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ABSTRACT Objective: Currently, the prevalence of insomnia in 30% of the population in the word.
To diagnose sleep issues, all-night polysomnography is usually taken from the patients, and the recordings
are scored by a clinical staff. Nevertheless, manual sleep scoring and diagnosis are time consuming and
subjective. In this study, a short-time insomnia detection system based on single-channel sleep EOG with
refined composite multiscale entropy (RCMSE) analysis was proposed, and the performance of the proposed
system was assessed with the manual scoring based on polysomnography. Methods: The sleep data from
32 subjects were used to develop and evaluate the proposed system; one half was healthy individual
and the other half was insomnia patient. The corresponding RCMSE was computed from the short time
single-channel sleep EOG (<30 min). Then, the mean values of their RCMSEs were computed. Finally,
the mean values were used as input to an SVM classifier for insomnia detection. Results: 16 subjects were
used to train a classifier; one half was healthy individual and the other half was insomnia patient; and the
others were used to test. The averaged accuracy, sensitivity, specificity, kappa coefficient, and F1 score of the
proposed system were 89.31%, 96.63%, 82.00%, 0.79, and 90.04%, respectively. Conclusion: Our results
showed that RCMSE is a useful and representative feature for short-time insomnia detection. In addition,
the proposed method has high accuracy and is good homecare applicability because a single-channel sleep
EOG is used. Significance: In the future, we can integrate the proposed system with an EOG eye mask and
portable PSG system for sleep quality assessment or insomnia screening in the home environment.

INDEX TERMS Short-time insomnia detection, refine composite multiscale entropy, single-channel sleep
EOG, support vector machine.

I. INTRODUCTION
Sleep takes approximately one-third of human live. A good
sleep can help us getting the body to work right again,
improved learning ability, physical development, emotional
regulation, and good quality of life in human physiology [1].
However, the prevalence of insomnia symptoms without
restrictive criteria is approximately 33% in the general popu-
lation [2]. In the United States of America, 50-70million peo-
ple suffer from sleep disorders: among them, 30% of patients
suffer from insomnia and 10% from chronic insomnia.

Insomnia is defined as chronic when it has persisted for
at least three months at a frequency of at least three times
per week. When the disorder meets the symptom criteria
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but has persisted for less than three months, it is considered
short-term insomnia [3]. To diagnose insomnia, the physi-
cian may first execute a physical exam to look for signs
of medical problems that may be related to insomnia and
ask some sleep-related questions, such as sleep-wake pattern
and daytime sleepiness. In addition, the physician may ask a
subject to keep a sleep diary with the actigraphy for a couple
of weeks. If the cause of insomnia is not clear, the subject
should spend one or two night at a sleep center diagnosing
another sleep disorder using polysomnography (PSG), such
as sleep apnea.

PSG recordings, which including electroencephalogram
(EEG), electrooculogram (EOG), electromyogram (EMG),
and other physiological signals are usually obtained from
patients and scored by a well-trained clinical staff. According
to AASM rules [4], the sleep stages could be divided into
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wakefulness (Wake), non-rapid eye movement (Non-REM;
stages 1-3), and rapid eye movement (REM). Then, patient
hypnograms (all-night sleep stages of the patient) are deliv-
ered to a physician for further analysis. However, sleep stage
scoring is expensive because of the manpower shortage and
because the demand for diagnosing sleep disorders exceeds
the supply. Moreover, manual sleep scoring and diagnosis is
a time consuming and subjective process, and the conven-
tional polysomnography which uses many wires to connect
instrument to patient is often a problem that leads to sleep
disturbance. In general, people will experience the ‘‘first-
night effect,’’ which often interferes with sleep quality, if they
sleep in hospitals or sleep centers [5].

