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ABSTRACT In quantum swarm intelligence algorithms, the tunneling effect of the particles is determined
by the potential energy acting on the particles. The tunneling effect of the particles affects the global search
ability and convergence speed of the algorithm. Quantum algorithms with a single potential energy are
prone to premature convergence under certain complex test functions. In this paper, we propose a multiscale
quantum gradual approximation algorithm (MQGAA), which simply uses different approximation strategies
to obtain different potential energy functions, to solve the premature problem of the optimization algorithm.
In the MQGAA, particles undergo a transition from an unconstrained state to a constrained state at each
scale. To demonstrate the effectiveness of the proposed algorithm, experiments are carried out with several
common and effective stochastic algorithms on N-dimensional double-well potential functions and classical
benchmark functions. We also use the Wilcoxon rank test to detect the performance of MQGAA. The
experimental results show that the algorithm using a step-by-step approximation strategy achieves a better
optimization performance on some complex test functions.

INDEX TERMS Taylor approximation, unconstrained state, constrained state, multiscale, multiscale quan-
tum harmonic oscillator algorithm.

I. INTRODUCTION
Swarm intelligence is a kind of bionic algorithm inspired by
the organization inherent in natural biological behavior. The
algorithm simulates the mutual cooperation between natural
biological groups. It is an algorithm in which one or more
individuals with simple intelligence show advanced intel-
ligence through the cooperation between them. In the past
few decades, many swarm intelligence algorithms have been
proposed, such as evolutionary strategy [1], particle swarm
optimization [2], simulated annealing [3], genetic algo-
rithm [4], differential evolution [5], ant colony optimization
[6], fireworks algorithm [7], etc. These swarm intelligence
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algorithms have developed rapidly since they were proposed.
The improvement of numerous algorithms greatly improves
their performance.

In the swarm intelligence algorithm, particles exhibit
aggregation. This aggregation, which means that the differ-
ences between individuals are limited, is a basic characteristic
of swarm intelligence algorithms. In quantum mechanics,
aggregation is described by the bound states of particles. The
formation of the bound states is caused by the existence of an
attractive potential field at the center of the particle motion.
In recent years, many scholars have applied quantum theory
to swarm intelligence algorithms. The quantum annealing
algorithm (QA) is developed from the classical simulated
annealing algorithm [8]. The algorithm uses the fluctuation
characteristics of particles in quantum theory to design the
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algorithm. The quantum tunneling effect of the quantum
wavefunction will enable particles to cross the obstacles that
cannot be crossed in classical physics, and the target sys-
tem will be optimized by simulating this process. Sun et al.
proposed a quantum behaved particle swarm optimization
(QPSO) by combining the quantum system with particle
swarm [9]. In the QPSO algorithm, a quantized attractive
potential field is set up as the bound particle of the constrained
state, which makes the particle move toward the aggregation
state. The multiscale quantum harmonic oscillator optimiza-
tion algorithm (MQHOA) is based on the physical meaning
of the quantum theoretical wavefunction. The ground state
of the quantum system corresponds to the probability distri-
bution of the optimal solution of the objective function. In
MQHOA, particles are attracted by the potential field of a
harmonic oscillator [10]. The bare bones fireworks algorithm
(BBFWA) is a simplified fireworks algorithm. The particles
in BBFWA are evenly distributed in the definition domain,
which is simple and easy to implement [11].

In the optimization process, we establish a quantized
potential field to bind particles such that not only will the
algorithm exhibit aggregation but also will the particles be
able to appear in any position in the space with a certain
probability. It is important to obtain and select a suitable
potential constrained particle in the optimization algorithm.

In quantum mechanics, the bound state of a particle is
determined by the wavefunction. The wavefunction can be
solved by the Schrödinger equation, which is shown in (1),
where v(x) is the attraction potential of particles in a quantum
system, i.e., the potential energy function.

