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ABSTRACT This paper focuses on the application environment of solar charging in Energy Harvesting
Wireless Sensor Networks (EH-WSN), and studies how to effectively use energy prediction to extend the
life of sensor networks. Considering the prediction algorithm of the standard Least Mean Square (LMS),
the output power error is large when weather changes are fluctuating, and energy collection cannot be
accurately predicted. This paper proposes a Correlation Least Mean Square (C-LMS) prediction model
that introduces the correlation factor of weather changes. The algorithm has low complexity with a certain
flexibility, which can solve it quickly and effectively improve the accuracy of short-term prediction.
Experimental results show that the error rate of the C-LMS prediction algorithm is reduced by about 15%
compared with the LMS model, and the prediction accuracy is significantly improved dealing with weather
fluctuation. At the same time, based on the above lightweight prediction algorithm, the effects of predictive
charging and residual energy on the rechargeable sensor network topology are reconsidered. Compared to a
routing strategy that does not consider predictive charging, the optimized network lifetime has increased by
nearly 31.7%.

INDEX TERMS Rechargeable sensor network, solar energy, energy prediction, network lifetime.

I. INTRODUCTION
Wireless sensor networks (WSN) [1] are one of the hottest
research areas that have attracted widespread attention today,
involving multidisciplinary cross-fusion and new technolo-
gies. Generally, a great number of WSNs form a multi-hop
and self-organizing network [2] and transmit object informa-
tion in the monitoring area in a cooperative manner of sens-
ing, collecting, processing, and wireless communication [3].
The wide application of WSN provides a good technical
equipment and information platform for environmental mon-
itoring, resource protection, military monitoring and other
related fields [4]. But in the actual environment deployment,
WSN has energy limitation due to its own battery power
supply drawbacks. And it is difficult to replace the energy
supply equipment in special environments, which seriously
restricts the application effect of the wireless sensor net-
work in long-term data monitoring and transmission. For the
problem of sensor energy limitation, related research around
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extending the life of the network can be divided into three
categories, namely internal energy saving [5], external energy
collection [6], [7], and wireless charging [8].

Among them, the external energy collection method refers
to using a new energy source in the wireless sensor network
to provide energy supply to the sensor. As the development of
solar energy collection matures, EH-WSN [9] are gradually
applied to the actual. How to make full use of non-constant
solar energy supply for energy harvesting is the key.

This paper proposes a C-LMS prediction model that intro-
duces the correlation factor of weather changes, which can
improve the accuracy of short-term prediction with low com-
plexity and flexibility. Finally, the optimal effects of pre-
dictive charging and residual energy of network topology
adjustment is verified by simulation.

The rest of this paper is organized as follows. Section II
describes the research status and limitations of EH-WSN
energy saving, the hardware measurement of solar energy
collection sensor nodes, and proposes the ideas of this paper.
Section III introduces the C-LMS prediction model and
algorithm design. Section IV compares the stability of the
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TABLE 1. EH-WSN energy prediction algorithm.

prediction algorithm and evaluation of network lifetimes opti-
mization.

II. RELEVANT WORKS AND MOTIVATIONS
At present, the shortage of global energy and the problem
of environmental pollution are becoming serious. How to
wisely use renewable energy to improve network life is very
important in the application ofWSN. The current mainstream
EH-WSN uses renewable energy (solar, wind, geothermal,
vibration, etc.) to supplement the node battery energy. Among
them, solar energy is more suitable for providing energy to
the WSN node as a clean, stable, and safe energy source.
For sensor networks that collect solar energy, the predic-
tion of energy [10], [11] harvesting is critical. The smaller
the prediction error, the more stable the entire network can
operate, thus extending network life. However, the radiation
intensity of solar energy is often accompanied by weather
and time changes, and there are many unstable factors. For
this irregularity, many methods for energy prediction have
emerged.

