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ABSTRACT In quantum swarm intelligence algorithms, the tunneling effect of the particles is determined
by the potential energy acting on the particles. The tunneling effect of the particles affects the global search
ability and convergence speed of the algorithm. Quantum algorithms with a single potential energy are
prone to premature convergence under certain complex test functions. In this paper, we propose a multiscale
quantum gradual approximation algorithm (MQGAA), which simply uses different approximation strategies
to obtain different potential energy functions, to solve the premature problem of the optimization algorithm.
In the MQGAA, particles undergo a transition from an unconstrained state to a constrained state at each
scale. To demonstrate the effectiveness of the proposed algorithm, experiments are carried out with several
common and effective stochastic algorithms on N-dimensional double-well potential functions and classical
benchmark functions. We also use the Wilcoxon rank test to detect the performance of MQGAA. The
experimental results show that the algorithm using a step-by-step approximation strategy achieves a better
optimization performance on some complex test functions.

INDEX TERMS Taylor approximation, unconstrained state, constrained state, multiscale, multiscale quan-

tum harmonic oscillator algorithm.

I. INTRODUCTION

Swarm intelligence is a kind of bionic algorithm inspired by
the organization inherent in natural biological behavior. The
algorithm simulates the mutual cooperation between natural
biological groups. It is an algorithm in which one or more
individuals with simple intelligence show advanced intel-
ligence through the cooperation between them. In the past
few decades, many swarm intelligence algorithms have been
proposed, such as evolutionary strategy [1], particle swarm
optimization [2], simulated annealing [3], genetic algo-
rithm [4], differential evolution [5], ant colony optimization
[6], fireworks algorithm [7], etc. These swarm intelligence
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algorithms have developed rapidly since they were proposed.
The improvement of numerous algorithms greatly improves
their performance.

In the swarm intelligence algorithm, particles exhibit
aggregation. This aggregation, which means that the differ-
ences between individuals are limited, is a basic characteristic
of swarm intelligence algorithms. In quantum mechanics,
aggregation is described by the bound states of particles. The
formation of the bound states is caused by the existence of an
attractive potential field at the center of the particle motion.
In recent years, many scholars have applied quantum theory
to swarm intelligence algorithms. The quantum annealing
algorithm (QA) is developed from the classical simulated
annealing algorithm [8]. The algorithm uses the fluctuation
characteristics of particles in quantum theory to design the
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algorithm. The quantum tunneling effect of the quantum
wavefunction will enable particles to cross the obstacles that
cannot be crossed in classical physics, and the target sys-
tem will be optimized by simulating this process. Sun et al.
proposed a quantum behaved particle swarm optimization
(QPSO) by combining the quantum system with particle
swarm [9]. In the QPSO algorithm, a quantized attractive
potential field is set up as the bound particle of the constrained
state, which makes the particle move toward the aggregation
state. The multiscale quantum harmonic oscillator optimiza-
tion algorithm (MQHOA) is based on the physical meaning
of the quantum theoretical wavefunction. The ground state
of the quantum system corresponds to the probability distri-
bution of the optimal solution of the objective function. In
MQHOA, particles are attracted by the potential field of a
harmonic oscillator [10]. The bare bones fireworks algorithm
(BBFWA) is a simplified fireworks algorithm. The particles
in BBFWA are evenly distributed in the definition domain,
which is simple and easy to implement [11].

In the optimization process, we establish a quantized
potential field to bind particles such that not only will the
algorithm exhibit aggregation but also will the particles be
able to appear in any position in the space with a certain
probability. It is important to obtain and select a suitable
potential constrained particle in the optimization algorithm.

In quantum mechanics, the bound state of a particle is
determined by the wavefunction. The wavefunction can be
solved by the Schrodinger equation, which is shown in (1),
where v(x) is the attraction potential of particles in a quantum
system, i.e., the potential energy function.
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The objective function f(x) of the optimization problem cor-
responds to the potential energy v(x) in the Schrodinger’
equation, and the square of the absolute value of the wave-
function ¥ (x) corresponds to the probability distribution of
the optimal solution in the solution space. In the process
of optimization, particles will eventually concentrate near
the optimal solution. That is, the probability distribution of
particles will eventually be stable, which corresponds to the
wavefunction of particles in the ground state in the quantum
model. When we obtain the ground state wavefunction corre-
sponding to the objective function, we can obtain the position
of the optimal solution. When v(x) is complex, it is difficult
to solve the wavefunction with the Schrédinger’ equation.
Consequently, we need to simplify the objective function of
the optimization.

The MQHOA used the second-order Taylor approximation
to simplify the optimization problems. MQHOA is an effi-
cient quantum optimization algorithm that is proposed based
on the wavefunction in quantum physics. MQHOA converts
the optimization problem into solving the wavefunction of a
time-dependent quantum system. The wavefunction defined
in MQHOA reflects the potential field force on the particles
in MQHOA. When the optimization problem is approximated
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by a second-order Taylor expansion, the wavefunction in
MQHOA is the wavefunction of a quantum harmonic oscil-
lator. The particles in MQHOA are bounded by the potential
field of the quantum harmonic oscillator [10].

In quantum mechanics, the potential energy of a quantum
system exerts a force field on the particles, which deter-
mines the tunneling effect of the particles in the system.
Different potential energies determine different tunneling
effects of the particles. By comparing the tunneling effects
of different quantum systems, we propose a new algorithm
called the multiscale quantum gradual approximation algo-
rithm (MQGAA). In the MQGAA, at each scale, the par-
ticles undergo a transition from an unconstrained state to a
constrained state. Particles in the unconstrained state have a
strong global search ability, whereas the local search abil-
ity of the constrained particles is strong. After satisfying
certain conditions, the particles can be transformed into the
constrained state to enhance the local search ability, thus
speeding up the convergence of the algorithm. The change
in the particle state is realized by the change in the potential
energy. The first- and second-order Taylor approximations
are applied to the new algorithm to obtain quantum systems
with different potential energies. Compared with other algo-
rithms, this effectively enhances the exploitation ability in the
global area; however, the convergence speed of the algorithm
is lower.

To verify the performance of MQGAA, N-dimensional
double-well potential functions and some classical bench-
mark functions are used as test functions. The double-well
potential is one of a number of quartic potentials in quantum
mechanics, in quantum field theory and elsewhere for the
exploration of various physical phenomena and mathemati-
cal properties. The one-dimensional double-well function is
an ideal potential well model objective function that has a
globally optimal region and a locally optimal region. Many
scholars have used the one-dimensional double-well poten-
tial function as the objective function to analyze the per-
formance of quantum algorithms. The double-well potential
function is used to analyze the performance of QA as a
heuristic optimization algorithm [12]. Reference [13] used
the one-dimensional double-well potential function as the
ideal potential well model in quantum physics to study the
annealing properties of wavefunctions in quantum systems.
Reference [14] used the double-well potential function as a
simple one-dimensional case study system to investigate the
basic behavior and performance of simulated QA in com-
parison with classical annealing (CA). To further verify the
performance difference between MQGAA and MQHOA, we
use the bilateral Wilcoxon rank test to detect the experimental
datas of the two algorithms through the method described
in [15].