Eψ(x) = (−
h̄
2m

∂2

∂x2
+ v(x))ψ(x) (1)

The objective function f (x) of the optimization problem cor-
responds to the potential energy v(x) in the Schrödinger’
equation, and the square of the absolute value of the wave-
function ψ(x) corresponds to the probability distribution of
the optimal solution in the solution space. In the process
of optimization, particles will eventually concentrate near
the optimal solution. That is, the probability distribution of
particles will eventually be stable, which corresponds to the
wavefunction of particles in the ground state in the quantum
model. When we obtain the ground state wavefunction corre-
sponding to the objective function, we can obtain the position
of the optimal solution. When v(x) is complex, it is difficult
to solve the wavefunction with the Schrödinger’ equation.
Consequently, we need to simplify the objective function of
the optimization.

TheMQHOA used the second-order Taylor approximation
to simplify the optimization problems. MQHOA is an effi-
cient quantum optimization algorithm that is proposed based
on the wavefunction in quantum physics. MQHOA converts
the optimization problem into solving the wavefunction of a
time-dependent quantum system. The wavefunction defined
in MQHOA reflects the potential field force on the particles
inMQHOA.When the optimization problem is approximated

by a second-order Taylor expansion, the wavefunction in
MQHOA is the wavefunction of a quantum harmonic oscil-
lator. The particles in MQHOA are bounded by the potential
field of the quantum harmonic oscillator [10].

In quantum mechanics, the potential energy of a quantum
system exerts a force field on the particles, which deter-
mines the tunneling effect of the particles in the system.
Different potential energies determine different tunneling
effects of the particles. By comparing the tunneling effects
of different quantum systems, we propose a new algorithm
called the multiscale quantum gradual approximation algo-
rithm (MQGAA). In the MQGAA, at each scale, the par-
ticles undergo a transition from an unconstrained state to a
constrained state. Particles in the unconstrained state have a
strong global search ability, whereas the local search abil-
ity of the constrained particles is strong. After satisfying
certain conditions, the particles can be transformed into the
constrained state to enhance the local search ability, thus
speeding up the convergence of the algorithm. The change
in the particle state is realized by the change in the potential
energy. The first- and second-order Taylor approximations
are applied to the new algorithm to obtain quantum systems
with different potential energies. Compared with other algo-
rithms, this effectively enhances the exploitation ability in the
global area; however, the convergence speed of the algorithm
is lower.

To verify the performance of MQGAA, N-dimensional
double-well potential functions and some classical bench-
mark functions are used as test functions. The double-well
potential is one of a number of quartic potentials in quantum
mechanics, in quantum field theory and elsewhere for the
exploration of various physical phenomena and mathemati-
cal properties. The one-dimensional double-well function is
an ideal potential well model objective function that has a
globally optimal region and a locally optimal region. Many
scholars have used the one-dimensional double-well poten-
tial function as the objective function to analyze the per-
formance of quantum algorithms. The double-well potential
function is used to analyze the performance of QA as a
heuristic optimization algorithm [12]. Reference [13] used
the one-dimensional double-well potential function as the
ideal potential well model in quantum physics to study the
annealing properties of wavefunctions in quantum systems.
Reference [14] used the double-well potential function as a
simple one-dimensional case study system to investigate the
basic behavior and performance of simulated QA in com-
parison with classical annealing (CA). To further verify the
performance difference between MQGAA and MQHOA, we
use the bilateralWilcoxon rank test to detect the experimental
datas of the two algorithms through the method described
in [15].

This paper is organized as follows. In Section II, we intro-
duce the basic definitions and formulas of Taylor’s formula.
We briefly introduce the principle of MQHOA and analyze
the approximation strategy of MQHOA in Section III. In
Section IV, we give the approximation strategy of MQGAA
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and compare the tunneling effects of different approximation
strategies for corresponding wavefunctions. The framework
of MQGAA is also described in Section IV. In Section V, the
efficiency of MQGAA is evaluated on benchmark functions
with different characteristics and N-dimensional double-well
potential functions. The Wilcoxon rank test is also in this
section. The simulation results and performance analysis val-
idate the effectiveness of the proposed approach. In Section
VI, conclusions and future work are outlined.