Currently, there is extensive ongoing research to develop
an automatic sleep stage scoring system based on multi-
or single-channel, including using decision tree [6], [7],
machine learning [8]–[10], and deep learning [11]–[13], but
the automatic sleep disorder detection proposed to date is pri-
marily used for ‘‘sleep apnea,’’ and little research is devoted
to insomnia detection. Insomnia detection often uses several
features of the all-night sleep stages or a certain sleep stage
to detect insomnia [14]–[17]. Although the overall accuracy
of insomnia detection is more than 85%, it is still necessary
to record all-night multi-channel PSG signal and manually
score sleep stages.

Entropy was used to analyze the complexity of the
biosignal in previous study [18]. For example, entropy was
utilized to classify the sleep stage, assess the depth of anes-
thesia, detect epilepsy or analyze heart rate variability, etc.
Moreover, multiscale entropy (MSE), a new signal analysis
method, had been proposed [19], [20] to estimate the com-
plexity associated with the long-range temporal correlation
of a time series. Instead of a single scale, MSE calculates
the sample entropy of a time series over multiple tempo-
ral scales. MSE had been applied in sleep field [21], [22].
Liang et al. [21], [22] computed MSE of EEG and EOG,
and then used their MSE to develop the automatically sleep
stage classification. Although MSE was a good method to
quantify the complexity of signals, the sample entropy may
not be defined because no template vectors are matched to
one another, and the sample entropy may not be accurate
with the time series over the larger multiple temporal scales.
Therefore, refined composite multiscale entropy (RCMSE)
had been proposed to overcome the shortcoming of MSE.
RCMSE had proved that RCMSE increases the accuracy
of entropy estimation in time series analyses [23]. In this
study, MSE and RCMSE were applied to analyze sleep EOG
signal from people within healthy and insomnia groups for
short-time insomnia detection.

With the gradually increasing understanding that ‘‘pre-
vention is better than a cure,’’ consumer sleep trackers are
expanding in the home health monitoring market. An increas-
ing number of sleep trackers focus on ease of wear, small size,
and comfort. Therefore, most sleep trackers are worn on the
wrist [24] or forehead or as eye masks [22], [25] in place of
the conventional PSG, which an EEG cap or the placement

of electrodes on top of the head. For example, actigraphy
was utilized as a valid and convenient method to assess sleep-
wake patterns in patients suspected of certain sleep disorders,
such as insomnia [24]. Nevertheless, the equipment used for
this method must be worn for 24 hours, except for during
bathing, and actigraphy requires a two-week continuous mea-
surement for the insomnia screening process in the home
environment to understand a user’s sleep-wake cycle and
actual sleep time. Additionally, single-channel EEG has been
very successful in sleep scoring [6], [21], but electrodes must
be placed above the hairline on the scalp and expert help is
needed to set up the system and collect data. Compared with
EEG, EOG offers the advantage of easy placement and can
be operated by the user him/herself.

In this study, a short-time insomnia detection system based
on a single-channel sleep EOG with RCMSE analysis was
proposed. First, a single-channel sleep EOGwas filtered with
a band pass filter to remove artifacts. Second, the RCMSE
values with a scale factor of 1 to 8 were extracted from the
all-night sleep EOG in 30-s epochs to compare the differences
between the healthy and insomnia groups. Third, the RCMSE
values from the first 27.5 min, with scale factor of 1 to 9 were
used to compute its mean values as the input of classifier.
Finally, the support vector machine (SVM) was used to detect
insomnia. In addition, MSE and RCMSE were applied to
analyze the sleep EOG signals from subjects belonged the
different groups, and the MSE and RCMSE values with dif-
ferent sleep stages were also compared between the healthy
and insomnia groups.

