con-
siders the location information, sleep cycle scheduling, and
locomotion control to improve the lifetime of the networks.
In particular, the sleep cycle is scheduled to reduce the energy
consumption.

In recent, many researchers have exploited optimization
algorithms for routing protocols and topology control, and
some research that uses machine learning techniques has
also been proposed. Alsheikh et al. [25] indicated that
machine learning techniques can be a practical solution
to improve energy efficiency. These can also overcome
the unexpected environmental behaviors or circumstances.
Barnawi and Keshta [26] compared energy management
models using Naïve Bayes, MLP and Linear-SVM. In this
paper, the energy management the model based on Linear-
SVM shows the best energy efficiency compared to others.
Also, some research attempts to adopt reinforcement learning
techniques to optimize the routing protocol of the WSN
instead of the meta-heuristics. Oddi et al. [27] proposed a
routing algorithm to prolong the network lifetime by balanc-
ing the routing effort among sensor nodes based on reinforce-
ment learning. Kiani et al. [28] also applied reinforcement
learning to make intelligent routing protocol systems. At this
time, the appropriate data transmission time determines the
Q-value parameter of the reinforcement learning.

III. PROPOSED ARCHITECTURE FOR THE ENERGY
SAVINGS OF WSNS
The architecture of the energy savings for the WSNs con-
sists of three modules, including the Environmental States
Discovery Module (ESDM), Environmental state-adaptive
Sensor Selection Module (ESSM), and Optimal Schedule
Determination Module (OSDM). The schematic depicted in
Figure 1 shows the architecture for the WSN energy savings.

The ESDM performs data preprocessing for data sharding
(or horizontal partitioning). At this time, the criteria of the
data sharding are environmental states, which are Spatio-
temporal conditions that can affect the performance of the

FIGURE 1. Schematic architecture of energy savings of the WSN.

sensor nodes when the WSNs are working to provide ser-
vices.

The ESSM is conducted to achieve N1-energy savings.
To do so, it searches for all sensor nodes in the WSN to
determine the sensor subsets that are as small as possible.
As a method to determine the sensor subsets, we propose a
hybrid filter-wrapper sensor selection technique that can find
batches of sensors to be evaluated.

The OSDM determines the optimal sampling rate and the
transmission interval of the selected sensors depending on the
environmental states in order to achieve N2-energy savings.
To do so, the OSDM solves the optimization problemwith the
objective function taking into account the energy consump-
tion of the sensor node itself and the constraints necessary to
preserve the performance of the WSN.

A. ENVIRONMENTAL STATES DISCOVERY MODULE
To achieve energy savings with the proposed method,
the environmental states in which the WSN works must be
clearly distinguished. Prior to describing how to determine
the environmental states, we define the variables required for
these.
Definition 1: Labeled sensor dataset (SD) is a matrix as

follows.

SD = (S1 . . . Si . . . SmT ) (1)

where Si is a N × ni sub-matrix to represent the sensor data
collected subset from the ith sensor, N is the total number of
sensor data samples, and ni is the total number of the feature
of ith sensor. In addition, Si is composed of feature vectors
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Fik (k = 1, 2, . . . ,ni) and has at least three features for time,
location, and sensor data (ni ≥ 3). T is a vector of the target
label, which is a class for a specific sensor data, t has one of
the classes included in class set C as a label.

However, it is difficult to determine the exact environmen-
tal states in which the data was collected by the SD alone,
which includes only the time and location of the data collec-
tion. To solve the problem, we augment the temporal features
and spatial features to SD that have the biggest impact on the
performance of the WSN sensor nodes. As a result, an aug-
mented labeled sensor dataset (ASD) is generated. At this
time, the temporal features and spatial features of the ASD are
discretized into day, night, weekday, weekend, home, office,
park, etc. The ASD is represented as follows.
Definition 2: Augmented labeled sensor dataset (ASD) is

a matrix as follows.

ASD = (S1 . . . Si . . . Sm . . .Atl . . .A
s
o . . . T ) (2)

where Atl and Aso are composed of feature vectors, which
represent temporal features and spatial features, respectively
(1 ≤ l, o,m < l < o).

