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ABSTRACT Although hyperspectral remote sensing images have rich spectral features, for small samples of
remote sensing images, feature selection, feature mining, and feature integration are very important. A single
model is difficult to apply to multiple tasks such as feature selection, feature mining, and feature integration
during training, resulting in poor classification results for small sample classification of hyperspectral
images. To improve the classification of small samples, a sequential joint deep learning algorithm is proposed
in this paper. (In this algorithm, the deep features of multiscale convolution under an attention mechanism are
integrated by using Bidirectional Long Short-Term Memory(Bi-LSTM) and AML.) First, we used principal
component analysis (PCA) to reduce the dimensionality of the hyperspectral data and retain their key
features. Second, the model uses an integrated attention mechanism to distribute the probability weight of
the key input feature. Third, the model uses multiscale convolution to mine features after the distribution
weight to obtain deep features. Fourth, the model uses bidirectional long short-term memory (Bi-LSTM)
to integrate the convolution results at different scales. Finally, the softmax classifier is used to complete
the classification of multiclass hyperspectral remote sensing images. Experiments were carried out on three
public hyperspectral data sets, and the results proved that our proposed AML algorithm is effective, thus
demonstrating powerful performance in the prediction of hyperspectral images (HSIs) of small samples.

INDEX TERMS Integrated attention mechanism, multi-scale convolution operation, features fusion, HSIs.

I. INTRODUCTION
Hyperspectral images (HSIs) contain hundreds of bands
in each pixel. Due to the richness of the hyperspectral
image spectrum, HSIs are widely used in agriculture [1],
forestry [2], and urban topography [3]. However, the rich
bands bring sufficient features to HSIs while also produc-
ing many redundant features. Recently, researchers have
proposed new methods for solving redundant features and
choosing useful features. Nie et al. [9] proposed a model
for the automatic weighting of features to minimize redun-
dant features. By establishing relative cosine distances
for different redundant features, Ayinde et al. [10] ulti-
mately eliminated many redundant features and reduced
model computational costs. We chose principal components
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analysis (PCA) because it is important in eliminating redun-
dant features [11]–[14] and is not subject to parameter
settings. Small samples of HSIs are also a difficult prob-
lem in feature mining and classification. To improve the
classification of hyperspectral images of small samples,
the researchers have investigated several methods, such as
support vector machines (SVMs) [4], conditional random
fields (CRF) [5], k-nearest neighbors (KNN) algorithms [15],
and clustering-based classification [16]. However, the above
methods are insufficient for mining hyperspectral features
or eliminating more redundant features. Recently, increas-
ingly greater achievements have been made in image clas-
sification by deep learning due to its powerful feature
learning and classification ability [17]. To improve classi-
fication, Mesut et al. [6] used AlexNet to extract morpho-
logical features of hyperspectral images and enhance the
mining of spatial features through morphological features.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 71353

https://orcid.org/0000-0002-8020-3611
https://orcid.org/0000-0002-4687-8906
https://orcid.org/0000-0001-6795-6152
https://orcid.org/0000-0003-1632-7238


Z. Wang et al.: Small Sample Classification of Hyperspectral Remote Sensing Images

To eliminate the redundancy and noise features of hyper-
spectral images, Mercedes E. et al. [7] proposed a residual
neural network (ResNet) to gradually increase the dimension
of convolution and, finally, eliminate redundant features.
Yang et al. [8] proposed a dual-channel dense convolutional
network (DenseNet) to extract the spectral and spatial fea-
tures of hyperspectral images and further improved the accu-
racy of the classification of hyperspectral images by fully
using useful features. These methods have performed excel-
lently in feature mining. By using a long short-term mem-
ory (LSTM) algorithm, Zhoucheng et al. [19] proved that
the long-term sequence properties of features in hyperspectral
images play a positive role in classification.

However, due to the nature of the convolution kernel size,
the final learning features are determined. Hyperspectral
images have many features and are difficult to adapt to a
single convolution kernel size. As the number of model layers
is increased, increasingly more useful features are lost. For
small samples and high-dimensional hyperspectral images,
it becomes more difficult to learn complete image features;
consequently, it becomes difficult to accurately identify com-
plex hyperspectral images. H Lee and H Kwon [18] proposed
a contextual CNN that achieved good results in excavating
hyperspectral image features of different scales. However,
featuremining has only been partly improved, andmethods of
feature selection and feature integration are still insufficiently
comprehensive. To solve the above problems, we propose a
sequential joint deep learning algorithm [27](The Deep fea-
tures of Multi-scale convolution under Attention Mechanism
are integrated by Bi-LSTM, AML). This algorithm plays an
active role in feature selection, feature mining and feature
integration. The experimental results show that the proposed
algorithm can better select, mine and integrate the features of
hyperspectral images.