II. MATERIALS AND METHODS
A. MATERIALS
In this study, we used PSG data from 16 healthy individuals
(sleep efficiency (SE)≥ 85%) and 16 insomnia patients (sleep
efficiency (SE) < 85%) recruited from the public by online
advertisements and announcements on notice boards at the
National Cheng Kung University to collect all-night PSG
recording. None of the participants had a prior history of drug
or alcohol abuse and no neurological, psychiatric or sleep
disorders. The insomnia patients experience insomnia more
than three days per week, lasting for at least one month, and
suffer from drowsiness, sleepiness, and irritable mood during
the daytime, affecting their ability to learn and work. The
insomnia patients had SE < 85%, sleep onset time (SOT)
> 15 minutes, and/or wake after sleep onset time (WASO)
> 30 minutes. Sleep efficiency is the ratio of the total sleep
time (TST) to the time spent in bed. If patients sleep efficiency
is lower than 85% in clinical diagnosis, they may have a sleep
disorder. In our experiments, the range of participants’ sleep
efficiency was from 56% to 97%. The sleep efficiency of the
healthy group was equal to or higher than 85%, and those of
the insomnia group were lower than 85%.

These measurements were approved by the internal review
board of National Cheng Kung University. Participants had
to refrain from any drug/medication and limit caffeine use
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FIGURE 1. Flowchart of the proposed short-time insomnia detection system based on a single-channel sleep EOG with RCMSE analysis.

TABLE 1. Detailed information of the sleep dataset used in this study.

(no caffeine intake for at least 5-6 h prior to sleep laboratory
visits). All-night PSGs were recorded in the sleep laboratory
at the cognitive institute of National Cheng Kung University.
There was no outside interference during data collection, and
no medications were used to induce sleep. The PSG record-
ings (Siesta 802 PSG, Compumedics, Inc.) included two
electroencephalogram (EEG) channels (C3-M2 and C4-M1,
according to the international 10-20 standard system), one
electrooculogram (EOG) channel (positioned 1 cm below
and above the left and right outer canthi, ROC-LOC), and a
chin electromyogram (EMG) channel. The sampling rate was
256 Hz with a 16-bit resolution. According the AASM rule,
all PSG recordings in the experiment were segmented into a
number of 30-s intervals called epochs, and each epoch was
classified into a specific sleep-stage, includingWake, N1, N2,
N3, REM, and body movement. Table 1 shows the number
of epochs in different sleep stages and sleep indices of the
healthy individuals and insomnia patients.

B. METHODS
Fig. 1 shows the flowchart of the proposed short-time insom-
nia detection system based on a single-channel sleep EOG
with RCMSE analysis, which includes three parts: 1) pre-
processing, 2) feature extraction, and 3) classification. The
following figure presents each part in greater detail.

1) PREPROCESSING
The sleep EOG signals were filtered with an eighth-order
Butterworth band pass filter with a cutoff frequency of
0.5 - 30 Hz according to the suggestion of the AASM rule.

Next, we followed the AASM rule on the manual sleep
scoring. Therefore, the sleep EOG signals were segmented
into several 30-s epochs and then a 30-s epoch was extracted
an MSE and RCMSE feature. Therefore, the all-night sleep
EOG for one subject could be extracted a number ofMSE and
RCMSE features.

2) FEATURE EXTRACTION
a: SAMPLE ENTROPY (SampEn)
Let N is the length of the time series, m is the length of
sequences to be compared, and r is the tolerance for accepting
matches. Defining a time series x = {x1, x2, x3, . . . , xN }
of length N , and an m-dimensional sequence vector,
µ(m) (i) = {x (i) , x (i+ 1) , . . . , x (i+ m− 1)}, a dis-
tance measure for two vectors µ(m) (i) and µ(m) (j)
with length of m points is defined as d (i, j) =

max {|x (i+ k)− x (j+ k)| : 0 ≤k ≤ m− 1}. µ(m) (i) is sim-
ilar to µ(m) (j) when d (i, j) ≤ r . Cm

i (r) represent the ratio of
the number of the d (i, j) ≤ r to the total length, which can
be calculated by the following (1):

Cm
i (r) =

∑N−m−1
j=1,j 6=i ωj

N − m− 1
, (1)

where ωj = 1 if d (i, j) ≤ r , otherwise, ωj = 0. j is a
integer from 1 to N , and j 6= i to exclude self-matches. The
probability that the two sequences will match form points can
be calculated by the following (2):

