IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 26, 2020, accepted March 22, 2020, date of publication April 8, 2020, date of current version April 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2986134

Parallel Hardware Implementation of Efficient
Embedding Bit Rate Control Based Contrast
Mapping Algorithm for Reversible

Invisible Watermarking

SUBHAIJIT DAS !, ARUN KUMAR SUNANIYA!, RESHMI MAITY?2,
AND NILADRI PRATAP MAITY 2, (Senior Member, IEEE)

! Department of Electronics and Instrumentation Engineering, National Institute of Technology, Silchar 788010, India
2Depa.rtment of Electronics and Communication Engineering, Mizoram University, (A Central University, Government of India), Tanhril 796004, India

Corresponding author: Subhajit Das (subhajitdas151 @ gmail.com)

ABSTRACT This paper presents an improved reversible contrast mapping (RCM) algorithm for reversible
invisible watermarking (RIW) in both software and hardware platforms. Based on well-known parameters
for RIW like distortion, embedding bit rate, payload size and data hiding capacity, an efficient embedding bit
rate control based contrast mapping (EBCRCM) algorithm is proposed. An adaptive linear contrast mapping
on pixel intensity value is asserted with RCM that controls the embedding bit rate without changing the
embedding capacity to maintain distortion. Xilinx system generator (XSG) and VIVADO tool construct the
novel VLSI architecture that needs 173.362 ns latency for 100 MHz clock with throughput 46.146 Mbps and
5.8 ns critical path for single cycle of embedding process. The proposed algorithm is verified in MATLAB
tool based software platform by taking different types of multimedia data like gray-scale images, color
images and video signals. Implementation of low hardware resources based VLSI architecture through
zed-board in real time field programmable gate array (FPGA) platform confirms the capability of high
speed, low cost and real-time use. 100% agreement is observed from software simulations and hardware
platforms.

INDEX TERMS Reversible image watermarking, reversible contrast mapping, Xilinx system generator,

FPGA.

I. INTRODUCTION

The modern world depends on digital medium as well as
digital multimedia data for contemporary communication
system. The proficient choice to provide authenticity as well
as ownership of these digital multimedia data is digital water-
marking (DW) [1]. A watermark which can be a pattern of
bits or any type of digital information like digital signature,
digital finger print data are embedded into the original cover
information during data embedding. The digital watermark
is robust in nature [2]-[4]. In other words, DW is used
when extraction of the watermark is not required. In case
of some DW algorithms, the watermark may be extracted
back but it causes harm to the cover data. Clearly some

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehul S Raval

69072

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

information about the cover data is lost during data extrac-
tion. Moreover for some applications like medical imaging,
legal domains information based military data transmissions;
the small imperceptible distortion that occurs due to the
watermarking process is not acceptable. To overcome these
problems and recover back both the original and water-
mark data without any loss, the reversible watermarking
is taken in account [3], [4]. Some important parameters
need to be explored first. The efficiency and superiority
of an algorithm for RIW are found out based on these
parameters. They are distortion, data hiding capacity, pay-
load size and embedding bit rate. Distortion is a change
or exaggeration that makes something come into view dif-
ferent from the way it actually is. It is a very important
feather in RIW. It can provide the detail of embedding pos-
sibility in multimedia indirectly. The two unique and basic

VOLUME 8, 2020

https://orcid.org/0000-0001-9500-6656
https://orcid.org/0000-0002-1256-5856
https://orcid.org/0000-0002-3895-1448

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

IEEE Access

Without threshold control
Embedding bit rate: 0.3327 bpp

(a)

With threshold control. T= 60
Embedding bit rate: 0.3481 bpp

(c)

FIGURE 1. Controlling over the payload capacity using threshold.

parameters used for measuring the distortions are peak sig-
nal to noise ratio (PSNR) and structural similarity index
matrix (SSIM).

The PSNR can be explored as the maximum value of signal
power to Mean Signal Error (MSE). It is noted that PSNR
is indirectly proportional to MSE. If the disparity between
original and watermarked multimedia data is increased then

VOLUME 8, 2020

With threshold control. T= 30
Embedding bit rate: 0.4183 bpp

(b)

With threshold control, T= 85
Embedding bit rate: 0.3327 bpp

(d)

PSNR will be reduced which in turn provides a bad visual
quality based watermarked image. PSNR will be affected by
embedding capacity and embedding bit rate. PSNR should
be maintained in a limited range. It is found that the PSNR
between the original and watermarked data vary in between
36 dB to 38 dB to maintain its blind property and provide the
best visual quality based invisible watermarked data [1]-[5].

69073

IEEE Access

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

Adaptive feedback comrol

e |

Video Viewer

g

Secret key

Data Type Conversion

Pre-Encoding Block

MATLAR Functicn

Post-Emoding Block Post-Encoding

MATLAR Fundtion

Encoder

FIGURE 2. The basic building block of the encoding process.

The visual quality can be increased by increasing the value
of PSNR above the range but to do this either the embedding
capacity or embedding bit rate needs to be reduced below
their desired range. This decreases the overall efficiency,
superiority and performance of an algorithm for RIW which
is practically not acceptable.

SSIM is another proficient choice to measure the supe-
riority of an algorithm. SSIM is the measurement of the
perceptual difference between two similar multimedia data
like images. When both the original and watermarked images
are purely same with each other, SSIM is equal to 1. In other
words, bits and properties of original data have not been
changed after embedding. We can say that embedding process
has not happened. To maintain the desired range for PSNR,

69074

the SSIM between original and watermarked image should be
varied in between 0.85 to 0.95. [1]-[6].

The second most important property of RIW is the embed-
ding bit rate. Bit per pixel (bpp) is used as the unit of embed-
ding bit rate. It provides the information regarding the number
of bits that are changed during data embedding. The target
value of embedding should be close to 4 intended for 8 bit
gray-scale image data. It is found that the lower 4 bits perform
the basic role of changing the embedding bit rate.

The data hiding capacity is the last foremost significance
for RIW. It defines the total available space on original data
for data embedding. If the full size of the original data is
used for data embedding, the data hiding capacity is equal
to 1. By decreasing the space with respect to the original

VOLUME 8, 2020

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

IEEE Access

*

System
Cienerntor

Watermarked jplmage—

Image From File2
[00000100 |——

Secrel ey

Wideo Viewer]

Diata Type Conversion5s

Pre-decixbing
MATLAB Function

FIGURE 3. The basic building block of the decoding process.

data, the data hiding capacity will be reduced. The distortion
can be controlled by varying the data hiding capacity through
an algorithm. It is concluded that it is better to keep the
average data hiding capacity in between 0.5 to 0.8. In other
words it is the ratio between total number of embedding bits
and total number bits of the input multimedia data. Here the
total number of bits used for embedding process is known as
payload size.

Some related works on RIW are discussed briefly. It is
noted that most of these exiting algorithms are applica-
tion specific. They have not followed the desired range for
above mentioned propertied at all times. Lossless data com-
pression by least significant bit (LSB) shifting [7] is early
RIW algorithm that affords high embedding capacity under

VOLUME 8, 2020

a MATLAR Function

elevated mathematical complexity but the strength of encryp-
tion or authenticity is very low. While the histogram bin
exchange [8] and its modified version [9]-[11] eliminated
these drawbacks but suffer from low embedding capacity
as well as low embedding bit rate. Alternatively to get
better overall performance, the prediction error expansion
(PEE) [12]-[16] is a preferable choice but it suffers from the
requirement of large payload size for embedding prediction
error information which in turn causes increased distortion.
The most proficient approach to realize reversibility is to
build up a linear transformation based lossless forward and
reverse mapping of data. By following these concepts two
well-known exiting works have been found. They are dif-
ference expansion (DE) [17]-[24] and reversible contrast

69075

IEEE Access

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

69076

Out3

Out4

Out5

Out6

Out7

Out8

Out9

»(10)

Out10

»(1)

Out11

»(12)

Out12

»(13)

Out13

»(14)

Out14

»(15)

Out15

To
Frame [y
Frame Conversion13 Unbuffer13
L] o
Frame [y
Frame Conversion12 Unbuffer12
N To
Frame [y
Frame Conversion8 Unbuffer8
To
Frame
: > 183 il
T Frame Conversion Unbuffer
& f — a
(o}
In2
; R = Frame [y

5 l Frame Conversion1 Unbuffer1

k 168]

Ind 109 an
C>5 Frame [y
(I?SS) l |—65| Frame Conversion2 Unbuffer2

In6

x N T > Fan

> "] Frame
In7 =
. N |—156| Frame Conversion3 Unbuffer3
In8
L , S

In9 [4 o =
o) T l

Frame Conversion4 Unbufferd

In10

11 114] To

In11 "l Frame

" o 136 o

2 Frame Conversion5 Unbuffer5

X N T

(o}

2 Frame
(%) g — =

i3 Frame Conversion6 Unbufferé

ik >

In15 "

i Frame

D

In16 i |

Display16 Frame Conversion7 Unbuffer7
To
Frame [y
Frame Conversion9 Unbuffer9
N To
Frame [y
Frame Conversion10 Unbuffer10
To
Frame [y
Frame Conversion11 Unbuffer11
I 7
Frame [y
Frame Conversion14 Unbuffer14
N To
Frame [y
Frame Conversion15 Unbuffer15

FIGURE 4. The inside structural model of pre-encoding function block.