This paper is organized as follows. In Section II, we intro-
duce the basic definitions and formulas of Taylor’s formula.
We briefly introduce the principle of MQHOA and analyze
the approximation strategy of MQHOA in Section III. In
Section IV, we give the approximation strategy of MQGAA
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and compare the tunneling effects of different approximation
strategies for corresponding wavefunctions. The framework
of MQGAA is also described in Section IV. In Section V, the
efficiency of MQGAA is evaluated on benchmark functions
with different characteristics and N-dimensional double-well
potential functions. The Wilcoxon rank test is also in this
section. The simulation results and performance analysis val-
idate the effectiveness of the proposed approach. In Section
VI, conclusions and future work are outlined.

Il. TAYLOR's FORMULA

In mathematics, Taylor’s formula describes the value of a
function in its vicinity with the information of a point. If
the function is sufficiently smooth, Taylor’s formula can con-
struct a polynomial to approximate the value of the function
in the neighborhood of this point by using the correspond-
ing multiples of these derivatives as coefficients when the
derivatives of the function at a certain point are known. In
practical applications, Taylor’s formula needs to be truncated,
taking only a finite number of terms. The Taylor series of the
finite terms of a function is called Taylor’s expansion. The
remainder of Taylor’s formula can be used to estimate the
error. The number of terms of Taylor’s expansion determines
the degree of approximation. The higher the number of terms
is, the higher the degree of approximation. In optimization
problems, we only care about the function values near the
optimal solutions. Therefore, Taylor’s formula is often used
to simplify the optimization problems.

For a function f(x) with n-order derivative at x = Xxo,
Taylor’s formula can be used to approximate f(x) by using
an n-order polynomial of (x — xp). It is an important part of
advanced mathematics to study Taylor’s formula for approxi-
mating some complex functions as the simplest polynomial
functions, a process called Taylor approximation. In opti-
mization problems, we care about the function values near
the optimal solutions. Therefore, the Taylor approximation is
often used to simplify optimization problems.

Taylor’s formula is defined as follows [16]: If a function
f(x) has n-order derivatives on a closed interval [a, b] con-
taining xo and n + 1 order derivatives on an open interval
(a, b), the following formula (2) is established for any point
x on the closed interval [a, b].

fo) = ! E)x!O) L SO) (x — xo) +L Z(TO) (x = x0)?
(n)
bt n(!XO) (x = %0)" + Ro(¥) @

To conveniently describe the approximation strategy of the
algorithm, we define Taylor’s first-order approximation and
second-order approximation, which are described as follows.
f1(x) in Formula (3) and f>(x) in Formula (4) are two finite
terms of the Taylor formula shown in Formula (2).
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A. FIRST-ORDER TAYLOR APPROXIMATION
We intercept the first two terms of Formula (2) for the approx-
imation of f(x) which is shown in Formula (3).

fxo) | f (x0)
ol ] (x — x0) (3)
B. SECOND-ORDER TAYLOR APPROXIMATION
We intercept the first three terms of Formula (2) for the

approximation of f(x). The approximation of f(x) is shown
in (4)

filx) ~

f (o) f'(x0) 7 (xo0)
o T TRt

IIl. MULTISCALE QUANTUM HARMONIC OSCILLATOR
ALGORITHM

The MQHOA with the energy level stabilizing process pro-
posed in 2016 [17] is an efficient quantum optimization
algorithm that was proposed based on the wavefunction in
quantum physics.

In MQHOA, the optimization problem is transformed into
the problem of solving for the time-dependent wavefunction.
The Schrodinger equation is shown in (1). The objective
function f(x) of the optimization problem corresponds to the
potential energy v(x) in the Schrédinger equation, and the
square of absolute value of the wavefunction (x) corre-
sponds to the probability distribution of the optimal solution
in the solution space. The optimal solutions correspond to
the lowest potential energy. In other words, the ground state
wavefunction of the quantum system reflects the distribution
of the optimal solutions. The Schrodinger equation can only
be used to obtain the wavefunctions of some simple potential
energy functions. Therefore, we need to simplify complex
objective functions by approximation.

In MQHOA, we approximate the objective function f(x)
by Taylor’s formula about the optimal solution xg. The Taylor
expansion is shown in formula (2). xg is the extremum point
of the objective function; thus, f' (xo) = 0. By substituting
f’ (xo) = 0 for Formula (4), we obtain Formula (5).

1
foo TS0 L L0 2 5)
The solution of the wavefunction of f(x) is simplified to the
solution of the wavefunction of the quantum harmonic oscil-
lator system. The probability density of the wavefunction that
is shown in (6) can be derived from Formula (1) [18].

Wo(x)2 = % exp(—a2x?) ©)

The wavefunction y/, (x) of MQHOA shown in (7) is defined
as a superposition of n Gaussian probability density functions
with p; as the sampling center, and oy represents the current
scale [19].

n n 2
2 NN @ —pm)?
[Vo,(0)] —gwxm _E N exp( 70 )
(7

Hx) ~ (x —x0)* (4
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IV. MULTISCALE QUANTUM GRADUAL APPROXIMATION
ALGORITHM

The wavefunction in MQHOA can ensure that the solutions
can escape from local optima with a certain probability; how-
ever, for certain complex problems, the solutions often fall
into a local optimum, which makes MQHOA converge pre-
maturely. To address this problem, we propose the MQGAA
algorithm.

MQGAA is a quantum optimization algorithm based on
the wavefunction, which consists of two key components:
a diffusion (D) process and a multiscale (M) process. In
the D process, the particles can be in one of two states: an
unconstrained state or a constrained state. Particles in the
unconstrained state have a strong global search ability. When
a certain condition is reached, the particles transit from the
unconstrained state to the constrained state. Particles in the
constrained state have a weaker global search ability but a
stronger local search ability, which can make the algorithm
converge quickly. The transformation of the particle state is
realized by the transformation of the wavefunction, and dif-
ferent wavefunctions are obtained by different approximation
strategies for the objective function.

A. APPROXIMATION STRATEGY OF MQGAA

For an optimization algorithm, a stronger tunnel effect does
not necessarily provide better performance by the algorithm,
as we are uncertain that the position of the particle at the next
moment will be closer to the optimal solution. In MQGAA,
we adopt a step-by-step Taylor approximation strategy. At
each scale, the first-order Taylor approximation is used to
make the particles sufficiently disperse. When the sampled
particles reach the metastable state, the second-order Taylor
approximation is applied to the objective function to make the
particles converge quickly.

We approximate the objective function f(x) by Taylor’s
formula at the optimal solution xg. Because f’ (xg) = 0,
Formula (3) can be simplified to Formula (8), in which C is
constant.

J (x0)
0!
The wavefunction of f(x) can be obtained by solving the

wavefunction of a free particle. The wavefunction of a free
particle is shown in Formula (9).

f) = =C ®)

Y(x. 1) = e 7 EPD) )

The probability density of a free particle described in Formula
(10) is the square of the wavefunction shown in Formula (9)..

W12 = yy* = |yol? (10)

The wavefunction ¥, (x) corresponding to the first-order
Taylor approximation of the objective function, which we
used in MQGAA, shown in (11), is defined as a superposition
of n uniform distributions. The a and b are the upper and lower
limit of the domain. The wavefunction corresponding to the
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second-order Taylor approximation of the objective function
is the same as MQHOA, which is shown in (7).

n no 1
W @P =Y Wil = { 2isi gL =v<Ro g
i=1

0,x < Lorx > R

B. COMPARISON OF DIFFERENT WAVEFUNCTIONS

We compare the tunneling effects of different quantum sys-
tems by using the probability of solutions located outside
the local optimum. The greater the probability of locating
outside of the local optimum region is, the stronger the tun-
neling effect of the quantum system. As mentioned above,
the wavefunctions corresponding to the first-order Taylor
approximation and the second-order Taylor approximation
are shown in Formulas (11) and (7), respectively.