However, augmented sensor data occurs in different envi-
ronmental states. Thus, the patterns of the environmental
states can be generated for as many as the number of sensor
data. Due to the high variability in the patterns of the environ-
mental state, this can result in a heavy computational cost and
risks the loss of accuracy in order to find the sensor subset.
To reduce this cost and risk, FuzzyC-means (FCM) clustering
is used to bring together environmental states among similar
ones. FCM clustering is the best choice for the hard boundary
problems where it is difficult to clearly distinguish one sensor
data into an environmental state like ASD. Furthermore, by
applying the membership function to the distance measure of
the clustering method, FCM clustering shows good perfor-
mance when the cluster overlaps [29]. The distance function
between the centroid and the data needed to perform FCM
clustering is calculated as follows.

d (xn, ctc) = ‖xn − ctc‖p (3)

where xn is nth sample of sensor data in ASD, ctc is randomly
selected data sample as a centroid (ctc ⊂ ASD, c ≤ C), C
is the number of clusters, and p is the distance order, such as
Manhattan (p = 1) and Euclidean (p = 2).
In addition, if two arbitrary clusters in ASD are overlap,

the cost function to distinguish them is as follows.

cost function =
C∑
c=1

N∑
n=1

wmncd (xn, ctc) (4)

where wmnc is the membership value for which xn belongs to
the cth cluster, and m is a parameter to determine the level
of cluster fuzziness. The Lagrangian multiplier is applied to
find the optimal ctc and wmnc to minimize the cost function.

The Lagrangian multiplier is applied as follows [30].

ctc =

∑N
n=1 w

m
ncxi∑N

n=1 w
m
nc

, c = 1, . . . ,C

wnc =

(
1

d(xn,ctc)

) 2
m−1

∑C
t=1

(
1

d (xn, ct t)

) 2
m−1

(5)

The cost function is updated using the optimal ctc and
wmnc. This process is repeated until the centroid ctc converges
to a specific value. As a result, FCM clustering determines
the following environmental states ESc. At this time, one cth

cluster is mapped to one ESc.
Definition 3: cth environmental state (ESc) is a set of

feature intervals of ASD to describe an environmental state.
It is represented as follows.

ESc = {. . .Rik . . .} (6)

where Rik is a range
[
r−ik , r

+

ik

]
of Fik , r

−

ik and r
+

ik are minimum
and maximum value in cth cluster, respectively.

The overall procedure of the FCM clustering for environ-
mental states discovery is summarized in Algorithm 1.

Finally, a data sharding for SD is conducted using ESc.
As a result, shared sensor dataset (sSDc) depending on the
environmental state is generated as follows.
Definition 4: The shared sensor dataset considering the

environmental state (sSDc) is represented by the following
matrix.

sSDc=(sS1 . . . sS i . . . sSmT ) (7)

where sS i is a sharded data subset (sS i ⊂ Si), and all samples
xn ∈ sSi satisfy Rik for all k.
sSDc is used for N- saving and N2-energy saving depend-

ing on the environmental states.

B. ENVIRONMENTAL STATE-ADAPTIVE SENSOR
SELECTION MODULE
The ESSM determines the sensor subsets from sSDc which
each target label can be classified as the most efficient in
terms of energy. As shown in Table 1, the structure is very
similar to the problem of finding a subset of energy-efficient
sensors in theWSNwith many sensor nodes and the selection
of a subset of features needed to classify the classes from a
high-dimensional dataset with many features as well.

Thus, we will determine the environmental state-adaptive
sensor subsets using a hybrid filter-wrapper method [12],
which is known as the most efficient way to find feature
subsets. However, even if a hybrid method with low computa-
tional complexity is used, it results in a high time complexity
and computational burden to find the subsets of the sensor
nodes for WSNs that contain a large number of sensor nodes.
In addition, the burden is exacerbated because we must also
consider the environmental states.

To reduce this burden, we devise a novel filter method, not
the variance or information theory, but one that can reflect the
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TABLE 1. Comparison of feature selection and sensor subsets selection.

distance between the sensor nodes. To mitigate the burden of
the wrapper method due to exhaustive evaluations, we only
perform evaluation on batches of adjacent sensor nodes, not
all possible subsets of the sensor nodes. To do so, we first
have to find the batches, which are composed of adjacent
sensor nodes in the WSN. At this time, the batches are found
by the distance between the sensor nodes and the density of
the sensor nodes. The distance between two arbitrary sensor
nodes (a, b ∈ i, a 6= b) in the WSN is calculated as follows.

dab =
∣∣∣µloa − µlob ∣∣∣ /(max (µloi )− min (µloi )) (8)

where µloi is a mean value for all location data of Si
For each pair of sensor nodes in the WSN, the distance is

calculated using equation (8). As a result, the m×m distance
matrix D is generated as follows.
Definition 5 (Distance Matrix): (D) is a symmetrical dis-

tance matrix between sensor nodes in the WSN.