»(16)

Out16

VOLUME 8, 2020

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

IEEE Access

VOLUME 8, 2020

Out1

I o |,
”| Frame " T
Frame Conversion21 Unbuffer21
Frame " T
Frame Conversion20 Unbuffer20

To

Out2

Frame

Frame Conversion30

To

Y

sl

Out3

b
3
lo

>
"l Frame

Frame Conversion16

To

D J—_183
(% ‘ s T30
&) ‘ s 71
(% ‘ 168

ind ‘ 708

\4
s

4

Out4

|k ffard

>
"l Frame

Frame Conversion17

To

6

A 4

G

=3
>

A 4

s

-+

Out5

| Inhyiffard 7

Frame

Frame Conversion24

=3
o
N N NN S S R S R

Y

sl

-+

Outé

| Inhiffarod

q 126 To >
D > e —— (D
D i o
8 » Frame Conversion25 Unbuffer2s
In8
> N — RCTRN N) WG
n9 ["l Frame d D
Out8
10 N -
%} ‘ Frame Conversion26 Unbuffer26
m [T4 T
In11 ‘ "l Frame d ’ @
12] 136 - Out9
n12] J ‘ Frame Conversion27 Unbuffer27
3
s] e —— (D
%) l ‘ » Ijl Frame D out10
In14 "
T - 150 Frame Conversion28 Unbuffer28
In15 l ‘ To
s> > L 99 Frame i
e B-m outt1
Display40 Frame Conversion29 Unbuffer29
To R
’_’ Frame id
B outt2
Frame Conversion31 Unbuffer31
To .
”| Frame d
D outt3
Frame Conversion18 Unbuffer18
To |
Frame -
B-m outt4
Frame Conversion19 Unbuffer19
”| Frame g
D outts
Frame Conversion22 Unbuffer22
To . -
Frame d
D out16
Frame Conversion23 Unbuffer23

FIGURE 5. The inside structural model of pre-decoding function block.

69077

IEEE Access

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

In1 Gateway In

@ »| In |—> a2
In2 Gateway In1
In3 Gateway In2
In4 Gateway In3

@ »| In |—> a5
In5 Gateway In4

&> =D—> a6
In6 Gateway In5

@ »[In —
In7 Gateway In6

«p S M.
In8 Gateway In7
In9 Gateway In8
In10 Gateway In9
In11 Gateway In10
In12 Gateway In11
In13 Gateway In14
In14 Gateway In12
In15 Gateway In13
In16 Gateway In15

ol > Out »(1)
Gateway Out Outt

02 » Out »(2)
Gateway Out1 Out2

03 > Qut »(3)
Gateway Out2 Out3

o4 > Qut »((4)
Gateway Out3 Out4

o5 [ouf (5
Gateway Out4 Out5

6 »[ou] &)
Gateway Out5 Out6

o7 > Out »(7)
Gateway Out6 Out7

o8 > Out »(8)
Gateway Out7 Out8

09 > Out »(9)
Gateway Out8 Out9

010 > Qut »(_10)
Gateway Out9 Out10

o1 > Out »((11)
Gateway Out10 Out11

012 g Out »(12)
Gateway Out11 Out12

o013 > Qut »(13)
Gateway Out14 Out13

o[ou >
Gateway Out12 Out14

ots [od)
Gateway Out13 Out15

016 > Qut »(16)
Gateway Out15 Out16

Forward transform

FIGURE 6. The inside structural model of encoding function block.

mapping (RCM) [25]-[28]. Both these spatial domain based
algorithms improve the payload size as well as the embedding
bit rate [23]-[28]. In DE algorithm, the linear transformation
is applied only on the pixel intensity values that caused the
need of location map control mechanism. In other hand to
reduce the arithmetic complexity, the linear transformation
in RCM algorithm is applied on both pixel intensity values
as well as the pair of pixel locations. In the way under a low
mathematical complexity RCM provides higher embedding
bit rate than DE in single iteration. That makes RCM most
attractive algorithm for RIW particularly for real-time imple-
mentation.

The need of hardware based real time implementation RIW
is increasing day by day when various types of attacks have
been considered. There are basically geometrical attacks in
watermarking that affect the efficiency and superiority of
an algorithm. These attacks happen during data transmis-
sion over unsecured medium. It can be classified into two

69078

types. They are local and global attacks. The local attack is
mainly active on a part or portion of the whole data. In other
hand, the global attack affects on whole multimedia data
through pixel by pixel. To recover back both the cover and
watermark data from attacked watermarked data an additional
watermark synchronizer function can be used [29]. RIW is
fragile in nature. Due to this reason software implementa-
tion of RIW is easily accessed and corrupted by attackers.
Also software implementation cannot provide efficiency and
superiority of an algorithm in terms of power, resources and
simulation time. To make the algorithm robust in nature and
improve the efficiency, real time hardware implementation is
a most acceptable solution. The hardware implementations
of DE, RCM, histogram bin exchange, wavelet transform
and channel coding algorithms have been observed [30]-[34].
The comparative results between these and proposed
algorithm based on hardware resources utilization are
presented.

VOLUME 8, 2020

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

IEEE Access

\ 4

A 4

A4

\ 4

\ 4

A 4

A 4

\ 4

A 4

\4

In
Inl Gateway In21
In
In2 Gateway In20
In
In3 Gateway In30
In
In4 Gateway Inl16
In
In5 Gateway Inl7
CO—m
In6 Gateway In24
In
In7 Gateway In25
CO—m
In8 Gateway In26
O
In9 Gateway In27
In
In10 Gateway In28
In
Inll Gateway In29
In
Inl2 Gateway In31
In
Inl3 Gateway In18
In
Inl4 Gateway In19
In
Inl5 Gateway In22
In
Inl6 Gateway In23

FIGURE 7. The inside structural model of decoding function block.

VOLUME 8, 2020

al

a2

a3

a4

as

a6

a7

a8

a9

all

all

al2

al3

al4

als

alé6

outl

out2

out3

out4

out5

out6

out7

out8

out9

outl0

outll

outl2

outl3

outl4

outls

outl6

Inverse transform

» »
> Out »(_1
Gateway Out16 Outl
> Out »(2)
Gateway Out17 Out2
> Out »(3)
Gateway Out24 Out3
> ou >4
Gateway Out25 Out4
> Out (5
Gateway Out26 Out5
*L_ Ouw| »CO
Gateway Out27 Out6
> Out »(7
Gateway Out28 Out7
> Out »(8)
Gateway Out29 Out8
> Out »(9)
Gateway Out30 Out9
> Out »(10)
Gateway Out31 Outl0
> Out »(1D)
Gateway Outl8 Outll
> Out »(12)
Gateway Out19 Outl2
>L_ Ouw|)
Gateway Out20 Out13
> Out »(14)
Gateway Out21 Outl4
> Out »(15)
Gateway Out22 Outl5
> Out »(16)
Gateway Out23 Outl6
69079

lEEEACC@SS S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

uint8

:

A 4

i€

-(_|§ g-J?-(_'
EY

Comje” | &1 (e | < f [nmjet | |]

EY

o
51

ta Type Conversion

uint8 »>

Data Type Conversion1

-
o
L&

Out1
uint8 > L1 [132]
In3 Out2
Data Type Conversion2 [17 1| -
[168| = 4
uint8 N | D)

-
[
Lo
L

Data Type Conversion3

@
<
S
]
)
o
=4
&

uintg > o
5 :
Data Type Conversion4 Buffera Out7
COH)— uint8 »> ous
In6 _ »
Data Type Conversion5 Buffors Out9

>0

uint8 > oo
In7 (D)
Data Type Conversion6 Out11

uint8 »> (12
In8 - Out12
Data Type Conversion7 ;@
GOH)— uint8 » outt3
In9 - ;@
Data Type Conversion8 Buffors Out14

uint8 » ‘i aul o
In10 - E Display24
Data Type Conversion9 Buffer Out16

uint8

5
v
mJ

Data Type Conversion10

@
c
E
[5)
2
=)

uint8

:

5
o

v
mJ

Dat

a Type Conversion11

w
c
S
5}
3

uint8 >
In13
Data Type Conversion12
Buffer12
uint8 >
In14
Data Type Conversion13
Buffer13
uint8 >

Data Type Conversion14

uint8

-
(2]

5
>
\ 4
w
c
-<Jg
-
(! | 2 |]

Data Type Conversion15

Buffer15

FIGURE 8. The inside structural model of post-encoding function block.