The comparison of quantum tunneling effects is shown in
Figure 1. The objective function f(x), which we used here,
is the one-dimensional double-well potential function. The
expression of f(x) is shown in Formula (12), where V = 6,
a = 2,8 = 1. Y1(x) and ¥(x), which are shown in (13),
are the wavefunctions corresponding to the functions after
the first- and second-order Taylor approximations of f(x),
respectively.

(x> —a?)’
fx) = Va—4 + éx
N = Lo L<x <R (12)
_ 1 o — )’
1/f2(x) = m(ys exp <—T> (13)

When the solution locates at point A, the algorithm falls
into a local optimum. The problem of comparing the ability
of algorithms to escape from local optima is transformed into
a problem of comparing the quantum tunneling effects of
particles from region A to region B. We use the probabilities
of the particle locating at point A to the left region of point
C, which are shown in the shadows of Figure 1, to represent
the tunneling effect. Substituting the values in Figure 1 into
Formula (13), we obtain Formula (14). We use Formula (14)
to calculate two probabilities. Through numerical calculation,
we obtain p; = 0.5317 and pp = 0.2323. The tunneling
effect of the quantum system based on the first-order Taylor
approximation of the objective function is stronger.

0.19 019
p1 = Wl(x)zf —— where L =—-3,R=3

_3 3 R-L’
0.19 0.19 x — )2
2 = 2(x) =/ exp | —
g -3 v -3 2mo; P ( 20}
(14)

C. THE FRAMEWORK OF MQGAA

Algorithm 1 describes the MQGAA pseudocode. The nota-
tions are represented in Table 1. Similar to MQHOA,
MQGAA is also a quantum optimization algorithm based on
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FIGURE 1. Contrasting the quantum tunneling effects.

Algorithm 1: MQGAA Pseudocode

Initialize k, MaxFE, [dyin, dmax], 05,
x(i=1,....k), Ao.

Calculate 0. F; = f(x;).

while (FE<MaxFE) do

while (o > oy) do

while (Ao > o) do

if (Ao > 1.5 % oy) then

V x;, generate x; ~ U(x; — 3, x; + 3).
if f(x)) < f(x;) then x; = x;,
Calculate 0.

Ao=c' — 0o

else

V x;, generate x; ~ N (x;, asz).
if £(x]) < f(xi) then x; = x/,
Calculate o'.

Ao =0 -0

end
end
Update o = o',

xworst — xmean.
end
o5 = 0g/2.

end

Output xbest , Fbest .

the wavefunction, therein consisting of two key components:
a Diffuse (D) process and a Multiscale (M) process.

In MQGAA, the D process utilizes two behaviors: diffu-
sion stabilization and particle renewal. The diffusion stabi-
lization consists of two stages: the global diffusion and the
local diffusion state. As shown in Algorithm 1, when Ao <
1.5 x oy, the global diffusion reaches the stable state; when
Ao < oy, the local diffusion becomes stable. Choosing the
right time to switch between global diffusion and local diffu-
sion can not only improve the local search ability of MQGA,
but also ensure the efficiency. We use experiments to com-
pare the effects of different switching conditions in diffusion

71552

TABLE 1. Notations in Algorithm 1.

k the population size

FE the number of function evaluations

MaxFE  the maximum number of function evaluations

domin the lower bound of the feasible space

dmaz the upper bound of the feasible space

e the sampling size, the initial value of which is dy,0p — dmin

x; the <th particle of the population

F; the fitness value of x;

o the standard deviation of the population

Ao the standard deviation of the population’s variance in two samplings

mean
x

the mean position of the population

the particle position with the worst fitness value
Frest Rt o in(Fy) (=1, . k)

xbest the particle position with F%°%

worst
x

stages on the performance of MQGAA. The experimental
results are shown in subsection V-B. When the diffusion is
stable, the worst particle will be replaced by the mean of all
particles.

As discussed in [20], the M process is a necessary and
problem-independent process for optimization algorithms
according to the principle of uncertainty. The M process is the
variable sampling step size strategy. The MQGAA gradually
reduces the search step to precisely obtain the globally opti-
mal solutions. Large step sizes correspond to a global search,
and small step sizes correspond to a local search. Different
scales determine the different accuracy levels of the solutions.

V. SIMULATION AND DISCUSSION

In this section, we first introduce the experimental environ-
ment, the comparison algorithms and test functions used in
the experiment. Then, we analyze the switching conditions of
the diffusion stage by experiment. Subsequently, to prove the
effectiveness of the MQGAA, two experiments are conducted
on test functions with different characteristics.

One experiment is conducted to compare the global search
abilities between MQGAA, MQHOA-SMC and MQHOA on
the double-well potential function. The second experiment
is conducted to compare with MQHOA-SMC, MQHOA,
QPSO, SPS02011, and BBFWA on classical benchmark
functions. The 14 benchmark functions include 6 unimodal
functions and 8 multi-modal functions. The functions f>,
f1, f5, f7, fo and fio are unimodal functions. The last three
functions are rotated multi-modal functions. The remaining 5
functions are multi-modal functions. In this paper, the orthog-
onal matrix M is generated by Salomon’s method [21]. The
function name, ID, search space and optimum are listed in
Table 2. After the experiments, we use the bilateral Wilcoxon
rank to compare MQGAA with MQHOA and MQHOA-SMC
to judge the effectiveness of the successive approximation
strategy.

A. PARAMETER SETTINGS

The parameters used are listed in Table 3. The experimental
environment is as follows: MATLAB 2014b, Windows Server
2016, Intel Xeon E5-2630 (2.4 GHz) CPU, 32G of RAM.
The results are recorded for 51 independent runs for each
function.
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TABLE 2. The classical benchmark functions.

Function Name ID  Benchmark Function Search Space Optimum
Griewank fi (@) = 555 2orey 2 — [1}, cos (%) +1 [-100,100] 0
Sphere fo fl@)=3" 22 [-100,100] 0
Zakharov f3 f@) =30 22+ (8 0.56x;)% + (357 0.5ix,)* [-5,10] 0
Sum of Different  fs  f(z) = 31, (J=;]*T1) [-100,100] 0
Powers
Ellipsoidal fs  fl@) =30 (z; —i)? [-100,100] 0
f(x) = sin?(mw1) + Z?;ll (wi — 1)2[1 + 10sin?(rw; +
Levy fo D]+ (wn — 1)2[1 + sin?(2nwy)], where w; = 1 + Zirt, [-10,10] 0
foralli =1,....,n
Sum Squares fr fl@) =37 ia? [-10,10] 0
Alpine fa  flx) =301 o(i) + sin[z(i)] + 0.1 * z(3)] [0,10] 0
. . 2
Quadric fo fl@)=X", [23:1 x(j)] -100.100] 0
Rotated hyper-  fio f(z) = 31y 35, [w()]? [-65.536,65.536] 0
ellipsoid
f@) = 3P (oGt akcos(2mbR (z — 1)) —
Weierstrass fir n Zﬁfgm [afcos(2mbF0.5], where a = 0.5,b = [-0.5,0.5] 0
3, kmax = 20
_ _ _ 1 L2y
Rotated Ackley  fia ) ) - 20eap( 0'2\/n i1 %) [-32.77,32.77] 0
exp(; D iy cos(2mz;)) + 20 + e, where 2 = M. x
. . 2
Rotated Quadric  fi13  f(z) = 327, [Z}:1 Z(]’)] ,where z = M. %z -100,100] 0
— 1l yn 2 _rm Zi =
Rotated fra 1) = qom5 iz 27— Ilizy cos (J5) + Lowhere 2 [-100,100] 0
. M. xx
Griewank
: ; ‘ ‘ -
01 14 " T }
009 J— | |
12 | |
008
e 8
v 7 T)g B8 O
I I |
006 08 } } | s I | }
|
005 N 0 i } } i }
o ! ' I - I
04 1 1
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(a) DIM=3 (b) DIM=5 (c) DIM=10

FIGURE 2. Boxplot of the N-dimensional double-well potential function with 51 independent trials.