In the EH-WSN, domestic and foreign scholars have pro-
posed multiple prediction methods for different scales and
different scenarios. The current energy prediction algorithms
for EH-WSN are shown in Table 1. Among them, there
are prediction methods based on short-term historical data.
They are usually based on energy data and historical data
collected on the same day, including the earliest time series
forecasting model such as Exponentially Weighted Mov-
ing Average (EWMA) [12], Weather-Conditioned Moving
Average (WCMA) [13], and improved Universal Dynamic
Weather Condition Moving Average (UD-WCMA) [14]. The
EWMA prediction algorithm assumes that the sun’s illumi-
nation value is similar at each moment of the day, regardless
of the weather change. The predicted value depends only
on the illumination value of the previous moment and the

average of the previous data at that moment. In the case of
continuous smooth weather conditions, the prediction accu-
racy of this method is high, but large prediction errors cannot
be avoided when the weather changes occur. The WCMA
algorithm introduces the weather factor GAP to scale the
average of the days before the predicted time. However, there
is a fixed weighting factor α in both models. It is used to
adjust the value of the previous moment of the day’s forecast
and the proportion of the average of the previous few days.
α is generally artificially set before the start of the forecast
without explicit weather. Therefore, neither of the above
two models can adaptively adjust α according to different
weather conditions, and cannot adapt to the actual scene
with sudden weather and cloud occlusion. Later, the typical
weather pattern recognition was added based on Pro-Energy
to construct an improved UD-WCMA model. Unfortunately,
the extraction of ‘‘typical weather’’ in real-world applications
have certain difficulties, and its predictive accuracy is not
stable.

Some scholars have proposed using machine learning pre-
diction models for long-term energy harvesting. This usually
requires training a large amount of historical data to predict
energy harvesting, such as back propagation (BP) neural
network [15], Recurrent Neural Network (RNN) [16], etc.
However, due to limited sensory memory, a large amount of
training data cannot generally apply to the practical appli-
cation of sensor networks. In addition, some standard-based
adaptive filters are used for prediction [17]. Themain purpose
is to adjust the filter tap weight according to the error between
the historical illumination value and the filter output predic-
tion value to obtain the approximation model of the filter for
the illumination change prediction. However, the traditional
adaptive filter prediction does not fully consider the impact
of the recent 24-hour illumination intensity variation of the
filter iteration rate. And when facing the cloud occlusion,
the output power is prone to large fluctuations, which leads
to a standard LMS badly adapted to light intensity mutation.

In summary, these related researches on energy harvesting
sensor networks are based onmodels such as time series mod-
els, machine learning models, and standard adaptive filters
extend network lifetime, but they all have some limitations.
Among them, EWMA and WCMA cannot adapt to large
weather changes, and the prediction accuracy of critical time
(sunrise and sunset) is low. The improved UD-WCMA is
prone to large error points when the weather is stable. Typi-
cal weather matching is accompanied by subjective factors.
It is difficult to implement in reality, and the load scale
that can be achieved is small. The prediction accuracy of
the neural network prediction model is improved compared
with the time series model. Although the prediction accuracy
and prediction range are improved, the prediction process
needs to train the prediction model through a large amount
of illumination data. It is not applicable to WSNs with less
computational capacity and limited memory. It cannot be
applied to scenarios with real-time prediction requirements.
Based on the short-term accurate solar energy harvesting
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FIGURE 1. Modified solar panel sensor node equipment diagram.

prediction method, this paper proposes a cloud-based predic-
tive filter C-LMS, which is based on the standard LMS adap-
tive filter in sunny weather conditions. In a good case, there
is a more accurate prediction accuracy, but when the cloud
occlusion is faced, the output power is likely to fluctuate
greatly, and the cloudmask coefficient is introduced to correct
the prediction of the standard adaptive filter to improve the
prediction accuracy.