The main contributions of this paper are as follows.

• We propose an integrated attention mechanism to dis-
tribute the probability weight of the key feature, thereby
enhancing the selection of features in the model.

• We propose a multiscale convolution algorithm to
retain more deep features, thereby enhancing the
feature-mining ability of the model.

• To better integrate deep features, we use bidirectional
long short-termmemory (Bi-LSTM) [21] to integrate the
deep features of convolution kernel mining at each scale.

• To better understand the training results of the AML
algorithm, convergence visualization analysis was per-
formed on three public datasets.

The rest of this paper is summarized as follows: Section II
introduces the AML algorithm. Section III analyzes the
experimental results. Finally, the conclusion is drawn in
Section IV.

II. RELATED RESEARCH
An excellent classification model performs three tasks:
feature selection, feature mining and feature integration;

additionally, an excellent classification model is important in
the final hyperspectral remote sensing image classification.
First, the selection of good features provides a guarantee
for later feature mining and feature integration. Jie [22] and
others set 11 filters in the first layer of depth convolution
to select bands. Although many redundant bands are elimi-
nated, the useful features in bands are simultaneously lost,
and the final classification effect is reduced. Ying [23] and
others trained the hyperspectral data through a self-defined
one-dimensional CNN and predicted the data in other bands.
Finally, the authors considered the band with the highest
accuracy as the selected band, tested all the bands repeatedly,
and finally achieved satisfactory results on the Indian Pines
dataset. Hongfeng [27] proposed a SAGP algorithm, which
firstly uses the attention mechanism to extract features from
remote sensing images, allocates weight coefficients for fea-
tures, and preserves the integrity of features for later feature
mining, although the attention mechanism assigns weights
to the original features, it ignores the weight distribution of
global and local features. The PRAN algorithm proposed
by Gao H [29] combines the advantages of an attention
mechanism model and a residual network, jointly constructs
spectral and spatial features, and improves the robustness
of learning, especially on small sample training sets. Then,
a deep mining of features is needed after feature selection.
Jie [24] uses a multilayer CNN that improves classification
accuracy by extracting shallow, middle and deep features
of hyperspectral remote sensing images and fusing a vari-
ety of features to make shallow features fully complemen-
tary to deep features. Chunju [25] uses multiscale convolu-
tion to mine multiscale features, integrates the characteris-
tic information of the whole network mining, and achieves
high-precision classification results and efficient operation
speed on multiple data sets. The final task performed by the
model is feature integration. Lefei et al. [30] map spatial
and spectral features to a common low-dimensional subspace,
and many kinds of feature information complement each
other. Additionally, the authors use the model to mine the
most important original image features, which are proved on
three hyperspectral remote sensing data sets. Ji C et al. [31]
proposed an NMF depth feature extraction algorithm, which
transmits features layer by layer by iterating several nonneg-
ative matrices and reconstructing the residual network. Addi-
tionally, the activation function is used to enhance the ability
of nonlinear feature extraction. The results show that the
algorithm is efficient and suitable for hyperspectral remote
sensing image classification. After fully mining deep fea-
tures, feature integration can better retain the relationship
between sequence structure information and constructed fea-
tures. Lichao [26] proved that hyperspectral images essen-
tially have a sequence-based data structure and proposed a
new RNN model algorithm to analyze the sequence data in
hyperspectral images more effectively; finally, the authors
proved that their depth recursive network has great potential
in hyperspectral data. Chen J [28] and others proposed an
FSSFNet algorithm that achieved good experimental results
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FIGURE 1. AML algorithm model. The numbers in the square represent the size of the convolution kernel. Circles represent the eigenvalues of each part
of the model.

⊗
represents the feature fusion operation. The black rectangle represents the max-pooling layer. (1) and (2) represent two multiscale

convolutions.
⊕

represents the feature sum operation.

by, first, eliminating the redundant features in multispectral
features; then, constructing the spatial relationship features
between pixels; and, finally, combining these features.