B. EXPERIMENTS ON THE SWITCHING CONDITION OF
THE DIFFUSION STAGE

To analyze the influence of different switching conditions
on the performance of the MQGAA, we choose different
switching conditions of the diffusion stage, such as oy, 1.25 *
os, 1.5 % a5, 1.75 % 04,2 % 04, 2.5 * 0. In this subsection,
we use the 14 benchmark functions shown in Table 2 as test
functions. For the dimension of test functions, we choose 10
dimensions. The results are listed in Table 4. According to
the results, different switching conditions have little effect on
the performance of MQGAA. To balance the efficiency and
global search ability of MQGAA, we choose the switching
condition as 1.5 * oj.
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TABLE 3. Parameter settings.

Algorithm Parameter setting References
MQGAA k=40, MaxFE=10000 * DIM

SPS02011 k=40, w=1/2In(2)), c1=c2= 0.5 + In(2), MaxFE=10000 « DIM ~ [22]
QPSO k=40, « : 1 ~ 0.5, MaxFE=10000 * DIM 9]
MQHOA k=40, MaxFE=10000 + DIM [23]
MQHOA-SMC k=40, MaxFE=10000 * DIM [24]
BBFWA k=40, Cr=0.9, Ca=1.2, MaxFE=10000 * DIM [11]

C. EXPERIMENTS BASED ON DOUBLE-WELL POTENTIAL
FUNCTION

The one-dimensional double-well potential function that is
used in this paper is represented in Formula (12). To better
determine the performance of the algorithm, we define a mul-
tidimensional double-well potential function. The higher the
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TABLE 4. Comparison of MQGAA with different switching conditions of
the diffusion stage on benchmark functions with 10 dimensions. The
termination criterion is set to FE < MaxFE. The experiments are repeated
51 times for each method.

Conditions ~ Ttem fl f2 f3 f4 fs fo f1
0 Srate 90.38%  100.00% 100.00% 100.00%  100.00% 100.00%  100.00%
Fbest ~ 0.00E+00 3.52E-84 3.77E-35 931E-12 0.00E+00 148E-20  338E-25
Fmean  3.24E-02 257E-82 S8.17E-34 281E-09 0.00E+00 1.89E-13  2.02E-17
Fstd 1OIE-01 502682  LI6E-33  2.64E-09 0.00E+00 3.86E-13  5.60E-17
1.25%0s  Srate 9231%  100.00% 100.00% 100.00%  100.00% 100.00%  100.00%
Fbest ~ 0.00E+00 4.83E-85 L7IE-35 127E-10 0.00E+00 163E-17 372E22
Fmean ~ 251E-02 237E-82 8.28E-34 349E-09 0.00E+00 1.05E-13  7.52E-18
Fstd 8.88E-02 6.87E-82 9.54E-34  2.93E-09 0.00E+00 261E-13  1.88E-17
15%0s  Srate 9231% 100.00% 100.00% 100.00%  100.00% 100.00%  100.00%
Foest ~ 0.00E+00 5.23E-85 3.64E-35  6.27E-11  0.00E+00 4.73E-19  2.55E-21
Fmean  247E-02 175E-82  9.86E-34  3.8E-09 0.00E+00 895E-14  5.14E-18
Fstd  881E-02 2206-82 134E-33  326E-09 0.00E+00 249E-13  1.00E-17
175%0s  Srate 88.46% 100.00% 100.00% 100.00%  100.00% 100.00%  100.00%
Fbest ~ 0.00E+00 831E-85 325E-35 209E-11 0.00E+00 297E-18  1.0IE-2
Fmean  3.85E-02 227E-82 1.05E-33 331E-09 0.00E+00 [71E-13  231E-17
Fstd 109E-01  7.50E-82  1.67E-33  3.34E-09  0.00E+00 3.64E-13  8.80E-17
2%05 Srate 9231% 100.00% 100.00% 100.00%  100.00% 100.00%  100.00%
Foest ~ 0.00E+00 523E-85 3.64E-35 6.27E-11  0.00E+00 473E-19  2.55E-21
Fmean  247E-02 175E-82 9.86E-34 3.I8E-09 0.00E+00 895E-14  5.14E-18
Fstd  881E-02 220E-82 134E-33 326E-09 0.00E+00 249E-13  LOOE-17
25%0s  Snte 83.46% 100.00% 100.00% 100.00%  100.00% 100.00%  100.00%
Fbest ~ 0.00E+00  6.05E-85 2.69E-35  270E-11  0.00E+00 3.20E-17  2.96E-26
Fmean  346E-02 168E-82 1.10E-33 3.30E-09 0.00E+00 9.17E-14  361E-17
Fstd 9.78E-02 2.89E-82 188E-33 355E-09 0.00E+00 157E-13  L.IGE-16
Conditions ~ Ttem f8 f9 f10 fll f12 f13 fl4
s Srate  100.00% 100.00% 100.00%  96.15% 100.00% 100.00%  1346%
Fbest ~ 0.00E+00 123E-16 493E-84 8.I8E-06 444E-15 256E-18  0.00E+00
Fmean  0.00E+00 239E-14 5.57E-81 289E-04 d444E-15 S531E-15  3.34E-01
Fstd  0.00E+00 5.68E-14  162E-80 2.60E-04 0.00E+00 2.00E-14  1.63E-01
125%as  Srate  100.00% 100.00% 100.00%  98.08%  100.00%  100.00% 3.85%
Fbest ~ 0.00E+00 2.86E-16 4.65E-83 7.20E06 444E-15 144E-19  0.00E+00
Fmean  0.00E+00 142E-14 425E-81 227604 444E-15 350E-14  3.86E-01
Fstd  0.00E+00 162E-14 727E-81 2.19E-04 0.00E+00 122E-13  1.04E-01
15%0s  Srate  10000% 100.00% 10000%  9231% 100.00% 100.00% 3.85%
Fbest ~ 0.00E+00 6.57E-17  1.69E-83 241E-07  4.44E-15 1.02E-17  0.00E+00
Fmean  0.00E+00  176E-14  4.06E-81 267E-04  d4.44E-15 8.76E-15  3.66E-01
Fstd  0.00E+00 3.05E-14 8.03E-81 3.06E-04 0.00E+00 188E-14  122E-01
175%0s  Srate  100.00% 100.00% 100.00%  98.08%  100.00% 100.00% 577%
Fbest ~ 0.00E+00 334E-17  183E-83 3.53E-06 444E-15 461E-19  0.00E+00
Fmean  [.32E-38 148E-14 299E-81 3.8E-04 d444E-15 321E-14  381E-01
Fstd 9.50E-38  2.13E-14  440E-81 2.89E-04 0.00E+00 126E-13  1.14E-01
2%05 Srate  100.00% 100.00% 100.00%  92.31%  100.00%  100.00% 3.85%
Fbest ~ 0.00B+00 6.57E-17  169E-83 241E-07 444E-15 1.02E-17  0.00E+00
Fmean  0.00E+00 1.76E-14  4.06E-81 2.67E-04  444E-15 876E-15  3.66E-01
Fstd  0.00E+00 3.05E-14  8.03E-81 3.06E-04 0.00E+00 188E-14  122E-01
25%0s  Srate  100.00% 100.00% 100.00%  9231%  100.00%  100.00% 1.92%
Fbest ~ 0.00E+00 444E-16  6.50E-83 3.28E-06 4.44E-15 1.29E-19  0.00E+00
Fmean  0.00E+00 192E-14  3.76E-81 2.66E-04 d4.44E-15 3.50E-14  348E-01
Fstd  0.00E+00 236E-14  6.I1E-81 3.00E04 0.00E+00 124E-13  1.4E-01