II. TAYLOR’s FORMULA
In mathematics, Taylor’s formula describes the value of a
function in its vicinity with the information of a point. If
the function is sufficiently smooth, Taylor’s formula can con-
struct a polynomial to approximate the value of the function
in the neighborhood of this point by using the correspond-
ing multiples of these derivatives as coefficients when the
derivatives of the function at a certain point are known. In
practical applications, Taylor’s formula needs to be truncated,
taking only a finite number of terms. The Taylor series of the
finite terms of a function is called Taylor’s expansion. The
remainder of Taylor’s formula can be used to estimate the
error. The number of terms of Taylor’s expansion determines
the degree of approximation. The higher the number of terms
is, the higher the degree of approximation. In optimization
problems, we only care about the function values near the
optimal solutions. Therefore, Taylor’s formula is often used
to simplify the optimization problems.

For a function f (x) with n-order derivative at x = x0,
Taylor’s formula can be used to approximate f (x) by using
an n-order polynomial of (x − x0). It is an important part of
advanced mathematics to study Taylor’s formula for approxi-
mating some complex functions as the simplest polynomial
functions, a process called Taylor approximation. In opti-
mization problems, we care about the function values near
the optimal solutions. Therefore, the Taylor approximation is
often used to simplify optimization problems.

Taylor’s formula is defined as follows [16]: If a function
f (x) has n-order derivatives on a closed interval [a, b] con-
taining x0 and n + 1 order derivatives on an open interval
(a, b), the following formula (2) is established for any point
x on the closed interval [a, b].

f (x) =
f (x0)
0!
+
f ′ (x0)
1!

(x − x0)+
f ′′ (x0)
2!

(x − x0)2

+ . . .+
f (n) (x0)
n!

(x − x0)n + Rn(x) (2)

To conveniently describe the approximation strategy of the
algorithm, we define Taylor’s first-order approximation and
second-order approximation, which are described as follows.
f1(x) in Formula (3) and f2(x) in Formula (4) are two finite
terms of the Taylor formula shown in Formula (2).

A. FIRST-ORDER TAYLOR APPROXIMATION
We intercept the first two terms of Formula (2) for the approx-
imation of f (x) which is shown in Formula (3).

f1(x) ≈
f (x0)
0!
+
f ′ (x0)
1!

(x − x0) (3)

B. SECOND-ORDER TAYLOR APPROXIMATION
We intercept the first three terms of Formula (2) for the
approximation of f (x). The approximation of f (x) is shown
in (4)

f2(x) ≈
f (x0)
0!
+
f ′ (x0)
1!

(x − x0)+
f ′′ (x0)
2!

(x − x0)2 (4)

III. MULTISCALE QUANTUM HARMONIC OSCILLATOR
ALGORITHM
The MQHOA with the energy level stabilizing process pro-
posed in 2016 [17] is an efficient quantum optimization
algorithm that was proposed based on the wavefunction in
quantum physics.

In MQHOA, the optimization problem is transformed into
the problem of solving for the time-dependent wavefunction.
The Schrödinger equation is shown in (1). The objective
function f (x) of the optimization problem corresponds to the
potential energy v(x) in the Schrödinger equation, and the
square of absolute value of the wavefunction ψ(x) corre-
sponds to the probability distribution of the optimal solution
in the solution space. The optimal solutions correspond to
the lowest potential energy. In other words, the ground state
wavefunction of the quantum system reflects the distribution
of the optimal solutions. The Schrödinger equation can only
be used to obtain the wavefunctions of some simple potential
energy functions. Therefore, we need to simplify complex
objective functions by approximation.

In MQHOA, we approximate the objective function f (x)
by Taylor’s formula about the optimal solution x0. The Taylor
expansion is shown in formula (2). x0 is the extremum point
of the objective function; thus, f ′ (x0) = 0. By substituting
f ′ (x0) = 0 for Formula (4), we obtain Formula (5).

f (x) ≈
f (x0)
0!
+
f ′′ (x0)
2!