D = [. . . dab . . .] (9)

where dab is the distance between two sensor nodes a, b by
(8), and dab = dba.

Using this matrix D, batch Bi based on an arbitrary sensor
node Si is added gradually from the sensor closest to Si. Also,
all batches are disjoint for each other and do not have the
same sensor (Bi ∪ Bi′ = φ). In general, the size of batches
(|Bi|), i.e, the number of sensor nodes to be included in the
batches, is a constant determined using an empirical study.
However, it is hard to find a best |Bi| to deal with lots of sensor
nodes, since the vastness of the WSN needs dynamic |Bi| to
compose the close sensor nodes as elements of Bi according
to the deployment pattern around Si. To do this, we propose
a method to dynamically determine the size of the batches
(|Bi|) using the density. It is the number of sensors located
at a radius rd about an arbitrary sensor Si as depicted in
Figure 2-(a). The density is calculated as follows.

density (Si, rd) =
∣∣{Si′ |dii′ ≤ rd, i 6= i′′

}∣∣ (10)

where rd is a constant value to represent the radius of Si.
To determine |Bi|, we perform a polynomial regression on

the density, density (Si, rd), and find the pole using the deriva-
tive. In general, polynomial regression is calculated using
the Lagrange method. However, if the number of data points
(at this time, the number of sensor nodes) is not accurately
known, a non-decreasing characteristic cannot be reflected

FIGURE 2. (a) Sensor nods deployment and (b) density plotting of ith
sensor node according to the radius.

due to the degree of the estimated polynomial equation. To
avoid this problem, we performed an estimation using a 3rd
degree polynomial equation to find the poles clearly. For a
given condition, the polynomial regression y based on the 3rd
degree polynomial equation is as follows.

y = a0 + a1x + a2x2 + a3x3 s.t (a2)2 − 3a1a3> 0 (11)

For all Bi, we apply the wrapper method to determine
the minimum sensor subset sS∗i to classify the target label
(T ) with a high accuracy rate (

∑
i=1

∣∣sS∗i ∣∣ ≤ m). The wrapper

method performs learning for any classifier using all possible
sensor subsets and target label (T ). Then it selects the sensor
subset that has the best classification results in terms of accu-
racy, recall, and F1 measurements. At this time, the results of
the wrapper method vary depending on which performance
measure is to be applied. In general, themost widely used per-
formance measure is the accuracy to obtain a high accuracy
rate for only T . If an unexpected pattern not included in T
occurs, selecting the sensor subset by accuracy is infeasible.
Thus, we choose the recall measure to guarantee the stability
of the sensor data for unexpected patterns not included in T .
In addition, by considering the additional energy consump-
tion, the wrapper selects the sensor subsets with stable and
low energy consumption as sS∗i . The performance score of the
wrapper using recall and energy consumption is calculated as
follows.

EASi= Recall−eci/2(ecmax − ecmin) (12)

where eci is the energy consumption of the ith sensor. ecmax
and ecmin are maximum and minimum energy consumption
among the sensors, respectively.

Algorithm 2 describes the process of selecting the best
sensor subset from sSDc using the dynamic batch.
After all, we can achieve N1-energy savings by using only

the smallest sensor subset (sSD∗c ) that has a high performance
(sSD∗c = (. . . sS i∗ . . . T )).

C. OPTIMAL SCHEDULE DETERMINATION MODULE
In the previous module, we determine the best sensor subset
sSD∗c according to an environmental state, which can con-
tribute N1-energy savings of the WSN. Using the best sensor
subsets, we attempted to determine the sampling rate and
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the transmission interval of the sensors that can maintain the
performance of the WSN while achieving energy savings.
To do so, we propose an optimization method based on Sim-
ulated Annealing (SA), which is an efficient method to find
approximate global optimum in datasets where it is difficult
to collect precise values due to noise problems, such as sensor
data [31].

The basic power consumption of the sSD∗c (Pc) is simply
represented as follows.