function dimension is, the greater the number of local optimal
solutions. The N-dimensional double-well potential function
is described in (15) which is a stack of N one-dimensional
double-well potential functions. The N-dimensional double-
well potential function has 2V — 1 local optimal solutions.

v )’

o) = lev'a—4 +8x; (15)
1=

In this subsection, we compare the global search capabil-
ity between MQGAA, MQHOA-SMC and MQHOA using
the 3-, 5-, and 10-dimensional double-well potential func-
tions as test functions. The parameters of the N-dimensional
double-well potential function used are listed in Table 5. The
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TABLE 5. Parameter of the N-dimensional double-well potential function
settings.

V a d
5 10 0.1

Search Space
[-100,100] 0

Optimum

TABLE 6. Comparison of MQGAA, MQHOA-SMC, and MQHOA on the
N-dimensional double-well potential function. The termination criterion
is set to FE < MaxFE. The experiments are repeated 51 times for each
method.

Algorithm Item DIM=3 DIM=5 DIM=10
MQGAA SR 100.00% 58.82% 1.96 %
Best 0 0 1.29E-08
Mean 0 0.220937 7.169253
Std 0 0.33174662  1.65350376
MQHOA-SMC SR 94.12% 50.00% 0.00%
Best 0 1.7764E-15  3.99350113
Mean  0.00282646  0.25270217  7.32102585
Std 0.01531641 0.325003 1.39504
MQHOA SR 96.08% 49.02% 0.00%
Best 0 0 3.67211346
Mean  0.00145636  0.31908094  7.61605523
Std 0.00756366 ~ 0.35733254  1.60889741

experimental results are listed in Table 6. The best results are
marked in boldface. The parameters used are listed in Table 3.
For further observations, a boxplot of the results obtained by
each algorithm is given in Figure 2 for different dimensions
with 51 independent runs.

Table 6 shows that with increasing number of dimensions,
the success rate of MQGAA is obviously better than that of
MQHOA-SMC and MQHOA. Figure 2 shows the distribution
of the optimal solution of 51 runs. The global search ability of
the algorithm can be improved by using a step-by-step Taylor
approximation strategy.

D. EXPERIMENTS BASED ON THE CLASSICAL
BENCHMARK FUNCTIONS

In this subsection, MQGAA is compared with MQHOA-
SMC, MQHOA, QPSO, SPS02011, and BBFWA. The exper-
imental results are listed in Table 7, Table 8 and Table 9,
corresponding to 10, 30 and 60 dimensions, respectively. The
best results are marked in boldface. The parameters used are
listed in Table 3.

Table 7 lists the results for 10 dimensions. For the unimodal
functions f>, fa, f5, f7, fo and fig, although MQGAA does
not achieve higher accuracy, it can find the optimal solution
in each of the 51 runs. For multi-modal functions, there
are large numbers of local optima that are more difficult to
locate. Therefore, the success rate is more reflective of the
performance of the algorithm. Based on the results, MQGAA
achieved success rates of 100% on three multi-modal func-
tions. For the other two multi-modal functions, MQGAA
achieved the best performance on fi, while QPSO performed
best onfi.Forfi1, the success rate of MQGAA is much better
than that of MQHOA-SMC and MQHOA. MQGAA achieved
the best performance on f1, with a success rate of 92.31%. For
the rotated multi-modal functions fi2-f14, MQGAA achieved
success rates of 100% on f12 and f3, as did most of the other
algorithms. MQHOA-SMC achieved the best performance on
f14, with a success rate of 88.24%.
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TABLE 7. Comparison of MQGAA, MQHOA-SMC, MQHOA, QPSO,
SPS02011, and BBFWA on benchmark functions with 10 dimensions. The
termination criterion is set to FE < MaxFE. The experiments are repeated
51 times for each method.

TABLE 8. Comparison of MQGAA, MQHOA-SMC, MQHOA, QPSO,
SPS02011, and BBFWA on benchmark functions with 30 dimensions. The
termination criterion is set to FE < MaxFE. The experiments are repeated
51 times for each method.

Algorithm Tiem fl f2 f3 f4 f5 fb f1

Algorithm Item fl f2 f3 f4 f5 f6 f1

MQGAA SR 3% 10000%  10000%  10000%  10000%  10000%  100.00%
Foest ~ O.000E+00  5228E-85  3.639E-35  6268E-11  O.000E+00 4731E-19  2.549B-21
Fmean  2470B-02  L752E82  9861E-34  3IS4E-09 O0000E+00 8.954E-14  5.140E-I8
Fd  8808E-02  LI9ERY  I340E-33  3256E-09 O000E+00 2489E-13  9.996E-I8

MQGAA R 10000%  10000%  10000% 100.00% 10000%  80.77%  100.00%
Foest ~ 0.00E+00  335E-82  80SE-1S  245E-11  0.00E+00  LI6E-16  391E-09
Fmean  214E-18  8IIE-8L 41414  LISE09 000E+00 462E-02 390
Fstd  LS4E17  136E-80  220E-14  LOTE09 000E+00 L27E-01  730E-05

MQHOA-SMC SR §824%  10000%  10000%  10000%  10000%  100.00%  100.00%
Foest ~ O.000E+00  8720E-28  6.06E22  2782E-I1  L3%0E2T 99ME-1S  T630E-19
Fimean  37ITE02 209526 9665E-21  9212E-10  1656E-26 2.846E-12  2I70E-14
Fed  LOSIEOL  2876E-26  LITSE0  LI9ZE09 2295E26  S3O4E-12  3569E-14

MQHOA-SMC SR 100.00%  100.00%  100.00%  100.00% 100.00%  98.04%  49.02%
Foest ~ 0.00E+00  393E-47  3.63E-12  T.6E-12 0.00E+00 358E-15  5.08E-10
Fmean  000E+00  270E-44  ISIE-11 - 480B-10  0.00E+00  176E-03  5.8IE-05
Fstd  000E+00  655E-44  809E-12  532E-10 000E+00 [25E-02  L67E-04