69080 VOLUME 8, 2020

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

IEEE Access

uint8

In1

uint8

In2

uints

Data Type Conversion17

A4

Data Type Conversion18

A 4

Y

)

P
R

In3
Data Type Conversion26
uint8
In4

uint8

In5

COH)—» uini

In6

uints

In7

uint8

In8

G)—» uns

In9

uints

In10

In11

uints

In12

uint8

In13

In14

uint8

In15

uints

In16

FIGURE 9. Inside structural model of post-decoding function block.

Data Type Conversion27

A4

()

P
R
R

Data Type Conversion28

A 4

.

P
R

A 4

183

Data Type Conversion29

A 4

A 4

171

Data Type Conversion30

A 4

A 4

168

A 4

Data Type Conversion31

A4

Data Type Conversion32

A 4

A 4

126

A 4

156

Data Type Conversion33

A 4

uint8

Data Type Conversion19

A4

) 8))

o
5
3
o
3
(o]

A 4

Data Type Conversion20

A 4

Data Type Conversion21

uint8

A4

Data Type Conversion22

A 4

o w
[| 8| L | | L]

Buffer21

116

Display49

Data Type Conversion23

A\ 4

Data Type Conversion24

VOLUME 8, 2020

A 4

w
! |3 |

Buffer23

69081

IEEE Access

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

Image 1

FIGURE 10. The four input test images.

£

Watermarked image 1 Watermarked image 2

FIGURE 11. The watermarked images of the respective test images.

The major goal of this work is to propose a novel and
efficient embedding bit rate control RIW algorithm which is
adaptively based on well-known parameters using RCM algo-
rithm. Given attention on the desired range of these parame-
ters, modified linear transformations are used over selected
neighbour pixels and verified in software environment. The
outcome of the algorithm will provide a good visual qual-
ity watermarked image as well as the value of respective
parameters will vary in their desired range. In this way, unlike
application specific algorithms the proposed algorithm repre-
sents a novel algorithm for RIW. The FPGA based hardware
verification and real time implementation of the proposed
algorithm is also presented. The parallel processing based
hardware implementation is also used to achieve high speed
which is immensely needed for real-time applications.

The manuscript is prearranged as follows: The proposed
EBCRCM algorithm is reported in section 2. The embedding
and decoding process are explored in section 3. Section 4 and
section 5 dispense the block diagrams to implement the VLSI
architecture for proposed EBCRCM algorithm using XSG
and VIVADO tool respectively. The analysis and innovative
outcome results are discussed in the last section. This section
also highlights the performance based on inevitability and
comparative analysis with other algorithms.

Il. THE PROPOSED EBCRCM BASED RW
In RCM algorithm [25], linear transforms are applied
on pixels locations and selected pixel intensity values.

69082

Image 3

i = -

Watermarked image 3 Watermarked image 4

The algorithm fails to maintain the desired range of all
parameters. It leads to destroy the essential nature of RIW.
The contrast is used as a constant and it is equal to 3 with-
out depending on the parameters. Due to this reason most
of the parameters values fall outside their desired range.
Fig. 1 shows the control over payload capacity using a thresh-
old value adaptively. The white space is used for further data
embedding process. The performance can be improved by
modifying the linear transform on pixel locations in RCM
[35], [36]. However the implementation of the algorithm in
real time is very difficult as it requires huge number of control
units and finite state machines to control the embedding
capacity over 2D multimedia data.

In proposed EBCRCM algorithm, the same forward linear
transforms are used on pixel locations but modified forward
transforms are applied on the pixel intensity values. The linear
forward transforms are i/ = 2i — j and j/ = 2j — i. Here
(i,) is the pair of pixel locations. These forward transforms
are used to set the embedding space and payload capacity
also. It can be controlled by a predefined threshold value as
shown in Fig. 1. In EBCRCM algorithm the threshold value
T is predefined and set to 20 as from the analysis it is found
that the best possible PSNR within its desired range can be
achieved. The equations of modified forward transformation
are specified in (1) and (2). Here n is a constant which is
used to control the contrast. The n is varied from 3 to 30.
The n is bounded by a predefined contrast limit. The contrast
limit is predefined based on the size of original image. For

VOLUME 8, 2020

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

IEEE Access

" T —=— PSNR(at T=0)
R - —e— PSNR(at T=20)
414 ™ —&— PSNR(at T=40)
| 'v\ —¥— PSNR(at T=60)
404 A AL |
39 Y)
- A QN
@ 2 \ -
= 38 .
I . \ .
Znl 2 n
£ 374 .._ v
1 AN LN
36 . A W - a—aa
A ¥V V¥V VvV VY
35 e b
7 [
34 o e o @ o o o o
r-r-rrrr-r-r-r-r-rr-r—r-r -Tr° T " "T1"
=3 =5 n=7 n=9% p=11r=13n=15n=1Tn=19=21n=23n=25n=27n=29
Contrast Value
(@
2
—&— PSNR(at T=0)
LN —®— PSNR(at T=20)
40+ A —A— PSNR(at T=40)
10 il . —w¥— PSNR(at T=60)
1 I
- A T
1 | - m
g 36 o_\\ ¥ -
= A L
$ Y ~a h -
& 344 . A Vo —a
. -
. ‘L._k_ Ty
324 N
30 0 9 o 060 0 0
—

LIS A LA AL S SN BN B B I NN BN L
=3 p=> =7 0=9 n=11r=13n~15r=1T0=1%=2 1n=23n=2 50=2Tn=29

Contrast Value
(©

n —=— PSNR(at T=0)
—e— PSNR(at T=20)
“\l —A— PSNR(at T=40)
Tm —w¥— PSNR(at T=60)

.
i P R i
I O I I I B

PSNR (dB)
-
]
o

\ ~¥
L D

e L L L L L L L L L L L L L
=3 0=5 n=7 0=90=1 h=11=19=1D=19=2h=231=25=2DH=29

4;
o
=]

T B B A |
¥

Contrast Value

(®)
4 —8— PSNR(at T=0)
| —&— PSNR(at T=20)
0 —&A— PSNR(at T=40)
—¥— PSNR(at T=60)
38
= 136
::{‘: \ \\1 \‘.____7_.
34 \)
. : . N
A v .
b F'. v
32 'Y A,
i . e s {
-
30 M e

L L e B B s B L L N
=3 0=5 =7 n=9p=1 In=130=1 =1 1=1D=2 In=23=25=2"h=20
Contrast Value

(@

FIGURE 12. The graphical representation of PSNR with respect to the contrast value and threshold value for (a) Image 1, (b) Image 2,

(c) Image 3 and (d) Image 4.

256 x 256 image the predefined contrast limit is 18. The
gray level dynamic range of the input image is denoted as
[0,L]. Here L = 255 for eight bits per pixel. The pixel
intensity values of two selected neighbor pixels are p and q.
The transformed intensity values of the pair (p’, ¢) are given

as follows:
, n+1 n—1
= — 1
P { > Jp L 3 Jq ()

, n+1 n—1
= - 2
q { > J q L (P 2
The above two transformations should satisfy the following

conditions to overcome the overflow and underflow. The two
boundary conditions are

0 < ,_\\n—i—lJ _\‘n—IJ <L 3)
=p =) p) q =

, n+1 n—1
0<gqg { 2 Jq—{) JPSL)

VOLUME 8, 2020

The modified inverse transform can be given by

n+1], n—11],
= 5
o=\

n+1], n—11,
= 6
[l U Sl
Here a linear adaptive feedback control mechanism is
asserted with the modified transformations. The adaptive
feedback controls the distortion and embedding bit rate
through the variation of the contrast. For an application, if dis-
tortion is not important then the data hiding capacity can be
controlled adaptively by varying the predefined threshold T to
get higher embedding bit rate which is shown in Fig. 1. Taking
into consideration distortion as well as to implement less
hardware resources based VLSI architecture, in EBCRCM
algorithm the T is kept as a constant and the embed-

ding bit rate is controlled by adaptively varying contrast
value.