The abovementioned research clearly shows that feature
selection, feature mining and feature integration are indis-
pensable. In this paper, in the feature selection stage, we pro-
pose an integrated attention mechanism model to select the
original features of hyperspectral remote sensing images. The
advantage of this model is that it assigns a higher weight
coefficient to the recognition of target features so that the
target features can be better mined, thereby avoiding the elim-
ination of the whole band with less information. The model
simultaneously combines local and global feature weight
information. In the feature mining stage, we select the multi-
scale convolution model to fully mine the features of different
scales and retain more useful features from multiple scales.
In the feature integration stage, we use Bi-LSTM to integrate
the deep features of each kind of convolution mining and
retain the sequence relationship between the deep features of
each kind of convolution mining. Experimental results show
that our proposed algorithm plays a positive role in feature
selection, feature mining and feature integration.

III. PROPOSED FRAMEWORK
Figure 1 shows the AML algorithm model. First, the original
hyperspectral image is reduced by the PCA algorithm, which
retains most of the information dimensions and reduces the
computational cost. Second, the dimension-reduced features
are input into the AML algorithm. In the AML algorithm,
the attention mechanism is used to distribute the weight of
the input features, then the output features of attention are
selected by three processing methods, and then the calculated
features are input to multi-scale convolution for deep mining.
Finally, the mined features are put into BILSTM for final
feature integration. The final integrated features are predicted
by softmax, and realize the recognition of hyperspectral
images. The three attention mechanisms not only retain the

original features of high-dimensional images, but also add
local and global features. In the next few parts of this chapter,
we introduce each part of the AML algorithm in detail.

A. INTEGRATED ATTENTION MECHANISM
An attention mechanism [20] is a type of probability weight
distributionmechanism. By calculating the features of remote
sensing images input at different times, this mechanism pays
more attention to the features of target recognition. Thus,
these features are assigned larger probability weights, which
contribute to improving the quality of the hidden-layer fea-
tures. The weight coefficient of the hidden layer is calculated
as follows (Equation 1):

aij =
exp(eij)
n∑

k=1
exp(eik )

(1)

where aij represents the attention allocation coefficient of the
feature sequence of the pixel j in a source input, i represent a
moment, e represents the energy value of the i-th moment.

ci =
n∑
j=1

αijhj (2)

where hj represents the hidden state information of the pixel j
by feature vectors. Finally, we used summation functions for
aij and the hidden state hj to generate the context vector ci.
The integrated attention mechanism we propose consists

of three parts. In the first part, we retain half of the hyper-
spectral image features with high weight; in the second part,
we use the local average pooling strategy to pool the adjacent
features and retain the number of new local average pooled
hyperspectral image features to half of the original hyperspec-
tral image features; in the third part, we use the global average
pooling strategy to average the overall hyperspectral image
features and generate a new global average pooling hyper-
spectral image feature. By using the above three attention

VOLUME 8, 2020 71355



Z. Wang et al.: Small Sample Classification of Hyperspectral Remote Sensing Images

FIGURE 2. The multiscale convolution operation. Green indicates the input features; red, orange and yellow indicate the size of
the convolution kernel at different scales, and the pink matrix pads the red, orange and yellow matrices. The multicolored
matrix indicates the features result of the output. The multiscale feature is fused by ’concatenate’ and is used as the input of the
next module. Finally, the output feature map is kept the same size as the input image.

processing methods, we finally extract the original, neighbor-
hood, and global features of the hyperspectral image. Using
these methods provides a guarantee for feature mining and
feature integration. The specific operation is shown in the
integrated attention mechanism module in Figure 1.

B. MULTISCALE CONVOLUTION
The features are directly affected by the size of the con-
volution kernel. Traditional convolution works only through
a convolution kernel, and a corresponding basic feature
is obtained. Sometimes, the single convolution kernel we
choose does not fully exploit the useful features in the image,
thus resulting in the loss of some key features.

To solve the above problems, we propose a novel multi-
scale convolution method, which simultaneously mines fea-
tures from multiple scales through multiple convolution ker-
nels. The experimental results show that multiscale convolu-
tion can better preserve key features. The multiscale convo-
lution operation is illustrated in Figure 2.