The following analysis based on some preliminary data and
examples lead to the idea of this paper. In order to collect
the solar energy data in the field, Fig. 1 is based on the
existing environment of our lab to build a simple sensor node
charging device with solar panels. To improve the credibility
of the experiment, we prepare two kinds of solar charg-
ing boards with different specifications for the experiment
(specification 1:68∗36mm; specification 2:110∗80mm). The
nodes are tested by CC2530 nodes widely used in the market.
The nodes and solar panels are powered by ordinary nodes
and connected by lithium batteries (3.7v, 650mah). Fig. 2 is
the circuit diagram of the modified solar sensor node. The
daily solar light data was collected outdoors (the observation
period was one month). Figure 3 extracts the 24-hour solar
irradiance data collected outdoors on September 1, 2019.
The distribution characteristics of solar light intensity can
be seen from the figure. Among them, the solar energy data
between 6 a.m. and 7 p.m. accounted for 98% of the total
energy of the day. Therefore, we define the time slot interval
that can collect valid solar energy data as valid data. The
valid data in the following parts refers to the valid time slot
between 6 a.m. and 7 p.m., which is simplified as [6:19] to
represent. In contrast, there is also a period of time during the
day basically without sunlight, and the conditions for energy
recharge cannot be achieved. The impact of this part of data
on the total solar energy in a day is negligible, sowe define the
energy data time interval of 7 p.m. to 12 p.m., 0 a.m. to 6 a.m.
as invalid data, simplified to (19:24] and [0:6) respectively.
This article removes invalid data that has a weak impact on
the total solar energy of a day, avoiding the interference of
invalid data to the subsequent prediction model. Therefore,
the subsequent experiments preprocess the collected data in

FIGURE 2. Solar sensor node circuit diagram.

FIGURE 3. (Sep.1.2019) Actual collection of 24-hour solar irradiance map.

order to provide an accurate source of experimental data for
model verification.

III. C-LMS PREDICTION MODEL CONSIDERING WEATHER
CORRELATION
A. DISADVANTAGES OF THE STANDARD LMS PREDICTION
ALGORITHM
In view of the analysis and summary of the principle, advan-
tages and disadvantages of the existing prediction algorithm
in Section II. It can be seen that the performance of the
adaptive filter is good and suitable for the deployment of
sensor hardware in practice. The LMS prediction algorithm
development based on wiener filtering theory not only has
better convergence performance and steady-state error perfor-
mance, but also has simple algorithm structure, low computa-
tional complexity, and wide application in linear prediction.
The existing traditional adaptive filter prediction principle
model is shown in Fig. 4.

As can be seen from Fig. 4, x(k) is the filter input signal,
y(k) is the output signal that passes through the adaptive filter,
that is the predicted signal value, d(k) is the desired signal,
and refers to the actual output value of time k, and e(k) is
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FIGURE 4. Traditional adaptive filter prediction schematic.

the desired signal d(k) and the estimated signal y(k). The
error signal between the two is adjusted according to the LMS
filtering algorithm to the tap weights ω of the next prediction
time, so that the y(k) of the next prediction time is gradually
approached to the desired signal d(k). Its prediction algorithm
expression is:

y(k) = ωT(k)x(k)
e(k) = d(k)− y(k)
ω(k+ 1) = ω(k)+ µe(k)x(k)

(1)

Equation (1) is the standard formula of the LMS algo-
rithm. It shows that the standard prediction algorithm does
not need to train the historical data to obtain the statistical
characteristics of the data, and only gradually approximates
the true value with the iterative adjustment of the input vector
and the expected response at each iteration. It can quickly
approximate the merit of the weight vector under stationary
conditions. But when faced with non-stationary conditions,
it does not consider the effect of weather illumination abrupt
changes (such as cloud occlusion) on the filter iteration rate.
This results in large fluctuations in the output power error of
the standard LMS, making it difficult to accurately predict
energy harvesting.