(x − x0)2 (5)

The solution of the wavefunction of f (x) is simplified to the
solution of the wavefunction of the quantum harmonic oscil-
lator system. The probability density of the wavefunction that
is shown in (6) can be derived from Formula (1) [18].

|ψ0(x)|2 =
a
√
π
exp(−a2x2) (6)

The wavefunctionψσs (x) of MQHOA shown in (7) is defined
as a superposition of nGaussian probability density functions
with µi as the sampling center, and σs represents the current
scale [19].∣∣ψσs (x))∣∣2= n∑

i=1

|ψi(x))|2=
n∑
i=1

1
√
2πσs

exp

(
−
(x − µi)2

2σs

2)
(7)
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IV. MULTISCALE QUANTUM GRADUAL APPROXIMATION
ALGORITHM
The wavefunction in MQHOA can ensure that the solutions
can escape from local optima with a certain probability; how-
ever, for certain complex problems, the solutions often fall
into a local optimum, which makes MQHOA converge pre-
maturely. To address this problem, we propose the MQGAA
algorithm.

MQGAA is a quantum optimization algorithm based on
the wavefunction, which consists of two key components:
a diffusion (D) process and a multiscale (M) process. In
the D process, the particles can be in one of two states: an
unconstrained state or a constrained state. Particles in the
unconstrained state have a strong global search ability. When
a certain condition is reached, the particles transit from the
unconstrained state to the constrained state. Particles in the
constrained state have a weaker global search ability but a
stronger local search ability, which can make the algorithm
converge quickly. The transformation of the particle state is
realized by the transformation of the wavefunction, and dif-
ferent wavefunctions are obtained by different approximation
strategies for the objective function.

A. APPROXIMATION STRATEGY OF MQGAA
For an optimization algorithm, a stronger tunnel effect does
not necessarily provide better performance by the algorithm,
as we are uncertain that the position of the particle at the next
moment will be closer to the optimal solution. In MQGAA,
we adopt a step-by-step Taylor approximation strategy. At
each scale, the first-order Taylor approximation is used to
make the particles sufficiently disperse. When the sampled
particles reach the metastable state, the second-order Taylor
approximation is applied to the objective function to make the
particles converge quickly.

We approximate the objective function f (x) by Taylor’s
formula at the optimal solution x0. Because f ′ (x0) = 0,
Formula (3) can be simplified to Formula (8), in which C is
constant.

f (x) ≈
f (x0)
0!
= C (8)

The wavefunction of f (x) can be obtained by solving the
wavefunction of a free particle. The wavefunction of a free
particle is shown in Formula (9).

ψ(x, t) = ψ0e
−i 2πh̄ (Et−px) (9)

The probability density of a free particle described in Formula
(10) is the square of the wavefunction shown in Formula (9)..

|ψ |2 = ψψ∗ = |ψ0|
2 (10)

The wavefunction ψσs (x) corresponding to the first-order
Taylor approximation of the objective function, which we
used inMQGAA, shown in (11), is defined as a superposition
of n uniform distributions. The a and b are the upper and lower
limit of the domain. The wavefunction corresponding to the

second-order Taylor approximation of the objective function
is the same as MQHOA, which is shown in (7).

|ψσs (x)|
2
=

n∑
i=1

|ψi(x)|2 =
{∑n

i=1
1

R−L ,L ≤ x ≤ R
0, x < Lorx > R

(11)

B. COMPARISON OF DIFFERENT WAVEFUNCTIONS
We compare the tunneling effects of different quantum sys-
tems by using the probability of solutions located outside
the local optimum. The greater the probability of locating
outside of the local optimum region is, the stronger the tun-
neling effect of the quantum system. As mentioned above,
the wavefunctions corresponding to the first-order Taylor
approximation and the second-order Taylor approximation
are shown in Formulas (11) and (7), respectively.