Cm (r) =

∑N−m
i=1 Cm

i (r)

N − m
, (2)

the probability that the two sequences will match for m + 1
points is calculated by (3):

Cm+1 (r) =

∑N−m
i=1 Cm+1

i (r)

N − m
, (3)

for the sample entropy, i and j are integer from 1 to N for the
calculation of both m and (m + 1)-point matching. Finally,
the sample entropy is calculated by (4):

SpEn (r,m, x) = −ln
[
Cm+1 (r)
Cm (r)

]
, (4)

some theoretical and clinical applications have shown that the
parameters m = 1 or 2 and r = 0.1 to 0.25 of the standard
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deviation (SD) of the original time series provide good statis-
tical validity for SampEn [26], [27]. The parameters m = 2
and r = 0.15× SD were used to calculate SampEn values in
this study.

b: MULTISCALE ENTROPY (MSE)
Multiscale entropy extends the entropy to multiple tempo-
ral scales to analyze the complexity of a time series. MSE
can be computed from the different types of entropy which
were calculated by multiple coarse-grained time series, such
as approximate entropy [28] or SampEn [18]. SampEn was
taken as the core for the entropy calculation in this study.

Given a 30-s epoch EOG time series with N samples,
x = {x1, x2, . . . , xN }, and a scale factor τ . The time series x
is segmented into non-overlapping windows of length τ . The
mean of each window is then computed. Each element of the
coarse-grained time series yτ (j) is according to (5):

yτ (j) =
1
τ

∑jτ

i=(j−1)τ+1
xi, 1 ≤ j ≤

N
τ
, (5)

after obtaining the coarse-grained time series of the different
scale factor, we calculate the sample entropy for each coarse-
grained time series. For scale factor τ , we can obtain τ
coarse-grained time series which corresponding length is N

τ

and denoted as yτ =
{
yτ (1) , . . . , yτ (i) , . . . , yτ

(N
τ

)}
. The

MSE at a scale factor of τ is defined as the SampEn of the
coarse-grained time series which is computed by (6):

MSE = SpEn
(
r,m, yτ

)
. (6)

c: REFINED COMPOSITE MULTISCALE ENTROPY (RCMSE)
Since each coarse-grained time series is down sampled
according to the raw time series, as the scale factor (τ )
increases, the length of the coarse-grained time series short-
ens. However, most of the entropy values are dependent on
the length of the time series: therefore, as the length of the
coarse-grained time series decreases, the variance of entropy
gradually increases. The range of the measurement error of
MSE may be very large for large scale factors. For this
reason, Wu et al. [29] proposed the composite multiscale
entropy (CMSE) algorithm to improve the accuracy of the
MSE algorithm. In CMSE, τ coarse-grained time series are
calculated for a scale factor of τ , and each element of the
coarse-grained time series y(τ )k (j) is calculated by the follow-
ing (7):

y(τ )k (j) =
1
τ

∑jτ+k−1

i=(j−1)τ+k
xi, 1 ≤ j ≤

N
τ
, 1 ≤ k ≤ τ. (7)

For scale factor τ , the length of the correspond-
ing coarse-grained time series in CMSE is N

τ
, denoted

as y(τ )k =

{
y(τ )k (1) , . . . , y(τ )k (2) , . . . , y(τ )k

(N
τ

)}
. The

coarse-grained time series y(τ )k in RCMSE are calculated
by (7). Then, the probabilities Cm+1

k,τ (r) and Cm
k,τ (r) in (4)

are calculated for all τ coarse-grained series and are
denoted as Cm+1

k,τ =

{
Cm+1
1,τ (r) ,Cm+1

2,τ (r) , . . . ,Cm+1
k,τ (r)

}

and Cm+1
k,τ =

{
Cm
1,τ (r) ,C

m
2,τ (r) , . . . ,C

m
k,τ (r)