Pc =
∗∑
i

(
Cei∗

αi∗
+ βi∗Tei∗ ) (13)

where αi∗ is the sampling rate of sS i∗ , Ci∗ is the energy
consumption per sampling, βi∗ is the transmission interval,
and Tei is the energy consumption per transmission.
According to Equation (13), since the power consumption

Pc is a linear function, it is most commonly used to decrease
αi∗,epoch and increase βi∗,epoch to minimize the power con-
sumption. However, if we set αi∗,epoch and increase βi∗,epoch
in this way, the performance of the WSN (e.g. QoS) can
be significantly degraded. To prevent the degradation of the
WSN performance, we propose a revised objective (loss)
function and basic constraint as follows.

min Lep = min
∑
i∗

(
Cei∗

αi∗,ep
+ βi∗,epTei∗ )+ Recallep

s.t. Pr
(
e, e′,Tp

)
> random(0, 1) (14)

where e =Pc
(
αi∗,ep, βi∗,ep

)
, e′ =Pc(α′i∗,ep, β ′i∗,ep),

Pr
(
e, e′,Tp

)
= e

−

(
P
′

c−Pc
)/

Tp
,A
′

i∗,ep, and β
′

i∗,ep are the
neighborhood of αi∗,ep and βi∗,ep, respectively, Tp is a tem-
perature of SA, Lep is loss in current epoch.
Furthermore, it needs an additional constraint that

can prevent the transmission of sensor data before it
is sufficiently collected. This constraint prevents perfor-
mance degradation of the WSN by preventing miss-
ing value operations in the cloud. The constraint is as
follows.

γ × min
(

1
αi∗

)
< minmax (βi∗) , ∀i∗ (15)

where γ is the number of sensor data points to be transmitted.
The proposed method achieves N1-energy saving by

reducing the number of sensor nodes in the WSN. So,
it can result in performance degradation compared to tradi-
tional methods using all sensor nodes in the WSN. In order
to prevent dramatic degradation of the WSN performance,
we added the following constraints:

Accep ≥ θacc × κ

Recep ≥ θrec × κ (16)

where κ is a constant to determine the allowed loss of pre-
dictive performance for θacc and θrec (0 < κ < 1). θacc and
θrec are the accuracy and recall for all sensor nodes in the
WSN, respectively. Accepoch and Recepoch are the accuracy
and recall in an epoch, respectively.

TABLE 2. The summary of used sensors and sensor data type.

TABLE 3. The statistics of the wsn in a smart home.

However, the constraints of the proposed SA method are
not as precise as those of the general SA method. As a result,
its search space can be large. As a result, the convergence
speed to the optimum value may slow due to a decrease in the
temperature (Tp). And the sub-optimal may be encountered
despite enough repetition. To resolve these problems, we use
additional constraint that adds momentum η to conventional
temperature reduction conditions. The constraint is as fol-
lows.

Drop condition :
Tmax

(T + 1+ η)

where η =

{
1 (Lep > Lep+1)
0 (otherwise)

(17)

Using the basic power consumption and additional con-
strains, we determine the optimal sample rate and transmis-
sion interval for the sensor nodes included in sSD∗c for all c.

IV. EXPERIMENTS AND PERFORMANCE EVALUATION
To prove the superiority of the proposed framework,
we design several experiments using the 2 CASAS smart
hone sensor datasets collected from the WSN single resident
apartments [32]. These sensor datasets include sensor data for
various sensors installed at home and activity labels such as
sleep, dress, phone, grooming and so on. The types of sensor
nodes are the same for all datasets, and Table 2 provides a
summary of the sensors and sensor data type. Each of the
smart homes has rooms for bed, dining, kitchen, and living
at least. Although the types of sensor nodes are the same,
the WSN of the datasets are different in the number of sensor
nodes, deployment, internal structure of home, and so on. The
statistics of the WSN are explained in Table 3.

Using the CASAS datasets, we perform the experiments to
prove the performance of the proposed filter-wrapper method
and the optimal sampling rate and transmission interval
method.

A. THE PERFORMANCE OF THE FILTER-WRAPPER
SENSOR SELECTION IN A SMART HOME
The CASAS sensor nodes are installed to detect and sense
activity at home. However, there are many sensor nodes
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TABLE 4. The predictive performance for the size of selected sensor.

FIGURE 3. Predictive performance of the size of selected sensor subset.

even in a room, and this leads to redundant or unnecessary
sensors to detect activities. We conduct the proposed the
filter-wrapper sensor selection and compare the predictive
performance of the selected sensor subset and all sensor sets.
Furthermore, we compare the number of wrapper evaluations
using a batching method and all possible subsets as a target
set to be evaluated. It will prove the high speed and low
computational complexity of our batch method. First, Table 4
describes the overall results of the accuracy (acc), recall
(rec), and F1-measure (F1) for two datasets (1,2) according
to changes of the selected sensor subset size. The predictive
performance for all sizes of selected sensor subsets is shown
in Figure 3.