The comparison of quantum tunneling effects is shown in
Figure 1. The objective function f (x), which we used here,
is the one-dimensional double-well potential function. The
expression of f (x) is shown in Formula (12), where V = 6,
a = 2, δ = 1. ψ1(x) and ψ2(x), which are shown in (13),
are the wavefunctions corresponding to the functions after
the first- and second-order Taylor approximations of f (x),
respectively.

f (x) = V

(
x2 − a2

)2
a4

+ δx

ψ1(x) =
1

R− L
,L ≤ x ≤ R (12)

ψ2(x) =
1

√
2πσs

exp

(
−
(x − µi)2

2σ 2
s

)
(13)

When the solution locates at point A, the algorithm falls
into a local optimum. The problem of comparing the ability
of algorithms to escape from local optima is transformed into
a problem of comparing the quantum tunneling effects of
particles from region A to region B. We use the probabilities
of the particle locating at point A to the left region of point
C , which are shown in the shadows of Figure 1, to represent
the tunneling effect. Substituting the values in Figure 1 into
Formula (13), we obtain Formula (14). We use Formula (14)
to calculate two probabilities. Through numerical calculation,
we obtain p1 = 0.5317 and p2 = 0.2323. The tunneling
effect of the quantum system based on the first-order Taylor
approximation of the objective function is stronger.

p1 =
∫ 0.19

−3
ψ1(x) =

∫ 0.19

−3

1
R− L

,where L = −3,R = 3

p2 =
∫ 0.19

−3
ψ2(x) =

∫ 0.19

−3

1
√
2πσs

exp

(
−
(x − µi)2

2σ 2
s

)
(14)

C. THE FRAMEWORK OF MQGAA
Algorithm 1 describes the MQGAA pseudocode. The nota-
tions are represented in Table 1. Similar to MQHOA,
MQGAA is also a quantum optimization algorithm based on
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FIGURE 1. Contrasting the quantum tunneling effects.

Algorithm 1: MQGAA Pseudocode
Initialize k, MaxFE, [dmin, dmax], σs,
xi (i = 1, . . . , k), 1σ .
Calculate σ . Fi = f (xi).
while (FE≤MaxFE) do

while (σ > σs) do
while (1σ > σs) do

if (1σ > 1.5 ∗ σs) then
∀ xi, generate x ′i ∼ U (xi −

σs
2 , xi +

σs
2 ).

if f (x ′i ) < f (xi) then xi = x ′i ,
Calculate σ ′.
1σ=σ ′ − σ

else
∀ xi, generate x ′i ∼ N (xi, σ 2

s ).
if f (x ′i ) < f (xi) then xi = x ′i ,
Calculate σ ′.
1σ = σ ′ − σ

end
end
Update σ = σ ′.
xworst = xmean.

end
σs = σs/2.

end
Output xbest , Fbest .

the wavefunction, therein consisting of two key components:
a Diffuse (D) process and a Multiscale (M) process.

In MQGAA, the D process utilizes two behaviors: diffu-
sion stabilization and particle renewal. The diffusion stabi-
lization consists of two stages: the global diffusion and the
local diffusion state. As shown in Algorithm 1, when 1σ <
1.5 ∗ σs, the global diffusion reaches the stable state; when
1σ < σs, the local diffusion becomes stable. Choosing the
right time to switch between global diffusion and local diffu-
sion can not only improve the local search ability of MQGA,
but also ensure the efficiency. We use experiments to com-
pare the effects of different switching conditions in diffusion

TABLE 1. Notations in Algorithm 1.

stages on the performance of MQGAA. The experimental
results are shown in subsection V-B. When the diffusion is
stable, the worst particle will be replaced by the mean of all
particles.

As discussed in [20], the M process is a necessary and
problem-independent process for optimization algorithms
according to the principle of uncertainty. TheM process is the
variable sampling step size strategy. The MQGAA gradually
reduces the search step to precisely obtain the globally opti-
mal solutions. Large step sizes correspond to a global search,
and small step sizes correspond to a local search. Different
scales determine the different accuracy levels of the solutions.

V. SIMULATION AND DISCUSSION
In this section, we first introduce the experimental environ-
ment, the comparison algorithms and test functions used in
the experiment. Then, we analyze the switching conditions of
the diffusion stage by experiment. Subsequently, to prove the
effectiveness of theMQGAA, two experiments are conducted
on test functions with different characteristics.