B. C-LMS PREDICTION MODEL
Based on the analysis of the standard LMS prediction algo-
rithm, this paper introduces the weather correlation coeffi-
cient to correct the prediction of the standard adaptive filter.
When updating, the time slot is considered to improve the
prediction accuracy, and a new mixed weather correlation
coefficient prediction model C-LMS is established, the spe-
cific parameter information is shown in Table 2.

1) MODEL DESCRIPTION
∧

y(n) = ωT(n)U(n)

e(n) = d(n)−
∧

y(n)
∧

ω(n+ 1) =
∼

ω(n)+µe(n)U(n)

(2)

Equation (2) is an improved formula based on (1), as can

be seen from (2),
∧

y(n) is the predicted value of the predicted
time n, ωT(n) is the Emmett transpose of ω(n), U(n) = [u(n),

TABLE 2. Variable description.

u(n-1), u(n-2), u(n-3), u(n-4)..., u(n-N + 1)] is the N × 1
tap input vector at time n, e(n) is the error of the expected

response d(n) and the predicted value
∧

y(n), and
∧

ω(n+ 1) is the
n+1 time prediction The estimated value of the corrected tap
vector, C(n) is the weather correlation correction coefficient;
µ is the convergence factor step parameter.

It is known that the standard LMS algorithm defaults ω(n)
to a constant coefficient and usually takes the value of 1. The
C-LMS in this paper introduces dynamic weather correlation
to correct the value of w, reconsidering the influence factors
of the weather correlation degree of the historical reference
day and the current predicted time on the iterative value of
the tap coefficient. We use the variance of the reference value
and the predicted value to indicate the degree of correlation.
Among them, the reference value is calculated from the
slot tap coefficient of the previous day (or previous days,
depending on the specific situation), and the predicted value
is calculated from the slot tap coefficient of the predicted day.
That is, d = [0, 1, 2,..., D], t = [0, 1, 2,..., T], where d is
the number of reference days from the current forecast day,
and t is the starting reference time slot of any reference day.
According to Section II, the valid data interval is [6:19], so the
value of t is 6. And the relevant formula for describing the
weather correlation is shown in (3)-(5):

Psim(d) =

1
T

T∑
i=t

[ωd(i)− ∂pre]2

1
T

T∑
i=t

[ωnow(i)− ∂pre]2
(3)

∂pre =
1
T

T∑
i=t

ωd(i) (4)

∂now =
1
T

T∑
i=t

ωnow(i) (5)

Among them, T = n− t, represents the time interval of the
distance prediction time t; ∂pre and ∂now respectively represent
the average value of the reference time slot tap weight ωd
corresponding to the reference day d and the average value of
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the time slot tap weight ωnow of the forecast day; Psim(d) rep-
resents the weather correlation between the d reference day
and the current prediction time slot n. The weather correlation
vector of the historical reference day calculated by (3) is as
shown in (6):

Psim = [Psim(0),Psim(1),Psim(2), . . . ,Psim(d)] (6)

It can be seen from (6) that the smaller the value of Psim(d)
(when Psim(d) is 0∼1), the closer the weather correlation
of the reference day is to the predicted day, and vice versa
(when the value of Psim(d) is greater than 1), the correlation
is low, In order to accurately and quickly reduce the impact
of low correlation data on the current prediction, a similarity
adjustment factor of ε is introduced, and the weight of the
reference vector is adjusted based on the value of Psim(d).
The value of ε is verified by experiments to be 1∼2. The best
adjustment effect can quickly reduce the influence of uncor-
related reference data on the value of tap weight prediction.
The specific formula is as shown in (7):

∧

Psim(d) =

Psim(d), 0 < Psim(d) < 1
1

(Psim(d))ε
, Psim(d) > 1

(7)

The processed weather similarity vector is (8):

∧

Psim = [
∧

Psim(0),
∧

Psim(1), ...
∧

Psim(d)] (8)

Use
∧

Psim(d) to calculate the weighted average of ω(n). The

weather-corrected update weight
∼

w(n), as shown in (9):

∼

w(n) =

d∑
i=0

n∑
j=t

∧

Psim(i) ·w(j)

T×
d∑

i=0
Psim(i)

(9)

Bringing (9) into (2) gives the final C-LMS prediction
model.