}
. Finally,

the RCMSE value is defined as the logarithm of the ratio of
the averageCm+1

k,τ to the averageCm
k,τ for a scale factor τ . The

RCMSE value is calculated by the following (8):

RCMSE = −ln

[
1
τ

∑τ
K=1 C

m+1
k,τ (r)

1
τ

∑τ
K=1 C

m
k,τ (r)

]
. (8)

In the part of the feature extraction,MSE andRCMSEwere
computed using the coarse-grained time series with scale
factor of 1 to 20 which was generated from sleep EOG of each
30-s epoch for each subject. Next, in order to find how long
sleep times and which scale factors are adopted to accurately
detect insomnia, we used the MSE and RCMSE values from
the first 2.5, 5, 7.5,. . . , 120 minutes to compute their mean
values. For example, themeanMSE/RCMSEvalue of the first
2.5 minutes was calculated from the averaged MSE/RCMSE
values of the first five 30-s epoch. Then, we selected the
mean values of MSE/RCMSE with scale factor from one to
τ as features for insomnia detection. In other word, there are
totally 48 different length of the sleep times were used. On the
other hand, the averagedMSE/RCMSE values of the different
scale factors through the entire night and for different sleep
stages were also compared between the healthy and insomnia
groups in this study.

Taking to use MSE to detect insomnia for example, sleep
time of a subject was eight hours which could be segmented
into 960 epochs, namely 960 30-s intervals, and each epoch
was computed an MSE with scale factor of 1 to 20. Then,
the mean of MSE, which was computed using the MSE of
several epochs from the subject, was as an input for classifier.
We used f(i,k) =

{
f(1,k), f(2,k), . . . ,f(i,k)

}
, to present MSE of

the k th epoch with scale factor of 1 to i, and the features set
f̄(i,j) =

{
f̄(1,j), f̄(2,j), . . . f̄(i,j)

}
to present the average of MSE

of the j epochs with scale factor of 1 to i, which is a classifier
input. Each element of the average MSE f̄(i,j) is according to
the (9):

f̄(i,j) =
1
j

∑j

k=1
f(i,k), (9)

where i is presented scale factor, namely the length of the
feature set f̄(i,j), j is presented the 1st to jth epochs, which the
ranges of j from 5 to 250 epochs with five epochs interval
(i.e., 5, 10, 15, . . . , 250 epochs). Finally, the feature set f̄(i,j)
was used as input to the classifier to distinguish insomnia.
The procedure for detecting insomnia using RCMSE is also
the same as above.

3) CLASSIFICATION
To implement a wearable eye-mask device in the future,
we selected three classifiers to experiment which are easy
to implement in the microcontroller to distinguish the
insomnia, including linear discriminant analysis (LDA),
support vector machine (SVM), and ensemble of random
subspace discriminant analysis (Ensemble). In addition,
the SVM is well known for their good performance in binary
classification.
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a: LINEAR DISCRIMINANT ANALYSIS
A linear classifier was used to classify the extracted averaged
MSE values into the healthy individual and insomnia patient
groups. In addition to reduce the computational cost, LDA
can demonstrate the distinguishability of the proposed EEG
features by using a linear classifier. LDA uses a hyperplane
to determine the linear combination of features that best
separates two or more classes of objects or events. Usually,
within-class, between-class, and mixture scatter matrices are
used to formulate the criteria to search the hyperplane so that
the distance between the class means is minimized and the
interclass variance is maximized.

b: SUPPORT VECTOR MACHINE
Support vector machine was first proposed by Vapnik [30].
SVM methods consider the classification problems as
quadratic optimization problems. The SVM attempts to find
a separating hyperplane for an input data set, because it
can maximize the edge width around the separating hyper-
plane between two categories andminimize the training error.
Therefore, the SVM can also accurately classify future test
data sets. Essentially, the SVM is a linear classifier for dis-
tinguishing linearly separable data: However, the input data
set may not be linearly separable in general. To overcome this
problem, kernel tricks such as polynomial, radial basis, and
Gaussian kernel, are utilized. Use of the kernel tricks can map
the data sets in the original space into high-dimensional space
where the data sets become linearly separable. In this study,
we employed the polynomial kernel function for insomnia
detection, because the polynomial kernel is commonly used
with SVMs and is usually used to distinguish EEGof different
groups.