One experiment is conducted to compare the global search
abilities between MQGAA, MQHOA-SMC and MQHOA on
the double-well potential function. The second experiment
is conducted to compare with MQHOA-SMC, MQHOA,
QPSO, SPSO2011, and BBFWA on classical benchmark
functions. The 14 benchmark functions include 6 unimodal
functions and 8 multi-modal functions. The functions f2,
f4, f5, f7, f9 and f10 are unimodal functions. The last three
functions are rotated multi-modal functions. The remaining 5
functions are multi-modal functions. In this paper, the orthog-
onal matrix M is generated by Salomon’s method [21]. The
function name, ID, search space and optimum are listed in
Table 2. After the experiments, we use the bilateral Wilcoxon
rank to compareMQGAAwithMQHOA andMQHOA-SMC
to judge the effectiveness of the successive approximation
strategy.

A. PARAMETER SETTINGS
The parameters used are listed in Table 3. The experimental
environment is as follows:MATLAB2014b,Windows Server
2016, Intel Xeon E5-2630 (2.4 GHz) CPU, 32G of RAM.
The results are recorded for 51 independent runs for each
function.
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TABLE 2. The classical benchmark functions.

FIGURE 2. Boxplot of the N-dimensional double-well potential function with 51 independent trials.

B. EXPERIMENTS ON THE SWITCHING CONDITION OF
THE DIFFUSION STAGE
To analyze the influence of different switching conditions
on the performance of the MQGAA, we choose different
switching conditions of the diffusion stage, such as σs, 1.25∗
σs, 1.5 ∗ σs, 1.75 ∗ σs, 2 ∗ σs, 2.5 ∗ σs. In this subsection,
we use the 14 benchmark functions shown in Table 2 as test
functions. For the dimension of test functions, we choose 10
dimensions. The results are listed in Table 4. According to
the results, different switching conditions have little effect on
the performance of MQGAA. To balance the efficiency and
global search ability of MQGAA, we choose the switching
condition as 1.5 ∗ σs.

TABLE 3. Parameter settings.

C. EXPERIMENTS BASED ON DOUBLE-WELL POTENTIAL
FUNCTION
The one-dimensional double-well potential function that is
used in this paper is represented in Formula (12). To better
determine the performance of the algorithm, we define a mul-
tidimensional double-well potential function. The higher the
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TABLE 4. Comparison of MQGAA with different switching conditions of
the diffusion stage on benchmark functions with 10 dimensions. The
termination criterion is set to FE ≤ MaxFE . The experiments are repeated
51 times for each method.

function dimension is, the greater the number of local optimal
solutions. The N-dimensional double-well potential function
is described in (15) which is a stack of N one-dimensional
double-well potential functions. The N-dimensional double-
well potential function has 2N − 1 local optimal solutions.

fN (x) =
N∑
i=1

V

(
x2i − a

2
)2

a4
+ δxi (15)

In this subsection, we compare the global search capabil-
ity between MQGAA, MQHOA-SMC and MQHOA using
the 3-, 5-, and 10-dimensional double-well potential func-
tions as test functions. The parameters of the N-dimensional
double-well potential function used are listed in Table 5. The

TABLE 5. Parameter of the N-dimensional double-well potential function
settings.

TABLE 6. Comparison of MQGAA, MQHOA-SMC, and MQHOA on the
N-dimensional double-well potential function. The termination criterion
is set to FE ≤ MaxFE . The experiments are repeated 51 times for each
method.

experimental results are listed in Table 6. The best results are
marked in boldface. The parameters used are listed in Table 3.
For further observations, a boxplot of the results obtained by
each algorithm is given in Figure 2 for different dimensions
with 51 independent runs.

Table 6 shows that with increasing number of dimensions,
the success rate of MQGAA is obviously better than that of
MQHOA-SMCandMQHOA. Figure 2 shows the distribution
of the optimal solution of 51 runs. The global search ability of
the algorithm can be improved by using a step-by-step Taylor
approximation strategy.