The multiscale convolution formula is as follows:

S = Conv
n∑

k=1

(X(i,j) ∗W(k−1,k,k+2))+ b(k−1,k,k+1) (3)

where W(k−1,k,k+2) represents the weight calculation with
the k−1, k, k+1 convolution kernel. b(k−1,k,k+1) represents a
bias function that simultaneously adds the k−1, k, k+1 con-
volution kernel.

C. BIDIRECTIONAL LONG SHORT-TERM MEMORY
We integrated the deep features generated by the last layer of
multiscale convolution mining to integrate their own infor-
mation. We improve the correlation between deep features
through Bi-LSTM. In this paper, three Bi-LSTM layers are

used to integrate the upper and lower semantic informa-
tion of the deep features of three different sizes of con-
volution to provide more contextual semantic information
features for the final classification of small samples. Addi-
tionally, Bi-LSTM effectively avoids the problem of gradi-
ent explosion and gradient disappearance. Bi-LSTM consists
of a forward LSTM called LSTMforward and a backward
LSTM called LSTMbackward . Bi-LSTM uses LSTMforward and
LSTMbackward to strengthen the context semantic information
between deep features to complete deep feature integration.
The visualization of the integration is shown in Figure 3.

The forward and backward propagation fusion formula of
Bi-LSTM is as follows:

Integ=LSTMforward ⊕ LSTMbackward (4)

where Integ represents the forward and backward propagation
integrated output of Bi-LSTM. ⊕ represents an integrated
operational symbol.

D. FEATURE FUSION
We fused three Bi-LSTM integrated deep feature sequences.
The fusion algorithm formula is as follows:

Output = Concatenate(Integ1 ⊕ Integ2 ⊕ Integ3) (5)

where Output represents the output of the final merged fea-
ture fusion; Concatenate() represents a fusion feature func-
tion; Integ1 represents a deep feature sequence generated
by Bi-LSTM with a convolution kernel scale of k-1; Integ2
represents a deep feature sequence generated by Bi-LSTM
with a convolution kernel scale of k; Integ3 represents a deep
feature sequence generated by Bi-LSTM with a convolution
kernel scale of k+1. The fusion features are finally classified
by softmax function.
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FIGURE 3. The feature integration model picture representing the generation of multiscale Bi-LSTM. Each red circle
represents a feature with a mining scale equal to 2. Each green circle represents a feature with a mining scale equal to 3.
Each blue circle represents a feature with a mining scale equal to 4. Concatenate represents the integrated operation of
features.

TABLE 1. The number of samples of each class in the Indina Pines
dataset.

IV. EXPERIMENTS
A. DATA SETS AND EVALUATION METHODS
In this paper, our experiments were conducted based on three
hyperspectral public data sets. The first data set is Indina
Pines, which is 145*145 in size and reduced to 100-D via
PCA. The entire image has 16 different classes. The second
data set is the Pavia University scene, which is 610*340 in
size and reduced to 50-D via PCA. The entire image has
9 different classes. The third data set is Salinas, which is
512*217 in size and reduced to 29-D via PCA. The entire
image has 16 different classes. Overall accuracy (OA), aver-
age accuracy (AA), and the kappa coefficient (kappa) are
used as the performance metrics to evaluate the classification
accuracy of the letter. To ensure the validity of the experi-
mental data, the experiment is repeated 10 times, the highest
value is taken, and each test randomly selected the samples.
We describe the number of samples of the three data sets in
detail in Table 1, Table 2, Table 3.

B. EXPERIMENTAL RESULTS OF DIFFERENT METHODS
We compare the proposed AML algorithm with the classical
AlexNet, ResNet, and DenseNet algorithms and the latest
FSSFNet, SAGP, and PRAN algorithms. To ensure fairness,
all models use the same features after PCA dimensionality

TABLE 2. The number of samples of each class in the Pavia University
scene dataset.

TABLE 3. The number of samples of each class in the Salinas dataset.

reduction and the same number of samples in the training and
verification set. The results are shown in the following tables
for the different data sets (Table 4 for the Indian Pine dataset;
Table 5 for the Pavia University dataset and Table 6 for the
Salinas dataset).