69083

IEEE Access

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

o e,

Original frame 2

Original frame 5

Original frame 9

FIGURE 13. The original frames of the input video signal.

e Ty

Watermarked frame 5

.

It

Watermarlked frame 9

FIGURE 14. The watermarked frames of the input video signal.

Ill. OVERVIEW OF EBCRCM

EBCRCM method is verified by MATLAB R2015b using
three types of multimedia data. They are gray-scale images,
color images and video.

A. PROPOSED EBCRCM ALGORITHM FOR
GRAY-SCALE IMAGE

The gray level intensity value of image pixel indicates the
amount of light present on that particular pixel. It has 0 to

69084

sge . . st
Watermarked frame 2

Watermarked frame 3

Watermarked frame 10

255 gray levels for 8 bits image. With some modification this
algorithm is also applicable for color and video signals.

1) ALGORITHM 1: ENCODING PROCESS
Step 1: The original image is read and the predefined thresh-
old T is defined. The contrast value n is set to 3.

Step 2: A pixel location value of image (i, j) is chosen and
(7,)') is obtained. This will be derived from i’ = 2i — j and
J = 2j — i followed by checking the conditions 1 < i < sx
and 1 < j < sx, where sx is image length. For 256 x 256

VOLUME 8, 2020

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

IEEE Access

470y -
s I
—_ ss1ae e

uﬂ?%_w‘m
L osrn
e i
o
o470 CBUF st e P
i
% Do
outS7 0 DEUF st L e TE |
Iﬁ' D sy
oaS[7 0 0BUF ot o L0
— ot 0]
outeT 0] OBUF it ™ i
outhf7 0]
o LU
out 12070 OBLF et D autera]
[o
o = L
o 137-0]_DBUF st
- ? - O oripg
outé[T 0] O ns D wsiiral
out 1570 CBUF inst I—Du-.arf |
-]
Watermarked
Image pixel
Buffer values

L Out 1(8 bit)

—>—1 out28bin
——>—_"> ou 3o

A Region after
application of
algorithm

——>—{"> Out48bit)

assign_output
_ mod ifiedset
_define

OriginalImage
pixel values
In_I(8 bit) [>—
In 28 bit) [>—o| ;
In_3(8 bit) [>—o| "f&:n
In_4(8 bit) [>— algorithm to
be applied
assign_in
put_set_
define forward _
ROM

In n(Sbit) >—

FIGURE 15. The VLSI architecture for Forward transform of encoding process.

image sx is equal to 256. The number of pixels in this region
is counted and the pixel intensity values are stored.

Step 3: A pixel pair (p, g) from stored values is taken and
checked whether |n(p — ¢q)] < T. The intensity value of
pixel locations p and q are denoted as m and n respectively.
In this step, a location map M is created which will act as
a secret key while retrieving the original image from the
watermarked image. If condition |n(p — g)| < T is satisfied
and if both pixel intensity values m and n are odd then LSB
of p is to be reset and g is kept unchanged. In this case,
M is set to 0. Otherwise the pair is transformed according

VOLUME 8, 2020

—>——> outasin

to (1) and (2). After transferring, the transformed pixel pair
should follow the conditions which are given in (3) and (4).
If it is satisfied then M is set to 1 otherwise it is set to O.
After getting the selected transformed pixel pairs by checking
the boundary conditions in (3) and (4), the secret bit is then
embedded into the LSB position of the second transformed
pixel and transformation information or the location map
M is embedded in the LSB of the first transformed pixel.
The secret bits are randomly generated. At the end of this
step, we will be able to find the transformed pair (p/, ¢’) and
location array M.

69085

IEEE Access

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

%3 Watermarked Image
TR pixels
_
Original Image bb1[7:0] out1[7:0]
Selected pixels for out2[7:0]
/ X1 embedding UUtB[? : D]
a17:01[> b1[7:0] out4[7:0]
a2[7:0] lout5[7:0]
a3[7:0] bb2[7:0] oute[7:0]
a4[7:0] bb3[7:0] out7[7:0]
5[7:0 :
:EIE?'D}D arro; outs[7:0]
a?[?:u]D Tz L outs[7:0]
as[?:n] —_ bb4[7:0] out10[7:0]
ag[?;u] —— bb5[7:0] lout11{7:0]
a10[7:01[>> aafi[ifg] JI—;:[;E] J_ out12[7:0]
a11[7:0]D zuﬁ?in [7:0] — out13[7:0]
EEEE} DD aa3(7:0]| out14[7:0]
a 14[?:[1]DM. out15[7:0]
' aa15[7:0 L
a1s[7:0][D—=2L00 =
a16[7:0][D—22L8 2L7:0] bb6[7:0] out16[7:0]

assign_input_set_define

assign_outp ut_mdFd set_define

FIGURE 16. The VLSI architecture of assign input set define block and assign output modified set define block for encoder.

Step 4: If [n(p—q)| > T, the pixel pairs are kept unchanged.

Step 5: The unchanged pixel pairs are rearranged with
transformed pairs (p', ¢') as the output watermarked pixel
W', q).

Step 6: To insert these transformed values in place of
original values, pixel position values of image size (ii, jj) are
taken. The (ii’ , jj') are obtained using the linear transforms
i’ = 2ii — jj and jj = 2jj — ii followed by checking
the two boundary conditions, 1 < i’ < sx and 1 <
Jj’ < sx. If both conditions are satisfied then the value of
transformed pair is to be inserted into original image. In this
way the transformed image is generated from the original
image.

Step 7: After getting watermarked image, the relative
parameters are measured. If these parameters do not fall
into desired range, the value of n is increased by 2 using
a feedback control part. T is varied up to 20 as maxi-
mum difference of 16 between original and transformed
pixel intensity value is taken to vary the contrast to main-
tain the distortion. When high PSNR within desired range
is detected, we get the preferred watermarked image and
randomly generated watermark bits. M is preserved as an
encrypted key for the data extraction process and final n is
preserved.

69086

2) ALGORITHM 2: DECODING PROCESS
Step 1: The watermarked image is read and the predefined
threshold T and location map matrix M and n are obtained.

Step 2: From pixel position values of image size (i/ .J) we
get (i, j). This will be derived from the following equations:
i = 2i—jandj = 2j—ifollowed by checking two conditions.
They are 1| < i’ < sx and | < j < sx, where sx is image
length. The number of pixels of this region are counted and
stored.

Step 3: The condition |n(p” — ¢”")| < T for the pixel pair
(P, ¢) is checked. During this operation location matrix M
and the secret key n is checked. If M for current set is 1 then
the pair is transformed according to Eq. 8 and Eq. 9. If it is
0 then LSB of p’ is set to 1 and ¢’ is as it is.

Step 4: If |n(p” — ¢")| < T, the pixel pairs are kept
unchanged.

Step 5: The transformed pair as well as the changes in
(P, ¢') are stored as the original pixel pair (p, g).

Step 6: To insert these transformed values in place of
watermarked values, pixel position values of size of image i.e.

(i’, jj') are taken, (ii, jj) are obtained using ii = L%ii’ + %jj’J
and jj = Hii/ + %jj’J followed by checking the bound-
ary conditions 1 < i

< sxand 1 < jj < sx. If

VOLUME 8, 2020

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

IEEE Access

from

exigea

image A 8 OR
all = >
% B2 ()

Set F g

Valve2

OR

from
original

imgs -

Where, A= Adder
S = Subtractor

FIGURE 17. The inside schematic architecture of the forward RCM.

both conditions are satisfied then the value of transformed
pair is to be inserted into watermarked image. In this way
the original image is recovered back from the watermarked
image.

3) PROPOSED EBCRCM ALGORITHM FOR

THE COLOR IMAGE

To describe any particular color image, three independent
quantities are required. RGB images are taken as the input
images. The color image contains the combination of these
three colors. Each intensity value has these three compo-
nents. Each component is taken at a time and the encoding-
decoding algorithm has been applied on it. At the end all
three components are combined to collect the watermarked -
original image. To convert three components to one we need
to reshape the image using size vector. The remaining steps
for the encoding and decoding will be the same as algorithm 1
and algorithm 2. After the conversion we need to restore
the three component values such that we can get the color
image.

VOLUME 8, 2020

4) PROPOSED EBCRCM ALGORITHM FOR THE VIDEO

The proposed EBCRCM is also verified using video signal.
A video is a series of images or frames which is played in the
sequence at a specified frame rate. We can process the video
after converting it into frames. Each frame will work as an
input image. After processing, the required outcomes which
are in the form of images, they will be again converted into
video which have same frame rate of the input video.