The results of this experiment show that most of the
measures do not produce significant performance differences
from 20% onwards. In other words, the predictive perfor-
mance is similar when using original WSN and using only
20% of its sensor subset. Rather, when the size of the sensor
subset is 90%, most measures are not good. The reason is
that inappropriate sensor nodes can make noise that disturbs
the classification of patterns. Thus, using more sensors does
not always have a good effect on the predictive performance.
Based on these results, our sensor selection method can
achieve N2-energy savings with the use of significantly less
sensors while maintaining sufficient predictive performance
of the original WSN. Moreover, the optimal sensor config-
uration and number of sensors to maximize the predictive
performance of the WSN can be additionally known.

B. THE RESULTS OF OPTIMAL SAMPLING RATE AND
TRANSMISSION INTERVAL BY ENERGY-AWARE AND
MACHINE LEARNING-BASED SA
The proposed framework finds and determines the optimal
sampling rate and transmission interval using modified SA.
To prove the N1-energy savings performance of the proposed
method, we describe the area to be searched for by the SA
using possible sampling rates and transmission intervals with
the previous best 20% of the sensor subsets and analyze the
location of the optimum we found. The results are shown in
Figure 4, where each area is for datasets 1, 2. To equalize the
measure of the x-axis and y-axis, we used 1/sampling rate
instead of the sampling rate.

As Figure 4 shows, the loss increases with a higher sam-
pling rate, and the loss decreases with a long transmission
interval. This is a natural result. A higher sampling rate
derives a higher loss with the small sensor data set. Simi-
larly, the long transmission intervals increase the delay of
the sensor data to be transmitted, and this leads to loss due
to the lack of information to classify patterns. However, this
loss stabilizes quickly and a sensor node with too low a
sampling rate and short transmission interval cannot help
improve the accuracy. Rather, it results in unnecessary energy
consumption. Therefore, finding the most optimal sampling
rate and transmission intervals in this trade-off relationship
is very important and can drastically reduce the sensor node
energy.

Looking at the solution found in our method, we can
find a sampling rate and transmission close to the optimum.
Although the default values of 1/sampling rate and transmis-
sion rate were 0.05 seconds, our method suggested more than
10 times bigger than the values. Also, the performances of
the WSNs are similar with the best accuracy. This means
our method can reduce the energy consumption by more than
90%.

However, a balance between the sampling rate and the
transmission was not clearly found. The solution from dataset
1 yielded better results for the sampling rate, while the solu-
tion for dataset 2 yielded better results for the transmission
intervals. Also, we did not choose the sampling rate and
transmission interval very tightly because we chose recall
rather than acc to find a solution based on the stability of the
sensor data. Given this, our method found a good solution for
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FIGURE 4. Search space and our solution using SA according to sample
rates and transmission intervals.

both datasets, preventing unnecessary energy consumption of
the sensor nodes.

V. CONCLUSION AND FUTURE WORKS
We proposed energy savings for the WSN framework using
machine learning techniques and meta-heuristics considering
the environmental states. Furthermore, we proved superiority
of the proposed framework using several experiments. Unlike
traditional energy-savings approaches to change the structure
of theWSN in terms of the topology, we have achieved energy
savings by directly reducing the sensor nodes or adjusting
their sampling rate and transmission interval in the WSN.
In addition, we applied machine learning techniques to the
meta-heuristics to suggest a new energy savings strategy in
terms of the information of the sensor data. The effect on
the suggestion can be proved with experiments with CASAS
datasets in real-world sensor data, and we confirmed possibil-
ities e that the adjusted WSN obtained with our method can
have high QoS on sensor data with less energy consumption.

Despite the superior performance, the proposed method
has the following limitations. Since we did not consider
the topology of the WSN, our method can be infeasible in
the real-world due to bad routing protocols and complex
topology. In addition, we tried to reduce the computational
complexity of our proposed method and achieved a reduction
of it, but the proposed method still has a lack of scalability
to handle changes in the WSN. Finally, the proposed method

cannot be applied to aWSNwithout labeled sensor data, since
it utilizes supervised learning techniques.

In future works, we will improve the method to overcome
limitations that have been identified. Network or graph theory
can be adopted to consider the topology of the WSNs, or the
topological features may be good information to select the
best sensor subset to preserve an efficient structure of the
WSNs. Furthermore, we consider the boosting algorithm of
the feature selection to obtain scalability of our method.
We will devise a method to take advantage of unsupervised
learning techniques so that our method can be applied in
the WSNs without labeled sensor data. Finally, to reduce the
dependency on the sensor data, we will study a way to use
ontology or linked data to effectively control the sensor or its
sampling rate and transmission interval.
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