MQHOA SR B4%  10000%  10000%  10000%  100.00%  10000%  100.00%
Foest ~ O.000E+00 252385  87I9E-36  I459E-10 0000E+00 4910E-18  2177E-22
Fmean  6.098E-02  LAOTE-S3  686E-34  274E-09 O0000E+00 9.112E-14  LOSTE-L7
Fd  L284E-00  321E83  O.IS4E-34  L991E-09 O0000E+00 L712E-13  2.546E-17

MQHOA SR 100.00%  100.00%  100.00%  100.00%  100.00%  88.24%  41.18%
Fest ~ 0.00E+00  160E-82  803E-15 S20E-11 000E+00 620E-14  74SE-10
Fmean  435E-18  187E-81  5.08E-14 208E-09 207E30 L77B02  S.3E-05
Fsd  LI8E-17  3M0E-81 38714 137B09  148B29  679E-02  LO4E-04

QPO SR 000%  10000%  10000%  10000%  10000%  10000%  100.00%
Foest 246802 4360E-69  1208E-29 LOI3E-116  O.000E+00 1S00E-32  2.991E-69
Fmean  9910B-02 2302863  1OM4E-25  L306E-99 O0000E+00 1500E-32  2918E-64
Ftd  SI4E0)  OISIE63 634925 9318E-99  0000E+00 1381E47  1354E-63

QPSO R 0.00%  100.00% 0.00%  100.00%  100.00%  100.00%  100.00%
Foest  733E-03  36IE-12  299E+00 L69E-31 LT4E-12 939E-13  365E-I3
Fmean  3.05E-01  3.06E-09 650E+00 426E23 S93E-10 9TIE-10  8.I7E-lI
Fed  L7IEO1  138E-08 292E+00 221E22  L6OE-09 274E-09  L86E-10

SPS02011 SR 241%  10000%  10000%  10000%  10000%  98.04%  100.00%
Foest ~ 0.000E+00 2379E-150  L6S3E-98  LOSGE-Il O0.000E+00 1S00E-32  6.379E-124
Fmean  LIS4E-02  LOSGE-147  8878E-94  L776E-09 9.667E33 L7SSE03  2849E-113
Fd  143E-02  1996E-147  2690E-93  I84SE09 30432 1DS4E2  L3TE-11
BBFWA Srate 9.62% 0.00% 000% — 48.08% 0.00% — 0.00% 0.00%
Foest ~ 226B-12  LT6E+02  L44E+02 45028 20403 6.19B03  3STEH0I
Fmean  874E01  235E+04  204E407  6TIEOL  240E+04  3S0E+01  L2SE+03
Fd  366E0l  L41E+04  4D3E«07  O49E01  [AE04  AITEH0L  TSTE4(2

SPSO2011 R 86.27%  100.00%  100.00%  100.00%  100.00%  5.88%  100.00%
Fest ~ 0.00E+00 156E-204  126E-40 6.07E-1l  497E29 150E-32  34IE-36
Fmean 13503 336E-198  305E-38  [95E09 7.27E-29 T7SE1  244E-29
Fstd  350E03 O00E+00  565E-38  120B09 LIOE29 889E-0I  6.36E-29
BBFWA Srate 0.00% 0.00% 000%  2846%  000%  000%  0.00%
Foest  985E01  463E+02  3.02E+03  3M4E75  O.A2E+03  266E+01  1.98E+03
Fmean LI9E+00  703E+04  LO2E+1l LIGE+00 8AIE+04 230E+02  129E+04
Fstd 83702 375E+04  L6OE+1l 126E+00 3S0E+04 122E+02  4.62E+03

Algorithm  Item f§ f il fll fl2 f3 fl4

Algorithm lem f§ 9 f10 fll fl2 f13 fl4

MQGAA SR 10000%  10000%  10000%  9231%  100.00%  100.00% 3.85%
Foest ~ O.000E+00  6.569E-17  LOYOE-S3 ~ 2412E07 4MIE-1S  LOIGE-17  0.000E+00
Fmean  0.000E+00  L760E-14  40S8E-S1  2668E-04 4MIE-LS 875615 3657E!
Fstd  O000E+00  3053E-14  S.030E-81  3063E-04 O0.000E+00 187E-14  1223E-01

MQGAA R 000%  5192%  10000% 100.00% 100.00%  0.00% 100.00%
Foest  280E+00  LSTE-04  S32E80  496E-09 79E-1S 895E+00  LIIE-16
Fmean 647E+00  LISE-03  [3IE78  120E-04 142E-14 752EH01  248E-09
Fstd  224E+00  S93E-04  210B78  120B-04 280E-15  474E+01  7.78E-09

MQHOA-SMC SR 980%  100.00%  100.00% 58%  10000%  10000%  88.24%
Foest  24ME-13 433612 I786E26  290E-10 4MIEIS  2195E-15  0.000E+00
Fmean 3696E+00  LIBE-10 418025  238E04 4203E-14  1943E-12  3.688E-02
Fd  [S4TE+00  [4SSE10  SAEDS  2807EM4  2318E-14 47TSIELD  LISIE(L

MQHOA-SMC SR 0.00% 0.00%  10000%  392% 10000%  0.00% 100.00%
Foest  356E-02  37IE-03  860E45  6.06E07 799E-1S 6.00E+00  6.66E-16
Fmean 232E+00  893E-03  LOE41  LIOE-4 L29E-4 385E+01  194E-09
Fstd  401E+00 41703 34541 138B04  30TE1S 245Es01  5.3E-09

MQHOA SR 10000%  100.00%  100.00% 392% - 100.00%  100.00% 9.80%
Foest ~ O000E+00  4796E-16  4346E-84  373IE-06  4MIELS  3270E-18  0.000E+00
Fmean  0000E+00  2441E-14  1S0E82 30004 4MIELS 3T4ELS  347IE(I
Fd  0.000E+00  5008E-14  2978E-82  2974E-04  0.000E+00 176814 1421E-0]

MQHOA R 0.00% 0.00%  10000%  17.65% 10000%  0.00%  96.08%
Foest  292E+00  472E-04  1O7E80  I83B07  T99E-1S  18SEs01  444E-16
Fmean 626E+00  192E-03  346E79  LIOE-4 132E-14 120B+02 22IE-04
Fstd  L30E+00  120E-03  6.65E79  L22B04 3SIELS LOGEs02  LSTE-03

QPO SR 10000%  10000%  10000%  10000%  10000%  100.00% 0.00%
Foest ~ O.000E+00  2865E-18  1839E-67  0.000E+00 8882E-16 6361E-17  4407E-04
Fmean  0.000E+00  7.140E-15  3882E-62  0.000E+00 d302E-15 LS47E-12  4270B-01
Fstd ~ 0000E+00  2725E-14  1373E-61  0.000E+00  6.965E-16  6.I67E-12  L9ISE!