IV. THE BLOCK MODEL OF EBCRCM BASED

RIW USING XSG

A 4 x 4 sized 8 bits gray image having 16 gray label intensity
values as shown in (7) is considered. By taking two neighbors
pixel locations there are total 16 cases. In other words the
case 1 has been formed by taking the first two neighbor
pixels [1, 1]. Then case 2 as [1, 2], case 3 as [1, 3] and
so on. By applying liner transformation and the boundary
conditions, (3) and (4) on the pixel locations, we found that
12 cases are satisfied. They are case 1, case 2, case 5, case 6,
case 7, case 8, case 10, case 11, case 12, case 14, case 15 and

69087

IEEE Access

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

out2[7:0]_OBUF_inst
I~ 0

>
OB@UF I—DuutZlT.I}i
out3[7:0]_OBUF_inst
I~~__0
= =l cut37:0)
OBUF
out4[7-0]_OBUF_inst Do)
(R — (R — Tl
l_ X1 -I l_ X3 === Rel™ curtagr:p
[I OBUF
at[7:0]) e
a2[7:0] il I_ - == outS[7-0]_OBUF_inst D ouarro)
a370] saral | O
| =
aArf-D}D—l—l“"N - 1 | = D ausra
s ass7o) OBUF
§ aserall (e bi[7: §
:?,g g:DI: | B bz b | CUEIT0L OBLF it O outflr0)
aB[7:0] 3387 0] o b3[7 1 BT outs[7-0]
N i s o)l b4f7-0] BA7.0] OBUF
awrr:ﬁrD—l-iﬂm- L
at170) aatiza)l b&7 -0 70 [Ly outtorra)
al2(7:0] =i | | inverse_RCM | o
it 7l outa[7:0]
31417;01 satarol | | OBUF
ats[7:0] UL I LS autti[70]
at6[7:0] 2L I -) b ™ cutte[7:0)
assign_nput_sel_define 127 0Bt
. I/? LD aurzrn)
OBUF
out13(7:0]_OBUF inst
'D = o3
OBUF
out14[7-0]_OBUF_inst
~__0 pe={ > cut14[7:0)
=
OBUF
out15[7:0_OBUF_inst Wt1S[70]
o D |—D° [7:0]
BB
OBUF
Watermarked Original Image
Image pixel pixel values
values Buffer
Tn_1(8bi) [>— F—{>— > ouibio
In 208bit) [A Region . _D_D Out_2(8 bit)
In 3(8 bit) [>— A Region after =
S where application of —D—D Out_3(8 bit)
In_4(8 bit) [>— algorithm to ll;gor i ST
be applied ——>——1{"> Out 4@bi)
assign_in i
put_set_ .
assign_output
define I:;{rgs{e_ _ modifiedset
_define
In_n(8 bit) [>—
—[>——|:> Out_n(8 bit)

FIGURE 18. The VLSI architecture for Inverse transform of encoding process.

case 16. According to the proposed method, the pair of pixels
for integer transformation is formed by taking the intensity
values of those cases which are satisfied by the boundary
conditions. As there are total 12 satisfied cases, 6 numbers
pairs of pixels are available for transformation. The first
pair of pixels is then formed by the intensity values of case
1 and case 2 and denoted as (183, 132). Similarly the second
pair of pixels is (109, 65), third is (126, 156) and so on.
The odd pixel pairs are avoided for transformation as the

69088

invertible property is not satisfied by them. For odd pair of
pixels, the LSB of first pixel is set to 0. Here (109, 65) is
an odd pair of pixels. Setting the LSB of first pixel with 0,
the pair become (108, 65). After transformation of selected
fourth pair of pixels (46,114), they have failed to satisfy the
boundary conditions given in (3) and (4). According to the
algorithm, in this case if the first pixel intensity value is odd,
then LSB of it is set to 0 otherwise it is set with 1. The last
selected pair of pixels is processed for transformations by

VOLUME 8, 2020

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

IEEE Access

Original Image

*3
Ty

Watermarked Image
: Selected pixels for

pixels X1 p b1[7:0 t1[7:0
'ﬂ_" decoding p1[7:0] QutiL7:0]

aal[7:0 b1[7:0] lout2[7:0]

/ al[7:01[>> aaz[?:U ' out3[7:0)
az[?.u]DT[mJ-- outd[7:0]
24(7:0] aas7:0]] bb2[7:0] outs[7:0]

5[7:0 D—'J--
ZEE? U}D aab[7:0 b2[7:0] bb3[7:0] out7[7:0]
37[?:U]D aa7[7:0 b3[7:0] | . Jousir0)
aB[?:D]D aas[7:0) [outo[7:0]
< aQ[?:D]Dﬂ[ﬂ- bb4[7:0] out10[7:0]
a107:0]> aalﬂ[?iﬂ b4[7‘50] — bb5[7:0] out11[7:0]
s11[7:01 aal1[7:0 bs[7:0] w2z
at2(7:0)D>—AZ0L) vtz
a13[?:u]Dﬂ[ﬂ- putrar7:0)
a14[7:0) D—2 2 |y Joutisiz:ol
a15[?:n]DLi:[;gJ- b6[7:0 =
ad . .

\am[?:n]D [[7:0] bb&[7:0] out16[7:0]

—
assign_input_set_define

assign_o utput_mdFdset_deﬂ ne

FIGURE 19. The VLSI architecture of assign input set define block and assign output modified set define block for decoder.

following (1) and (2).

183 132 171 168
109 65 126 156

A=17 46 114 136 0
79 78 133 116

According to the transformation a secret key is created and
the value n is preserved. In the similar way, the watermarked
pixel values for remaining pair of pixels have been calculated.
By following the boundary conditions to overcome the under-
flow and overflow problems given in (3) and (4), the water-
marked image is denoted as W. The resultant watermarked
gray level intensity values are shown in (8)

183 132 171 168
108 65 126 156

W=12 47 114 136 ®)
79 78 150 99

Similarly for the decoding process, six pairs of pixels have
been considered by taking the intensity values of selected
neighborhood pixels from watermarked image. Based on M
and n, the LSB is changed prior to inverse modified trans-
form. The first pair of pixels p and g is obtained by modified
inverse transformations given in (5) and (6). This modified
inverse integer transforms are applied for the remaining cases
to find out the decoded image. It has been found that the gray

VOLUME 8, 2020

level intensity values of the decoded image are exactly same
as the original cover image. It is concluded that the proposed
algorithm preserves the reversibility properties by recovering
the original cover image without any loss of information.
We verified the distortion control method and satisfied with
the conclusions of [25]. The relative parameters are checked
using the feedback control path. The value of n is increased
by 2 and repeated until it meets the goal.

The basic block model diagram of XSG contains several
functional blocks named image from file, encoder, decoder
and video viewer. The first function is used to store the input
cover image. The data type and size of the cover image
are set to uint8 and (4 x 4) respectively. The basic block
model diagram of embedding and decoding processes are
shown in Fig. 2 and Fig. 3 respectively. Initially the pre-
processing blocks for both encoder and decoder have been
passed through an m-code block to obtain serial order input
data. The pre encoding and decoding MATLAB function
blocks perform the conversion process of 2D to 1D data.
In other words the 4 x 4 sized image data is stored as (1 x 16)
1D array form. Whereas revert operation is performed by
post-encoding and post-decoding MATLAB function blocks.
The first sub-blocks of encoder and decoder are named as
pre-processing of encoder and decoder respectively as shown
in Fig. 4 and Fig. 5 respectively. The mode of the output is
set to sampling mode by ‘frame conversion’ function block.

69089

IEEE Access

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

Where A = Adder
3 =Subtmtor
D= Divider

FIGURE 20. The VLSI architecture of assign input set define block and assign output modified set define block.

The last steps of preprocessing block is to un-buffer the input
data into row wise which have been done by ‘un-buffer’
function block.

In XSG, hardware description language (HDL) codes are
read through the function block named “black box” for pro-
cessing the arithmetic operations. The black box for embed-
ding and decoding processes are named as “Forward trans-
form™ and “Inverse transform” respectively as in Fig. 6 and
Fig. 7. Here two main function blocks named ‘Gateway In’
and ‘Gateway Out’ are used in between the preprocessing and
post-processing blocks for connection between Xilinx FPGA
based environment and the Simulink model.