1) RESULTS ON THE INDIAN PINE DataSet
The Indian Pines data set belongs to a small sample data set,
of which 9 are less than 500 samples and the smallest class has
only 20 samples. Table 4 clearly shows that the effect of our
proposed AML operation is higher than that of other contrast
algorithms by 1% to 8% in terms of OA, AA and Kappa.
Our proposed model shows the best results on three different
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TABLE 4. Classification performance of different approaches for the Indian Pine image with 5%, 10%, AND 15% training samples. Bold indicates the
result of the improved algorithm.

TABLE 5. Classification performance of different approaches for the Pavia university image with 1%, 5%, AND 10% training samples. Bold indicates the
result of the improved algorithm.

TABLE 6. Classification performance of different approaches for the Salinas image with 1%, 5%, and 10% training samples. Bold indicates the result of
the improved algorithm.

training sets, thus fully proving the feasibility of the AML
algorithm for small sample detection. In SAGP, the sequence
model is used to construct the sequence relationship between
features so that a few samples can obtain better results. The
AML algorithm plays an active role in feature selection, fea-
ture mining and feature fusion. Figure 4 shows a graph of the
experimental results (generated using by 5% of the samples
for training). The graph clearly shows that the AML model
significantly reduces the noise generated by the classification
effect.

2) RESULTS ON THE PAVIA UNIVERSITY DataSet
These data is divided into 9 categories; each class has thou-
sands of samples, but the shape of the samples is irregular.
Table 5 clearly shows that our AML algorithm improves
OA, AA, and Kappa, and the evaluation criteria increase
significantly as the number of training samples increases.
In the PRAN model, good results are obtained by using two
attention mechanism modules. Figure 5 shows the experi-
mental results (generated using by 1% of the samples for
training). This figure clearly shows that as the proportion of
training samples increases, the noise significantly decreases.
The classification effect of the AML algorithm is obviously

stronger due to the traditional algorithm. (The red circle
shows the obvious difference in some places between the
original algorithm and our improved algorithm.)

3) RESULTS ON THE SALINAS DataSet
Salinas is a morphological relative rule data set, and the num-
ber of samples per class is large. Therefore, Table 6 shows that
even if the training set accounts for only 1%, a better effect
can be trained. Our improved ALM algorithm has obtained
the best classification results. When the training set sample
is 10%, the AA prediction result of FSSFNet is higher than
that of our proposed model, thus showing that the global
information in small samples is very important. Figure 6
shows the experimental results (generated using by 1% of
the samples for training). Figure 6 shows very clearly that
our proposed AML algorithm has stronger feature learning
ability, thus improving the classification accuracy of small
samples.

C. EXPERIMENTAL RESULTS OF DIFFERENT
ATTENTIONAL MECHANISMS
In this section, we mainly compare the effects of various
attention mechanisms on the experimental results. We used
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FIGURE 4. Classification maps of the Indian pine data set. (a) Ground truth. (b) AlexNet. (c) ResNet. (d) DenseNet. (e) PRAN. (f) FSSFNet.
(g) SAGP. (h) AML.

FIGURE 5. Classification maps of the University of Pavia data set. (a) Ground truth. (b) AlexNet. (c) ResNet. (d) DenseNet. (e) PRAN.
(f) FSSFNet. (g) SAGP. (h) AML.

the least divided training samples for each dataset for test-
ing (the Indian pine data set used 5%, the University of
Pavia data set used 1%, and the Salinas data set used 1%).

The number ‘‘1’’ represents the traditional attention mecha-
nism [20]. ‘‘2’’ represents the attention mechanism of aver-
age pooling operation. and ‘‘3’’ represents the attention
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FIGURE 6. Classification maps of the Salinas data set. (a) Ground truth. (b) AlexNet. (c) ResNet. (d) DenseNet. (e) PRAN. (f) FSSFNet. (g) SAGP.
(h) AML.

FIGURE 7. Convergence curves of each dataset. (a) Indian data. (b) Pavia data. (c) Salinas data. Red is multi-scale convolution, blue is
traditional convolution.

TABLE 7. Experimental results of different attention mechanisms.

mechanism of the global average pooling operation. Multi-
ple numbers represent the simultaneous use of many differ-
ent types of attention mechanisms, and the AML algorithm
uses all the attention mechanisms. Global pooling attention

generates only one feature, so the experiment is not compared
separately. Table 7 clearly shows that the effect of any of
the attention mechanism models is better than the effect of
any of the models without an attention mechanism. The joint
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TABLE 8. Experimental results of feature integration of different modules.