QPSO R 100.00% 0.00%  10000% 10000%  8039%  000%  196%
Foest ~ 0.00E+00  5.26E+02  8.09E-10 0.00E+00  2.89E-07 534E+03  LSIE-06
Fmean  L28E-16  203E403  207E07 0.00E+00  6.27E-06 133E+04  493E-02
Fstd  SS3E-16 930402 SATEOT  O.00E+00  8.14E-06  4.96E+03  139E-01

SPS02011 SR 922% - 10000%  10000%  9412%  10000% 10000%  3529%
Foest  L763ESL  LTHETL 4163E-150  0.000E+00 4A4IE-15  STS0E62  0.000E+00
Fimean  3412B-02  6.016E-63 2414E-146  4059E06 4441E-1S 1017E-S1  2.201EI
Ftd  LIOTEOL  3977E-02 T.677E-16  2001E05 0000E+00 7.158E-51 201301
BBFWA State 0.00% 0.00% 0.00% 0.00% 0.00% 1.92% 3.85%
ot 927E02  327E+03  6ASE+2  438Es00  200B02  L§TEQ6  2ME(S
Fmean  LT6E+0l  L44E+05  494E+05  LEs01  206E+00 3S9E+02  3.39E1
Fd  LOOE+OI  LS3E+05  285E+05  38E+00  L76E+00  84IE+02  3.56E!

SPSO2011 SR 0.00%  10000%  10000%  96.08%  98.M4%  588%  96.08%
Foest  L6OE01  S3IE-4 SI3E-201 0.00E+00 7.99E-15  165E-06  0.00E+00
Fmean 740E+00  9.03E-22 236E-195 94307  L34E-02  3J0B-02  3ATE-04
Fstd  653E+00  220E-21  O.00E+00  3.2E06  9.59E-02  192E01  175E-03
BBFWA Srate 0.00% 0.00% 000%  000%  000%  000%  1731%
Foest  156E+01 ~ 848E+04  3.65E+06 223E+01 21203  470E-01  §44E-05
Fmean 6.69E+01  LIIEs06  L7IE+07 456E+01 410B01 6.27E+02  §.33E-02
Fstd  250E+01  LOIEs06  598E+06 732E+00 41901 127E+03  L8IE-I

Table 8 lists the results for 30 dimensions. For the unimodal
functions f>, fa, f7 and f1¢, although MQGAA does not achieve
higher accuracy, it can find the optimal solution in each of
51 runs. For f5, MQGAA achieved the best results out of all
the evaluation options. For fy, only SPSO2011 and MQGAA
find the optimal solution in 51 runs, with success rates of
100% and 51.92%, respectively. For multi-modal functions,
MQGAA achieved a success rate of 100% on fi, f3 and
f11. For rotated multi-modal functions, MQGAA achieved a
success rate of 100% on fi; and f14. Only SPSO2011 achieved
a better performance on f13, with a success rate of 5.88%; all
other algorithms had a success rate of 0%.
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Table 9 lists the results for 60 dimensions. For the unimodal
functions f>, MQGAA achieved the best results out of all
the evaluation options. Although MQGAA does not achieve
higher accuracy for fsand fjo, it can find the optimal solution
in each of 51 runs. For multi-modal functions, MQGAA
achieved a success rate of 100% on fi and fi1. For rotated
multi-modal functionsfi, and f14, MQGAA achieved a better
success rate than all the other algorithms with success rates
of 92.16% and 100%, respectively.

Above, we analyzed the simulation results for 10, 30 and
60 dimensions. For 10 dimensions, QPSO and MQGAA
achieved the highest success rates for 12 functions. When the
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TABLE 9. Comparison of MQGAA, MQHOA-SMC, MQHOA, QPSO,
SPS02011, and BBFWA on benchmark functions with 60 dimensions. The
termination criterion is set to FE < MaxFE. The experiments are repeated
51 times for each method.

Algorithm Item fl f2 f3 f4 f5 fo
MQGA Sate  100.00%  100.00% 0.00% 10000%  000%  000%  62.75%
Foest  O.00E+00 797E-89  3.08E-03  842E-09 430E+04  3SSE-0I L6605
Fmean  163E-16 S30E-87  SA2E02  L74E-08 433E+04 LI3Es01  LIE3
Fstd  0.00E+00 797E-89  308E-03  842E-00 430E+04 3S8E0  1.66E-05
MQHOA-SMC  Srate  88.71%  100.00%  100.00%  100.00% 100.00%  82.00%  64.71%
Fbest ~ LOE-11  237E-1l 14607  375E-12  380E-11  L67E-10  §.34E-07
Fmean  LOIE03  LI2E-10  S24E-06  207E-10 174E-10 21102 [3IE03
Fstd  288E03 7S4E-11 199E-06  148E-10  84SE-11  6.09E-02 19003
MQHOA Sae  7800% 10000%  10000%  10000% 10000%  400%  S5.88%
Foest  LSOE-11 L9TE-10  5.06E-06  461E-11  290E-10 239E-10 2.22E-06
Fmean  208E-03  267E-10  1.55E-06  7.7IE-10 398E-10 12SE+00  2.68E-03
Fstd  413E03  332E-11 6A8E-07  S36E-10 436E-11  LITE+00  343E3
QPO State 0.00%  0.00% 000%  4700%  000%  000%  0.00%
Foest  LIOE+00  876E-01  [44E+02  774E-08 220402  LOSE+01 6.86E+01
Fmean 1.27E+00  287E+00  223E+02  S.0E-05 6S5IE+02  2.14E+01  199E+02
Fstd  L3SEOL L3IE+00  35TEs0l L3004 344E+02  6.93E+00 8.74E+01
SPS02011 Sae  71.00% 10000%  10000%  10000% 10000%  0.00% 100.00%
Foest ~ O7TE07  997E07  976E-07  720E07  98BE7 388Es00 444E-27
Fmean ~ 415E03  9STE07  984E-07  T.2E07  OJ0E7 445E+00  292E-23
Fstd 79303 3S58E-08  2.07E-08  2.07E-07 286E-08 16SE+00 442E-23
BBFWA Srate 000%  0.00% 000%  4038%  000%  000%  0.00%
Foest  LUEH00 324E+04  T.04E+08 Sd8E-147 436E+04  247E+01  8.4E+03
Fmean [43E+00 1S3E+05  235E+13  [20E+00 209E+05 493E+02 5.23E+04
Fstd  LOOEOL 459E+04  290E+13  [43E+00 6.63E+04 2.58E+02  144E+04
Algorithm Item f8 f9 fl0 fll fl2 f13 fl4
MQGA Srate 000%  0.00% 10000%  10000%  9216%  000% 100.00%
Foest ~ 3STE02  475E03  1SSE-S0  O0.00E+00 293E-14 16IE+03  LOTE7
Fmean  391E01  LO4E-02  SSSE-80  80SE-15  7T.0SE-02 2.62E+03  3.60E-06
Fstd  3STE02  475E03  1SSEB0  0.00E+00 293E-14 16IE+03  LOTE-7
MQHOA-SMC ~ Srate 000%  000% 10000%  S5400%  6500%  000%  92.00%
Fest ~ 8.55E03 LI3E+00  870E-60  6.32B08 435E-06 LO9E+0l  LSSE-1I
Fmean  420E02 2SIE+00  160E-S6  6.53E05 281E-01 191E+01 LIIE-03
Fstd  294E02  7SIEOL  ST6E-S6  TA2E05  63SEO1  442E+00  3.89E-03
MQHOA Srate 000%  000% 10000%  2000%  000%  000%  67.00%
Foest 75203 6OTE01  497E-84  363E08 LITEQS 201E+01  L36E-11
Fmean  LE02 147E+00  SS4E-83  66IE-05 194E+00 340E+01  3.77E-03
Fstd  SG0E03  S20E01  1OSE-82  94SE-05  8.06E01 8.59E+00  6.00E-03
QSO Srate 000%  000% 000%  10000%  000%  000%  0.00%
Foest ~ 292E+01 492E+02  458E+03  O0.00E+00 480E+00 O.18E+02  1.08E+00
Fmean  430E+01  6.56E+02  201E+04  0.00E+00 6.61E+00 130E+03  1.29E+00
Fstd  S8SE+00 830E+01  94OE+03  0.00E+00 OJSE01  174E+02  LOSE-01
SPS02011 Srate 000% 10000%  10000%  9800%  0.00%  000%  65.00%
Foest  937E03  L30E-10 263E-199  630B07 289E+00 8.58E+00  148E-02
Fmean  214E02  634E-10 349E-196  479B-06 263E+00 336E+01  S3IE-03
Fstd 50203  479E-10  O0.00E+00  3.13E05 443E01 170E+01  8.58E-03
BBFWA Srate 0.00%  0.00% 000%  000%  192%  000%  1923%
Fest  3.65E+01 400E+05  457TE+07  SSIE+01  62E-4  2.67E-03  430E-06
Fmean 1ASE+02 S5.15E+06  L30E+08  9.79E+01 [43E01 622E+02  3.66E-02
Fstd 478401 721E+06  393E+07 [25E+01 2.1SE-01 LISE+03  6.65E-02