2) ALGORITHMIC PROCESS
The basic idea of C-LMS algorithm is based on the solar
radiation value data collected on the day and the days before.
Update the tap weight based on the correlation of the refer-
ence day reference time slot with the current predicted time
slot, calculate the weather correlation by calculating the ratio
of the variance of the reference slot to the slot weight of
the same day. Performing a power-down processing on the
reference data with low correlation, reduce the impact of
uncorrelated reference data on the value of the tap weight

prediction, the correlation weight vector
∧

Psim(d) is obtained.

Finally, the weighted average of ω(n) is calculated by
∧

Psim(d)

and the updated weight
∼

w(n) is corrected. In summary, after

the update weight
∼

w(n) is substituted into the C-LMS model,
a solar energy quantity prediction model based on weather
correlation is constructed.

FIGURE 5. C-LMS algorithm iterative block diagram model.

FIGURE 6. C-LMS algorithm flow chart.

The iterative block diagram of the C-LMS algorithm is
shown in Fig. 5. Fig. 6 is a simplified flow chart of the
C-LMS algorithm.

The detailed prediction model algorithm flow is as follows:

1. Initialize the input data U(n), including the reference
data d(n) of the solar radiation value, and bring them
into the C-LMS model.

2. Calculate the weather correlation Psim(d) of the d refer-
ence day reference time slot and the current predicted
time slot n, Get the initial weather correlation vector
Psim(d) value.
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FIGURE 7. Partially collected raw data table.

3. Start to judge whether the value of Psim(d) is
between 0-1, if so, the correlation between the refer-
ence time slot and the current time slot is high, and the
value of Psim(d) is unchanged; if the value of Psim(d)
is greater than 1, it means that the correlation is low,
use similarity adjustment factor ε to rectify the Psim(d),
recalculate the power of Psim(d) and reassign Psim(d).

4. Get the weather correlation vector Psim(d) after remov-
ing the low correlationweather reference data, and each
variable is brought into the C-LMSmodel to update the
estimated value of w(n+ 1).

5. Obtain the solar radiation output y(n + 1) of the pre-
dicted time slot, and calculate the error signal e(n),
update the reference data vector set.

6. Start the next iteration of the solution until the desired
forecast data set is obtained and the process ends.

IV. EXPERIMENT AND SIMULATION
In order to evaluate the performance of the C-LMS prediction
model, the EWMA, WCMA, and the standard LMS predic-
tion algorithms model are selected to compare the prediction
accuracy and error. In this paper, from the collected solar
power data collected in the field, the current and voltage
values collected per second are preprocessed and the total
solar radiation intensity value (W/m2) is calculated. The orig-
inal data set contains specific dates, acquisition times, and
converted solar radiation values. Some of the original data
sets are shown in Fig. 7.

It can be seen from the actual data observation in Section II,
the valid data interval is [6:19], the experimental setting refer-
ence number D is taken as the maximum 4, and the reference
time slot t is in the range of {t|6 < t < 19}. In order to verify
the accuracy and stability of the predictionmodel experiment,
four days of representative weather change data were selected
from the solar radiation data of the original collected data (the
observation period is one month) for experimental verifica-
tion (August 8, 2019 - cloudy, August 13 - light rain to cloudy,
August 16 - sunny, August 28 - cloudy to sunny).The chosen
data include sunny days (no cloud cover, low weather fluc-
tuations), cloudy (cloud cover, small weather fluctuations),
light rain to cloudy (some clouds cover, weather fluctuations),
cloudy, and sunny (some clouds cover, moderate weather
fluctuations) ) 4 kinds of weather conditions shown in Fig. 8.
Meanwhile, the historical data includes reference time data

FIGURE 8. Solar irradiance data in 4 different weather conditions.