The last sub-block is called post-processing for both
embedding and decoding parts. The working principle of the
post-processing block is exactly opposite of the preprocessing
sub-block. The post-processing sub-block for embedding is
presented in Fig. 8. And the post-processing sub-block for
decoding is presented in Fig. 9. From Fig. 8, we notice that
the outcome intensity values of the watermarked image are

69090

accurately identical with calculated intensity values of
the watermarked image which has been revealed in (8).
Fig. 9 shows the intensity values of decoded image pixels
after decoding process. We notice that they are identical with
the intensity values of the original input cover image which
have been shown in (7). So we can say that the algorithm
preserves the properties of reversible watermarking.

V. RESULT AND ANALYSIS

In this section software and hardware implementation of the
proposed method are presented. If n is represented as the
number of bits then the unitnof ;’SNR is dB and it can be
given by PSNR = 101log;, @ A;SII)E and SSIM can be defined
as SSIM (1, f2) = L(f1, 2)C(f1,£2)S(f1., f2) [6]. Here L is the
luminance comparison function, C is the contrast comparison
function and S is the structural comparison function. L =

2”‘f1/‘°f2+C] _ 2(7f10f2+C2 B Uf1f2+C3
T T T e and S(fi. f2) = 51— The

same sized reference and original multimedia data are f; and
/> respectively. The luminance of the two data are denoted

VOLUME 8, 2020

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

IEEE Access

Onatput
(Watermarked &
Image)

Output

(Origmal De

coded
|_Image)

(®)

FIGURE 21. The VLSI architecture of assign input set define block and assign output modified set define block.

as up and py, respectively. oy and oy, are the standard
deviation of these respective data. oy, s, is used to represent the
covariance of these two input data. Cy, C» and C3 are positive
constants and used to avoid the null denominator.

A. SOFTWARE IMPLEMNENTATION
The illustration quality of the watermarked image and the
quantity of the concealed information can be obtained by

VOLUME 8, 2020

PSNR and SSIM by taking 40 number of test images. Two
gray images and two color images are in Fig. 10. The gray
images are indicated as Image 1 and Image 2 and the color
images as Image 3 and Image 4. Corresponding watermarked
images of the four test images are in Fig. 11. They are denoted
as watermarked image 1, watermarked image 2, watermarked
image 3 and watermarked image 4. The comparative anal-
ysis between PSNR with variation in contrast at a constant

69091

IEEE Access

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

—&— Using proposed Algorithm for image 1
—&— Usmg Coltue's Algorithm for 1mage 1

420

—&— Using proposed Algorithm for image 2
—®— Using Coltuc's Algorithm for image 2

5.0
4 * . ® ® L]
415 /
] » 45
‘o 410 g -
& 'Y - &
) 7 / < 40
) 4.05 -) ’
=1 i =1 e m
2 = ___.___.f——l———.'
= 400 = 35 » ;
s} | __ ey ;
= v = = /
= 305 & - - = :
= { = L
= 4 v o 3.0 7
2 i 2
5 3.90 . £ p
7 . 25
385 el [
e
380 — 20
4x4 8x8 64x64 128x128 256x256 512x512 44 8x8 64x64 128x128 256x256 512x512
Size of Image Size of Image
(@) (&)
UE"_JJg p}'ollnos‘edAxl\lgo_l1]§nhn}f01i image 3 —#&— Using proposed Algorithm for 1mage 4
5.0+ Usmg Coltuc's Algorithm for image 3 - —8— Using Coltuc's Algorithm for image 4
1] 45 *
- ad
45 T -
. - g
= 1 » = 40
E / E RS S
o 40 P i = &
o o3
Dﬂ i 35 3 5
& - a— % &
ERR I S A El
- / =4
- 4 / = 30
2 hd 2 .
=30 = /
[2
E 25
25
4x4 8x8 64x64 128x128 256x256 512x512 4x4 8xR 464 1282128 236x256 512x512
Size of Image Size of Image

©

CY)

FIGURE 22. The graphical representation of PSNR with respect to the contrast value and threshold value for (a) Image 1, (b) Image 2,

(c) Image 3 and (d) Image 4.

threshold for each test image is shown in Fig.12. From
Fig. 12(a) and Fig. 12(b) it is observed that for the gray
scale images, the desired PSNR based watermarked images
are found at n = 3 and n = 7 at T = 20. Whereas for the
color images, the desired watermarked images are found at
n =5 at T = 20. So it is concluded that it is better to process
the proposed algorithm by taking constant threshold T = 20.

1) VIDEO SIGNAL VERIFICATION

A video signal is verified by taking a frame at a time.
Figure 13 shows the original ten frames of an input gray scale
video signal. From original frames we get the watermarked
frames after encoding as shown in Fig. 14. It has an average
PSNR value of 37.6583 dB and SSIM value between orig-
inal and watermark frame is 0.7445. Whereas SSIM value
between original and decoded frame is 1.

69092

B. HARDWARE IMPLEMNENTATION

The VLSI architecture can be obtained from structural mod-
eling in VIVADO 2016.2 design suite. The hardware co-
simulation is carried out at Zyng-7000 (Zed-board) technol-
ogy with XC7Z030 based target device.

1) ENCODER

The VLSI architecture of forward transform for encoding
function block of XSG is shown in Fig.15. It has three compo-
nents named as assign input set define block, forward RCM
block and assign output modified set define block. The inputs
of the first component are the pixel values of the input image
which are coming from the Gateway In via pre-processing
encoding block of XSG. In this block the incoming values
are converted into an array to find the set values of the input
image pixels which are applicable for embedding process.

VOLUME 8, 2020

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

IEEE Access

After converting the 1D pixel value to the array, the region
of the conversion is to be decided and the selected set values
will be the inputs of the second component. The Register
transfer logic (RTL) layout of the assign input set define block
is shown in Fig. 16. This component is used to determine the
selected pixels those are compatible for embedding process-
ing. Here only six selected pixels are processed though the
output ports of this component.

The assign output modified set define block works reverse
of input block. This block will take transformed set value
which is converted by the forward RCM block using proposed
EBCRCM algorithm. In this block transformed set value will
be restored in to 1D array. This array is again rearranged
with remaining disapproved set of pixels to get the resultant
watermarked image.

The heart of this VLSI architecture is the forward RCM
block. This component applies the modified forward trans-
forms on the selected pixels followed by the boundary con-
ditions. The schematic architecture of the forward RCM is
given in Fig. 17. It will take two pixel intensity values at a
time for processing. It is found that for processing a single
case, it requires 2 adders, 3 sub-tractors, 5 basic logic gates,
6 comparators and 6 multiplexers. The output of this block
gives the transformed set of pixel values that will act as inputs
to the assign output modified set define block.

2) DECODER

The inverse transform block of XSG consists of three sub-
blocks named as assign input set define block, inverse RCM
block and assign output modified set define block. The VLSI
architecture of decoder is shown in Fig. 18. The working prin-
ciples of first and third components of decoder are same as the
first and third components of the encoder. The VLSI archi-
tectures of assign input set define block and assign output
modified set define block for decoder are shown in Fig. 19.

Like embedding process, the heart of the decoder’s VLSI
architecture is Inverse RCM block. The layout of the Inverse
RCM block is in Fig. 20. The input of the block will be set
value which is defined by first component. It is found that to
process a single case it requires 5 adders, 4 subtractors, two
dividers, 4 comparators and 6 multiplexers. A little bit higher
resources are required for the decoding process as compared
with encoding process.

After full synthesis operation the comparative micro-
statistic results between encoder and decoder is given
in Table 1. The device consumption result for different sizes
of input image is given in Table 2.

The simulation outcome for encoding is shown in
Fig. 21 (a) where the timing waveforms and the values of
input cover image, output watermarked image and the secret
key are given away. The selected and transformed sets of
pixel pairs are marked by green and orange colours respec-
tively. Fig. 21(b) indicates the simulation results of input
watermarked image and output decoded image of original
cover image. In Fig. 21(b) the selected set of pixels pairs
for inverse transform are marked by green colour and the

VOLUME 8, 2020

TABLE 1. The micro statistics result of encoder process.