dimensionality increased to 30, MQGAA achieved the high-
est success rate for 10 functions, while QPSO achieved the
highest success rate for only 8 functions. However, when the
dimensionality increased to 60, QPSO achieved the highest
success rate for only 1 functions, while MQGAA achieved
the highest success rate for 7 functions. SPSO2011 achieved
the highest success rates for 9 functions which is the worst in
all the algorithms. When the dimensionality increased to 30,
SPS02011 achieved the highest success rates for 8 functions,
which is just less than MQGAA and the same as other algo-
rithms. However, when the dimensionality increased to 60,
SPSO2011 achieved the highest success rate for 7 functions
which is the best of all algorithms, as in MQGAA. When
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TABLE 10. The Wilcoxon rank of MQGAA, MQHOA and MQHOA-SMC on
benchmark functions with 10 dimensions. The termination criterion is set
to FE < MaxFE. The experiments are repeated 51 times for each method.

MQHOA Function fl f2 f3 f4 [ f6 f7
pvaue  341E01 382E09 SOIE-0I  842E-01 NaN  L37E01  3.33E-01
Function f§ f9 fl0 fll f12 fl3 fl4
p-value NaN - LS8E-01  257E-07  1OSE-O1 NaN - 333E-01  4.04E-01
MQHOA-SMC  Function fl f2 f3 f4 [ f6 f1
pvalue  970E-01  302E-11 3.02E-11 408E05 [21E-12 6T2E-10 3.02E-11
Function f§ f9 fl0 fll f12 fl3 fl4
pvaue  [21E-12 302E-11 302E-11 877E01 LI9E-12 347E-10 194E-10

we compare the seven functions of SPSO2011 with those of
MQGAA, we find that the functions of SPSO2011 are mainly
the unimodal functions while the functions of MQGAA are
mostly multi-mode functions.

Compared with other algorithms, the performance of
MQGAA is more stable on 14 test functions, and for
multi-mode function, the performance of MQGAA is bet-
ter than other algorithms. f| has many regularly distributed,
widespread local minima; thus, it is very difficult to find
the true solution. For all of the 10, 30 and 60 dimensions,
MQGAA achieves the highest success rate on fj out of
all tested algorithms. Compared with MQHOA-SMC and
MQHOA, MQGAA performs better on f7, fo and fi1. This
means that MQGAA, which uses the step-by-step Taylor
approximation strategy, has a stronger global search ability
and can effectively avoid premature convergence.

MQGAA uses two different wavefunctions to enhance the
ability of the algorithm to escape from the local optimum
when there are many local optimum solutions. Higher dimen-
sions cannot increase the number of local optimal solutions,
so we did not experiment with a higher dimension.

E. THE BILATERAL WILCOXON RANK

We use the bilateral Wilcoxon rank test to detect the exper-
imental data of MQGAA, MQHOA and MQHOA-SMC by
the method described in [15]. We use the experimental results
of the benchmark functions for rank detection. The results
of different dimensions are shown in Table 10 and Table 11.
When the p — value is less than the confidence value 0.05,
MQGAA is proved to be effective.

Table 10 lists the Wilcoxon rank results of MQGAA,
MQHOA and MQHOA-SMC for 10 dimensions. In Table
10 there are some results indicated as NaN. In MATLAB,
NaN means calculation error, which usually occurs when the
divisor or denominator is 0 or the data exceed the accuracy.
Here, we ignore these results. In the results of the comparison
of MQGAA and MQHOA, the p — value of 2 functions is less
than the confidence value, including f> and fio. The p — value
of 12 functions is less than 0.05, except f1 and f11 in the results
of the comparison of MQGAA and MQHOA-SMC.

Table 11 lists the Wilcoxon rank results of MQGAA,
MQHOA and MQHOA-SMC for 30 dimensions. In the
results of the comparison of MQGAA and MQHOA, the
p — value of 3 functions is less than the 0.05, including
Jf2.fo and fio. The p — value of 11 functions is less than the
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TABLE 11. The Wilcoxon rank of MQGAA, MQHOA and MQHOA-SMC on
benchmark functions with 30 dimensions. The termination criterion is set
to FE < MaxFE. The experiments are repeated 51 times for each method.

MQHOA Function fl f2 f3 f4 f§ fo f7
pvalue  SOTE-01  2USE-10 L37E-01 748E02 S44E01  223E01 5891
Function f8 f9 f10 fll f12 f13 fl4
pvalue  982E-01 144E03 652E-09 79E01 469E-01 LISEO1 788E-01
MQHOA-SMC  Function fl f2 f3 f4 f§ f6 f7
pvalue  21SE-02 302E-11 6.12E-10 LITEQS L6IE-01 12(E04  2ISE-10
Function 8 f9 f10 fll f12 fl3 fl4
pvalue  S46E-06  302E-11 3.02E-11  9T0EO1 738E-01 LTGE02  1.27E-02

confidence value, except f5, fi1 and fi» in the results of the
comparison of MQGAA and MQHOA-SMC.

MQHOA-SMC, which is introduced in [24] with a strict
metastability constraint, has a stronger global search ability
than MQHOA. According to the results in Table 7, MQGAA
also has a better global search ability. In addition to the global
search ability, MQGAA also achieves a good accuracy of the
optimal solutions.

VI. CONCLUSION
This paper proposes an MQGAA with a step-by-step Taylor
approximation strategy. Theoretical analysis and experimen-
tal results indicate that the new strategy enhances the global
exploitation ability. Statistical analysis of the experimental
results also shows that MQGAA effectively improves the
robustness and exploitation ability of the original algorithm.
Comprehensive simulations between MQGAA and some
efficient meta-heuristic methods, including MQHOA-SMC,
MQHOA, QPSO, SPS0O2011 and BBFWA under different
dimensionalities, are conducted on N-dimensional double-
well potential functions and classical benchmark functions.
The simulation results reveal that the MQGAA 1is a competi-
tive algorithm.

In the near future, we will further theoretically study the
approximation strategy used by MQGAA and apply it to solve
real-world engineering optimization problems.
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