FIGURE 9. Algorithm prediction error rate comparison.

of the current day and reference time slot data of the previous
4 days.

The experiment uses EWMA, WCMA, LMS, and C-LMS
prediction algorithm to predict the above four typical weather
solar radiation respectively. The comparison results between
the prediction result and the true radiation value are shown
in Fig. 9.

It can be seen from Fig. 9 that the EWMA algorithm has
less error and is slightly better than the WCMA and LMS
algorithms when the weather conditions are stable or the
fluctuations are small, such as the data on August 8 and
August 16, in sunny and cloudy conditions. The performance
is good. For weather fluctuations, such as August 13 and
August 28, the EWMA algorithm significantly predicts that
the error increases, while the WCMA and LMS algorithms
have a slightly better prediction error than EWMA. However,
the prediction error of C-LMS prediction algorithm in this
paper is lower than EWMA, WCMA, and LMS algorithms
in four typical weather prediction results, and it has obvi-
ous advantages in the case of unstable weather conditions
and large fluctuation range. The prediction efficiency has
improved by nearly 17.5%, the overall average error rate of

70002 VOLUME 8, 2020



D. Ma et al.: C-LMS Prediction Algorithm for Rechargeable Sensor Networks

FIGURE 10. Actual fit curve of algorithm prediction result.

TABLE 3. Parameter settings.

C-LMS algorithm is 25.21%, which is 15.26%, 8.89%, and
9.76% lower than EWMA, WCMA and LMS respectively.

In order to further analyze the fitting convergence effect
of the four prediction effects, the actual illumination data
collected is fitted with the prediction curve to visually ana-
lyze the prediction accuracy changes of the four algorithms.
Fig. 10 is a block diagram of the real illumination data of the
interval 120 to 215 and the prediction data of the four predic-
tion algorithms. It can be seen from Fig. 10 that the illumina-
tion data of the time slot interval (170, 190) and (200, 210)
fluctuates drastically, and the convergence effect of EWMA
and WCMA is poor, and the error is large. Compared with
the other three prediction algorithms, the C-LMS algorithm
converges faster and closer to the real illumination value at the
inflection point where solar radiation value changes rapidly,
and the prediction curve has the highest fitness fit with the
real data. This proves that the prediction accuracy of the
C-LMS prediction algorithm in the case of cloud occlusion
is more advantageous than the EWMA, WCMA, and LMS
algorithms.

In order to evaluate the actual energy saving effect of the
C-LMS prediction model on the EH-WSN network, we sim-
ulated the network lifetime and data throughput based on the
MATLAB simulation platform. The experimental parameters
are set as shown in Table 3.

FIGURE 11. Comparison of network node survival rates.

Assume that the initial energy of each node is the same
and the SINK node is located at the center of the area. At the
same time, in order to reduce the influence of other factors
on the simulation effect, the experiment only considers the
energy consumption of the node to send data and receive data.
Verify network reliability and network life differences and
advantages under routing and traffic allocation strategies that
consider energy prediction.

The experiment simulates the data transmission and recep-
tion when the number of nodes is 200. The network lifetime
standard uses 1/3 node death as a sign of network death.
It can be seen from Fig. 11 that the routing strategy that
does not consider the predicted charging situation has died
in the 221 rounds of the WSN network, and the number of
remaining nodes in the optimized routing strategy network
is increased by nearly 31.7% compared with the original
network.

V. CONCLUSION
In this paper, a C-LMS prediction algorithm for introducing
weather change correlation is proposed for the rechargeable
sensor network, which effectively improves the prediction
accuracy when weather fluctuation occurs. Compared with
the LMS algorithm, the prediction error is reduced by about
15%. At the same time, the simulation experiment proves
that considering the routing strategy under the condition of
predicting charging can increase the network lifetime by
about 31.7%, which can be generally applied to the practical
application scenarios of solar charging sensor networks.
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