Name of the Cover Resources Numbers of
Process image resources
size
Comparator (32 bit) 18
Adder/Subtractor (8 bit) 15
Divisor 0
Accumulator (10 bit) 15
Multiplexer (1 bit 64:1-1; 20
8 bit 4:1-2)
ENCODER (4x4) Latches (1 bit-2) 4
Register (1 bit -32:8 bit- 45
120)
Tristate (1 bit-1,8 bit-2) 9
Block RAMs (32 x 1 bit- 3
1, 64 x 8 bit-2)
Counter (5 bit-1:6 bit-1) 6
Comparator (32 bit) 12
Adder/Subtractor (8 bit) 27
Divisor 6
Accumulator (10 bit) 18
Multiplexer (1 bit 64:1-1; 20
8 bit 4:1-2)
Latches (1 bit-2) 7
DECODER (4x4) . . .
Register (1 bit -32:8 bit- 54
120)
Tristate (1 bit-1,8 bit-2) 12
Block RAMs (32 x 1 bit- 4
1, 64 x 8 bit-2)
Counter (5 bit-1:6 bit-1) 6
TABLE 2. The device consumption results.
Quantity of 4 x4 64 x 64 128 x 128
E D E D E D
BRAMs 3 4 3 4 3 4
SticeFlip- 39y 377 439 493 587 743
Flop
4 input
LUTs 834 1142 862 1213 875 1221
Bonded
IOBs 44 44 44 44 44 44
Slices 4381 762 526 711 754 931
GCLKs 1 1 1 1 1 1

*E and D are stands for Encoding and Decoding process

resultant set of pixel pairs after transformation are marked
by orange colour. For encoding process a 4 x 4 sized gray
scale image, 392 numbers of slice LUT (look up table) with
481 numbers of LUT-lip-flop pairs are used.

After synthesis 44 numbers of bonded IOBs are used.
A LUT-input-output pair represents one LUT paired with
one input-output within a slice. The critical path is formed
by adding the delay of six multiplexers (0.451 ns x 6), one
maximum delay among the resources (multiplier: 2.352 ns,
adder, subtractor, divider) and the register delay (0.487 ns +
0.255 ns). Thus, the maximum path delay for single cycle is
5.8 ns. For entire embedding process, we require 7 cycles,
so the latency is 5.8 ns x 7 cycles x 4.27 ns = 173.362 ns
with a 100MHz clock. The average fan-out of non-clock
nets used is 1. The throughput obtained is the inverse of
latency multiplied by the number of bits. The throughput is
46.146 Mbps for a pixel of 8 bits.

69093

IEEE Access

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

TABLE 3. The device consumption results.

Platform of Operational
Proposed by the research Device fpera rona
requency
work
Mohanty et al. Spatial Virtex, 545.39
(2009) [5] domain XCV50BG256-6 MHz
Karthigaikumar ~ Connectivity ~ Virtex-E (xcv50e-8- 82 MHz
et.al (2011) preserving csl44)
[32] criteria
Hazra et. al. Histogram Virtex, XC2VP30, 445.82
(2018) [31] bin shifting Spartan-3E, MHz
XCé6slx45tfggd84-3
Phadikar et. al. DWT lifting Xilinx Zynq 80 MHz
(2019) [33] (XC7Z020-
CLG484-1)
Phadikar et. al. DCT Virtex 7 60 MHZ
(2019) [34] (XC7VX330T-
FFG1157-3)
Proposed Work Reversible Xilinx, Zynq, Zed- 100 MHz
Contract board, XC7Z030.
Mapping
TABLE 4. The device consumption results.

Proposed by Image Size Power(mW) Throughput
Mohanty et al. 512x512 2.054 NA
(2009) [5]

Karthigaikumar 128x128 113.24 36.14 Mb/s
et. al (2011)
[32]
Hazra et. al. 256x256 1.319 NA
(2018) [31]
Phadikar et. al. 512x512 78.48 23.827 Mb/s
(2019) [33]
Phadikar et. al. 512x512 78.51 1.34 GB/s
(2019) [34]

256x256 36.82 46.146 Mb/s
Proposed Work 515,515 3921 52.724 MbJs

C. COMPARATIVE ANALYSIS

Comparative analysis between proposed and one of the
most referred algorithm [25] based on embedding bit rate is
explored. From Fig. 22 it is noticed that for proposed method
the embedding bit rate is controlled through adaptive linear
transformation in such way so that it always vary in it desired
range. In this way the distortion on the watermarked image
is maintained for fulfilling the requirements of RIW process.
Comparison of hardware implementations for different water-
marking algorithms based on operation frequency is exposed
in Table 3.

The comparative analysis of hardware implementations
for different watermarking algorithms based on power and
throughput is given in Table 4. From Table 4 it is concluded
the due to high throughput the proposed algorithm required
very less power to complete both encoding and decoding pro-
cess. It is also demonstrated that comparatively less hardware
resources are required for proposed EBCRCM algorithm.

VI. CONCLUSION

In this paper a new embedding bit rate control based contrast
mapping algorithm is proposed for reversible image water-
marking. The proposed method is verified using MATLAB
and Xilinx system generator tools. Less hardware resources

69094

and power based VLSI structural design for real time imple-
mentation in FPGA environment is presented. The Zyng-
7000 (Zed-board) technology with XC7Z030 is used to
develop the architecture. A little bit higher resources are
required for decoder with a different pipeline cycle. The
EBCRCM is compared with other well-known methods based
on the value of power, throughput and operational frequency.
The proposed architecture can operate at a frequency of
100MHz. It is also concluded that Xilinx system generator
and VIVADO based HDL tool can be worked alongside to
reduce the overall complexity and hardware resources for
implementing the EBRCM based RIW algorithm through
Zynq-7000 processing device.

REFERENCES

[1] K. Thongkor, T. Amornraksa, and E. J. Delp, “Digital watermarking for

camera-captured images based on just noticeable distortion and Wiener

filtering,” J. Vis. Commun. Image Represent., vol. 53, pp. 146-160,

May 2018.

X.Y. Wang, Q. L. Shi, S. M. Wang, and H. Y. Yang, ““A blind robust digital

watermarking using invariant exponent moments,” AEU-Int. J. Electron.

Commun., vol. 70, no. 4, pp. 416-426, Apr. 2016.

[3] N. M. Makbol and B. E. Khoo, “A new robust and secure digital image
watermarking scheme based on the integer wavelet transform and singu-
lar value decomposition,” Digit. Signal Process., vol. 33, pp. 134-147,
Oct. 2014.

[4] S. P. Mohanty, E. Kougianos, and N. Ranganathan, “VLSI architecture
and chip for combined invisible robust and fragile watermarking,” IET
Comput. Digit. Techn., vol. 1, no. 5, pp. 600-611, 2007.

[5] S.P.Mohanty, N. Memon, and K. S. Chatha, *“Circuits and systems for real-
time security and copyright protection of multimedia,” Comput. Electr.
Eng., vol. 35, no. 2, pp. 231-234, Mar. 2009.

[6] A. Hore and D. Ziou, “Image quality metrics: PSNR vs. SSIM,” in Proc.
20th Int. Conf. Pattern Recognit., Aug. 2010, pp. 2366-2369.

[71 M. U. Celik, G. Sharma, A. M. Tekalp, and E. Saber, “Lossless

generalized-LSB data embedding,” IEEE Trans. Image Process., vol. 14,

no. 2, pp. 253-266, Jan. 2005.

B. Chen, W. Zhang, and N. Yu, “Reversible watermarking in JPEG

images based on modified RZL codes and histogram shift,” Wuhan Univ.

J. Natural Sci., vol. 18, no. 2, pp. 126132, Apr. 2013.

[9] C.-C.Lin, W.-L. Tai, and C.-C. Chang, “Multilevel reversible data hiding
based on histogram modification of difference images,” Pattern Recognit.,
vol. 41, no. 12, pp. 3582-3591, Dec. 2008.

[10] W. Zhang, X. Hu, X. Li, and N. Yu, “Recursive histogram modification:
Establishing equivalency between reversible data hiding and lossless data
compression,” IEEE Trans. Image Process., vol. 22, no. 7, pp. 2775-2785,
Jul. 2013.

[11] T.Zong, Y. Xiang, and I. Natgunanathan, ‘“Histogram shape-based robust
image watermarking method,” in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2014, pp. 878-883.

[12] L. Luo, Z. Chen, M. Chen, X. Zeng, and Z. Xiong, “Reversible image
watermarking using interpolation technique,” IEEE Trans. Inf. Forensics
Security, vol. 5, no. 1, pp. 187-193, Mar. 2010.

[13] H.-C. Wu, C.-C. Lee, C.-S. Tsai, Y.-P. Chu, and H.-R. Chen, “A high
capacity reversible data hiding scheme with edge prediction and difference
expansion,” J. Syst. Softw., vol. 82, no. 12, pp. 1966-1973, Dec. 2009.

[14] W. Hong, T.-S. Chen, and C.-W. Shiu, “Reversible data hiding for high
quality images using modification of prediction errors,” J. Syst. Softw.,
vol. 82, no. 11, pp. 1833-1842, Nov. 2009.

[15] D. Coltuc, “Improved embedding for prediction-based reversible water-
marking,” IEEE Trans. Inf. Forensics Security, vol. 6, no. 3, pp. 873-882,
Sep. 2011.