D. EXPERIMENTS BASED ON THE CLASSICAL
BENCHMARK FUNCTIONS
In this subsection, MQGAA is compared with MQHOA-
SMC,MQHOA,QPSO, SPSO2011, and BBFWA. The exper-
imental results are listed in Table 7, Table 8 and Table 9,
corresponding to 10, 30 and 60 dimensions, respectively. The
best results are marked in boldface. The parameters used are
listed in Table 3.

Table 7 lists the results for 10 dimensions. For the unimodal
functions f2, f4, f5, f7, f9 and f10, although MQGAA does
not achieve higher accuracy, it can find the optimal solution
in each of the 51 runs. For multi-modal functions, there
are large numbers of local optima that are more difficult to
locate. Therefore, the success rate is more reflective of the
performance of the algorithm. Based on the results, MQGAA
achieved success rates of 100% on three multi-modal func-
tions. For the other two multi-modal functions, MQGAA
achieved the best performance on f1, while QPSO performed
best on f11. For f11, the success rate ofMQGAA ismuch better
than that ofMQHOA-SMC andMQHOA.MQGAA achieved
the best performance on f1, with a success rate of 92.31%. For
the rotated multi-modal functions f12-f14, MQGAA achieved
success rates of 100% on f12 and f13, as did most of the other
algorithms.MQHOA-SMC achieved the best performance on
f14, with a success rate of 88.24%.
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TABLE 7. Comparison of MQGAA, MQHOA-SMC, MQHOA, QPSO,
SPSO2011, and BBFWA on benchmark functions with 10 dimensions. The
termination criterion is set to FE ≤ MaxFE . The experiments are repeated
51 times for each method.

Table 8 lists the results for 30 dimensions. For the unimodal
functions f2, f4, f7 and f10, althoughMQGAAdoes not achieve
higher accuracy, it can find the optimal solution in each of
51 runs. For f5, MQGAA achieved the best results out of all
the evaluation options. For f9, only SPSO2011 and MQGAA
find the optimal solution in 51 runs, with success rates of
100% and 51.92%, respectively. For multi-modal functions,
MQGAA achieved a success rate of 100% on f1, f3 and
f11. For rotated multi-modal functions, MQGAA achieved a
success rate of 100% on f12 and f14. Only SPSO2011 achieved
a better performance on f13, with a success rate of 5.88%; all
other algorithms had a success rate of 0%.

TABLE 8. Comparison of MQGAA, MQHOA-SMC, MQHOA, QPSO,
SPSO2011, and BBFWA on benchmark functions with 30 dimensions. The
termination criterion is set to FE ≤ MaxFE . The experiments are repeated
51 times for each method.

Table 9 lists the results for 60 dimensions. For the unimodal
functions f2, MQGAA achieved the best results out of all
the evaluation options. Although MQGAA does not achieve
higher accuracy for f4and f10, it can find the optimal solution
in each of 51 runs. For multi-modal functions, MQGAA
achieved a success rate of 100% on f1 and f11. For rotated
multi-modal functionsf12 and f14, MQGAA achieved a better
success rate than all the other algorithms with success rates
of 92.16% and 100%, respectively.

Above, we analyzed the simulation results for 10, 30 and
60 dimensions. For 10 dimensions, QPSO and MQGAA
achieved the highest success rates for 12 functions. When the
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TABLE 9. Comparison of MQGAA, MQHOA-SMC, MQHOA, QPSO,
SPSO2011, and BBFWA on benchmark functions with 60 dimensions. The
termination criterion is set to FE ≤ MaxFE . The experiments are repeated
51 times for each method.

dimensionality increased to 30, MQGAA achieved the high-
est success rate for 10 functions, while QPSO achieved the
highest success rate for only 8 functions. However, when the
dimensionality increased to 60, QPSO achieved the highest
success rate for only 1 functions, while MQGAA achieved
the highest success rate for 7 functions. SPSO2011 achieved
the highest success rates for 9 functions which is the worst in
all the algorithms. When the dimensionality increased to 30,
SPSO2011 achieved the highest success rates for 8 functions,
which is just less than MQGAA and the same as other algo-
rithms. However, when the dimensionality increased to 60,
SPSO2011 achieved the highest success rate for 7 functions
which is the best of all algorithms, as in MQGAA. When

TABLE 10. The Wilcoxon rank of MQGAA, MQHOA and MQHOA-SMC on
benchmark functions with 10 dimensions. The termination criterion is set
to FE ≤ MaxFE . The experiments are repeated 51 times for each method.

we compare the seven functions of SPSO2011 with those of
MQGAA, we find that the functions of SPSO2011 are mainly
the unimodal functions while the functions of MQGAA are
mostly multi-mode functions.