TABLE 9. Experimental results of different submodules.

FIGURE 8. Classification maps of the Indian pine data set. (a) AML-no-Attention. (b) AML-no-Multscale-Con. (c) AML-no-Bi-LSTM. (d) AML.

FIGURE 9. Classification maps of the University of Pavia data set. (a) AML-no-Attention. (b) AML-no-Multscale-Con. (c) AML-no-Bi-LSTM.
(d) AML.

experimental results of the two attention mechanism models
are higher than the experimental results of the single attention
mechanism model. The traditional attention mechanism and
the average pooling attention mechanism model are better
than the other two combinations because there is only one
feature of the global average pooling, so the generalization
ability is limited. Our proposed AML algorithm optimizes
the experimental results, so the three attention mechanism
models are feasible.

D. COMPARISON OF TRADITIONAL CONVOLUTION
AND MultiScale CONVOLUTION
To determine whether the traditional or multiscale con-
volution works better, we validated the convolutions on
three datasets. We constructed a multiscale convolution set
with convolution kernels being 3, 4, and 5. The experi-
ment ran 20 rounds of multiscale and traditional convolu-
tion, 10 iterations per round. The experimental results are
shown in Figure 7. The product verification of the multiscale
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FIGURE 10. Classification maps of the Salinas data set. (a) AML-no-Attention. (b) AML-no-Multscale-Con. (c) AML-no-Bi-LSTM. (d) AML.

convolution module in Figure 7 comes from the second
multiscale convolution module of our proposed model. The
training set used by the Indian Pines dataset is 5% of its total
data; the training set used by the Pavia dataset is 1% of its
total data; and the training set used by the Salinas dataset
is 1% of its total data. As Figure 7 shows the multiscale
convolution proposed by this paper is better in feature mining
and convergence.

E. EXPERIMENTAL RESULTS OF FEATURE INTEGRATION
OF DIFFERENT MODULES
In this section, we compare a variety of sequence models.
Table 8 shows that when using the sequencemodel, the exper-
imental effect increases significantly, especially in the Salinas
data set; the experimental results are very clear. As the table
clearly shows, the experimental results obtained by integrat-
ing the GRU module are better than the results obtained by
integrating the Bi-GRUmodule; however, the results obtained
by integrating Bi-LSTM are better than the results obtained
by integrating LSTM. We suspect that the cell state in LSTM
retains more pre-and post-sequence data. The Bi-LSTM we
use is more suitable for building feature sequences.

F. EXPERIMENTAL RESULTS OF DIFFERENT SUBMODULES
Table 9 contains the experimental results of different sub-
models of the three data sets(Indian pine data set: 15% of the
total sample number is used as the training set; University of
Pavia data set: 10% of the total sample number is used as the
training set; Salinas data set: 10% of the total sample number
is used as the training set). From the three data sets we can
see that all the sub-modules play an active role. In the Indian
dataset, the feature dimension after dimensionality reduction
is high, and it is very important to construct the context rela-
tionship between the features, so the BILSTM algorithm has
a greater impact; The effects of each sub-module in the Uni-
versity of Pavia data set are similar, and three sub-modules
work best when used together; In Salinas data set, since the

reduced dimension has fewer feature dimensions, the inte-
grated attention mechanism becomes more important. From
the experimental results, it can be seen that when the inte-
grated attentionmechanism is removed, the recognition effect
decreases severely. The results are shown in the following
figures for different data sets (Figure 8 for Indian Pine dataset;
Figure 9 for Pavia University dataset and Figure 10 for the
Salinas dataset).

V. CONCLUSION
In this paper, we propose a multitask AML algorithm model
(The Deep features of Multi-scale convolution under Atten-
tion Mechanism are integrated by Bi-LSTM, AML) that per-
forms feature selection, feature mining and feature integra-
tion. The AML algorithm uses an integrated attention mech-
anism to retain key features while reducing many redundant
features and uses multiscale convolution to retain more deep
features. Finally, the multiscale deep features are serialized
by Bi-LSTM, which strengthens the correlation between the
deep features. The best results were achieved on three public
data sets and with three improved algorithms. The results
fully prove the feasibility of our method.
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