[16] Y. Huo, S. Xiang, S. Liu, X. Luo, and Z. Bai, ‘“‘Reversible audio water-
marking algorithm using non-causal prediction,” Wuhan Univ. J. Natural
Sci., vol. 18, no. 5, pp. 455-460, Oct. 2013.

[17] J. Tian, “Reversible data embedding using a difference expansion,”
IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 8, pp. 890-896,
Aug. 2003.

[18] A.M. Alattar, “Reversible watermark using the difference expansion of a
generalized integer transform,” IEEE Trans. Image Process., vol. 13, no. 8,
pp. 1147-1156, Aug. 2004.

[2

—

8

[l

VOLUME 8, 2020

S. Das et al.: Parallel Hardware Implementation of EBCRCM Algorithm for RIW

IEEE Access

[19] D. M. Thodi and J. J. Rodriguez, “Expansion embedding techniques for
reversible watermarking,” IEEE Trans. Image Process., vol. 16, no. 3,
pp. 721-730, Mar. 2007.

[20] X. Wang, C. Shao, X. Xu, and X. Niu, “Reversible data-hiding scheme
for 2-D vector maps based on difference expansion,” IEEE Trans. Inf.
Forensics Security, vol. 2, no. 3, pp. 311-320, Sep. 2007.

[21] H. Joong Kim, V. Sachnev, Y. Qing Shi, J. Nam, and H.-G. Choo,
“A novel difference expansion transform for reversible data embedding,”
IEEE Trans. Inf. Forensics Security, vol. 3, no. 3, pp. 456-465, Sep. 2008.

[22] Y. Hu, H.-K. Lee, and J. Li, “DE-based reversible data hiding with
improved overflow location map,” IEEE Trans. Circuits Syst. Video Tech-
nol., vol. 19, no. 2, pp. 250-260, Feb. 2009.

[23] C.-C. Lin, S.-P. Yang, and N.-L. Hsueh, “Lossless data hiding based on
difference expansion without a location map,” in Proc. Congr. Image
Signal Process., vol. 2, May 2008, pp. 8-12.

[24] I.-C. Dragoi and D. Coltuc, “‘Local-prediction-based difference expansion
reversible watermarking,” IEEE Trans. Image Process., vol. 23, no. 4,
pp. 1779-1790, Apr. 2014.

[25] D. Coltuc and J.-M. Chassery, ““Very fast watermarking by reversible
contrast mapping,” IEEE Signal Process. Lett., vol. 14, no. 4, pp. 255-258,
Apr. 2007.

[26] W. Hong, J. Chen, and T.-S. Chen, “Blockwise reversible data hiding
by contrast mapping,” Inf. Technol. J., vol. 8, no. 8, pp. 1287-1291,
Aug. 2009.

[27] P. Fei, C. Li, and L. Min, “A reversible watermark scheme for 2D vector
map based on reversible contrast mapping,” Secur. Commun. Netw., vol. 6,
no. 9, pp. 1117-1125, Sep. 2013.

[28] Y.-H. Kao, W.-B. Lee, T.-Y. Hsu, C.-Y. Lin, H.-F. Tsai, and T.-S. Chen,
“Data perturbation method based on contrast mapping for reversible
privacy-preserving data mining,” J. Med. Biol. Eng., vol. 35, no. 6,
pp. 789-794, Dec. 2015.

[29] V. Licks and R. Jordan, “Geometric attacks on image watermarking sys-
tems,” IEEE Multimedia Mag., vol. 12, no. 3, pp. 68-78, Jul. 2005.

[30] S. Das, R. Maity, and N. P. Maity, “VLSI-based pipeline architecture
for reversible image watermarking by difference expansion with high-
level synthesis approach,” Circuits, Syst., Signal Process., vol. 37, no. 4,
pp. 1575-1593, Apr. 2018.

[31] S. Hazra, S. Ghosh, S. De, and H. Rahaman, “FPGA implementation
of semi-fragile reversible watermarking by histogram bin shifting in real
time,” J. Real-Time Image Process., vol. 14, no. 1, pp. 193-221, Jan. 2018.

[32] P. Karthigaikumar and K. Baskaran, “FPGA and ASIC implementation
of robust invisible binary image watermarking algorithm using connec-
tivity preserving criteria,” Microelectron. J., vol. 42, no. 1, pp. 82-88,
Jan. 2011.

[33] A.Phadikar, G. K. Maity, T.-L. Chiu, and H. Mandal, “FPGA implementa-
tion of lifting-based data hiding scheme for efficient quality access control
of images,” Circuits, Syst., Signal Process., vol. 38, no. 2, pp. 847-873,
Feb. 2019.

[34] A. Phadikar, H. Mandal, and T.-L. Chiu, “Parallel hardware implementa-
tion of data hiding scheme for quality access control of grayscale image
based on FPGA,” Multidimensional Syst. Signal Process., vol. 31, no. 1,
pp. 73-101, Jan. 2020.

[35] D. Maiti, S. P. Maity, and H. Maity, “Modification in contrast mapping:
Reversible watermarking with performance improvement,” in Proc. Int.
Conf. Signal Process. Commun. (SPCOM), Jul. 2012, pp. 1-5.

[36] S.P.Maity and H. K. Maity, “Optimality in distortion control in reversible
watermarking using genetic algorithms,” Int. J. Image Graph., vol. 17,
no. 3, Jul. 2017, Art. no. 1750013.

SUBHAJIT DAS received the B.Tech. degree
in electronics and communication engineering
from Mizoram University (A Central University),
Aizawl, India, in 2013, and the M.Tech. degree
in embedded system from Sambalpur University,
Sambalpur, India, in 2015. He is currently pur-
suing the Ph.D. degree in engineering with the
Department of Electronics and Instrumentation
Engineering, National Institute of Technology,
Silchar, India.

From 2016 to 2017, he was a Lab Engineer with the National Institute of
Technology, Aizawl, Mizoram, India. He has published a number of articles
in IEEE conference and other reputed journals. His research interests include
reversible watermarking, image processing, and VLSI design.

VOLUME 8, 2020

ARUN KUMAR SUNANIYA received the
M.Tech. degree in microelectronics and VLSI
design from SGSITS, Indore, India, and the Ph.D.
degree in electronics and communication engi-
neering from the National Institute of Technology,
Bhopal.

From 2009 to 2012, he was an Assistant Pro-
fessor with the Department of Electronics and
Communication Engineering, Sagar Institute of
Research and Technology, Bhopal, India. From
2012 to 2014, he was an Associate Professor with the Department of Elec-
tronics and Communication Engineering, Corporate Institute of Science and
Technology, Bhopal. Since 2014, he has been an Assistant Professor with the
Electronics and Instrumentation Engineering Department, National Institute
of Technology, Silchar, India. He is the author of more than 30 articles. His
research interests include low-power VLSI, hybrid and CMOS devices, and
digital and analog integrated circuits.

RESHMI MAITY received the B.Tech. and
M.Tech. degrees in radio physics and electronics
from the University of Calcutta, Kolkata, India,
in 2004 and 2006, respectively, and the Ph.D.
degree in electronics and communication engi-
neering from the National Institute of Technology,
Silchar, India, in 2016.

From 2004 to 2008, she was an Assistant Pro-
fessor with the JIS College of Engineering (now
JIS University), Kolkata. From 2008 to 2018, she
was an Assistant Professor with the Department of Electronics and Commu-
nication Engineering, Mizoram University (A Central University), Aizawl,
India. Since 2018, she has been an Associate Professor with the Department
of Electronics and Communication Engineering, Mizoram University (A
Central University). She is the author or coauthor of more than 100 archival
refereed publications. Her research interests include VLSI design, nanoelec-
tronics, and MEMS.

NILADRI PRATAP MAITY (Senior Member,
IEEE) was born in Girisha, West Bengal, India,
in 1976. He received the M.Tech. degree in
electronics design and technology from Tezpur
University (A Central University), Tezpur, India,
) in 2004, and the Ph.D. degree in electronics and
communication engineering from the National
\ ‘ Institute of Technology, Silchar, India.
W From 2007 to 2017, he was an Assistant Profes-
sor with Mizoram University (A Central Univer-
sity), Aizawl, India. Since 2017, he has been an Associate Professor with the
Department of Electronics and Communication Engineering, Mizoram Uni-
versity (A Central University). He is currently the Head of the Department
of Electronics and Communication Engineering. He is the author of more
than 120 articles. His research interests include VLSI design, MOS device
modeling, and MEMS.

69095