Compared with other algorithms, the performance of
MQGAA is more stable on 14 test functions, and for
multi-mode function, the performance of MQGAA is bet-
ter than other algorithms. f1 has many regularly distributed,
widespread local minima; thus, it is very difficult to find
the true solution. For all of the 10, 30 and 60 dimensions,
MQGAA achieves the highest success rate on f1 out of
all tested algorithms. Compared with MQHOA-SMC and
MQHOA, MQGAA performs better on f7, f9 and f11. This
means that MQGAA, which uses the step-by-step Taylor
approximation strategy, has a stronger global search ability
and can effectively avoid premature convergence.

MQGAA uses two different wavefunctions to enhance the
ability of the algorithm to escape from the local optimum
when there are many local optimum solutions. Higher dimen-
sions cannot increase the number of local optimal solutions,
so we did not experiment with a higher dimension.

E. THE BILATERAL WILCOXON RANK
We use the bilateral Wilcoxon rank test to detect the exper-
imental data of MQGAA, MQHOA and MQHOA-SMC by
the method described in [15]. We use the experimental results
of the benchmark functions for rank detection. The results
of different dimensions are shown in Table 10 and Table 11.
When the p − value is less than the confidence value 0.05,
MQGAA is proved to be effective.

Table 10 lists the Wilcoxon rank results of MQGAA,
MQHOA and MQHOA-SMC for 10 dimensions. In Table
10 there are some results indicated as NaN . In MATLAB,
NaN means calculation error, which usually occurs when the
divisor or denominator is 0 or the data exceed the accuracy.
Here, we ignore these results. In the results of the comparison
of MQGAA andMQHOA, the p−value of 2 functions is less
than the confidence value, including f2 and f10. The p− value
of 12 functions is less than 0.05, except f1 and f11 in the results
of the comparison of MQGAA and MQHOA-SMC.

Table 11 lists the Wilcoxon rank results of MQGAA,
MQHOA and MQHOA-SMC for 30 dimensions. In the
results of the comparison of MQGAA and MQHOA, the
p − value of 3 functions is less than the 0.05, including
f2,f9 and f10. The p − value of 11 functions is less than the
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TABLE 11. The Wilcoxon rank of MQGAA, MQHOA and MQHOA-SMC on
benchmark functions with 30 dimensions. The termination criterion is set
to FE ≤ MaxFE . The experiments are repeated 51 times for each method.

confidence value, except f5, f11 and f12 in the results of the
comparison of MQGAA and MQHOA-SMC.

MQHOA-SMC, which is introduced in [24] with a strict
metastability constraint, has a stronger global search ability
than MQHOA. According to the results in Table 7, MQGAA
also has a better global search ability. In addition to the global
search ability, MQGAA also achieves a good accuracy of the
optimal solutions.

VI. CONCLUSION
This paper proposes an MQGAA with a step-by-step Taylor
approximation strategy. Theoretical analysis and experimen-
tal results indicate that the new strategy enhances the global
exploitation ability. Statistical analysis of the experimental
results also shows that MQGAA effectively improves the
robustness and exploitation ability of the original algorithm.
Comprehensive simulations between MQGAA and some
efficient meta-heuristic methods, including MQHOA-SMC,
MQHOA, QPSO, SPSO2011 and BBFWA under different
dimensionalities, are conducted on N-dimensional double-
well potential functions and classical benchmark functions.
The simulation results reveal that the MQGAA is a competi-
tive algorithm.

In the near future, we will further theoretically study the
approximation strategy used byMQGAAand apply it to solve
real-world engineering optimization problems.
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