c: ENSEMBLE OF RANDOM SUBSPACE
DISCRIMINANT ANALYSIS
Ensemble methods can be used to improve the performance
of a classifier. In these methods, instead of a single classifier,
a group of classifiers is trained, and the final result is obtained
using these classifiers. Ensemble methods are utilized to
solve various problems, as well as to obtain higher accuracy.
In this study, we used the ensemble of subspace discriminant
analysis method. The random subspace method is a relatively
recent method of combining models. Learning machines are
trained on randomly chosen subspaces of the original input
space (i.e., the training set is sampled in the feature space).
The outputs of the models are then combined, usually by a
simple majority vote.

C. PERFORMANCE EVALUATION
1) VALIDATION PROCESSING
In methods, we illustrate the feature set f̄(i,j) is used as input
to the classifier to distinguish insomnia, and f̄(i,j) is the mean
of MSE or RCMSE with the subject. It is independent of
subjects and is also independent of the subjects’ epochswhich
was used to compute f̄(i,j) in training and testing set. Namely,

the epochs from the same subject does not simultaneously
exist in both the training and testing sets in each validation.
This method is more rigorous, because the epochs from the
same subject does not exist in the training and testing set
at the same time. To verify the robustness of our proposed
method, the half subjects of the healthy and insomnia groups
were randomly divided into training and the other half subject
was used for testing set. The number of scale factor and
different length of time are 20 and 48. Then, we fixed the
number of scale factor and the length of time and repeated
100 times the validation processing with randomly training
and testing set. In other word, there are totally 100 trained
model in each scale factor and the different length of time.
Next, we got 100 confusion matrices from 100 randomly
testing sets by 100 different trained models. We summed
the 100 confusion matrices as a confusion matrix to present
the final result of the number of scale factor and the length
time. Finally, we got 960 summed confusion matrices, and
the corresponding accuracy, sensitivity, specificity, F1 score,
and kappa coefficient to present the different scale factor with
different length of time.

2) METRICS
We used different metrics from confusion matrix to evaluate
the performance of the proposed method, including the over-
all accuracy (overallAcc), sensitivity (Se), specificity (Sp),
and F1 score (F1). These metrics are defined as follows:

overallAcc =
TP+ TN

TP+ TN + FP+ FN
(10)

Se =
TP

TP+ FN
(11)

Sp =
TN

TN + FP
(12)

F1 = 2×
Precision× Se
Precision+ Se

(13)

where, TP is true positive, TN is true negative,FP is false pos-
itive and FN is false negative, which indicate correctly clas-
sified, correctly rejected, incorrectly classified (type I error),
and incorrectly rejected (type II error) cases, respectively.
Precision is the ratio of the true positive to the predicted
condition positive. F1 is the harmonic mean of precision and
recall. In addition, we have also calculated Cohen’s kappa
coefficient (κ) [31] to assess the agreement between the
expert and our proposed method. Cohen’s kappa coefficient
is a statistical measure of inter-rater agreement among two or
more raters.

III. RESULTS
A. RELATIONSHIP BETWEEN THE AVERAGED MSE AND
RCMSE VALUES FOR EACH SCALE FACTOR WITH
DIFFERENT GROUPS
We calculated the all-night averaged MSE and RCMSE val-
ues of the scale factor 1 to 20 from healthy and insomnia
groups. Fig. 2 (a) and (b) show the all-night averaged MSE
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FIGURE 2. Average MSE and RCMSE curves of the all-night EOG data derived from two groups: healthy and insomnia. SampEn
was evaluated from 1-20 scale factors. The symbols represent the mean values of SampEn for each group. (∗∗∗p < 0.001,
∗∗p < 0.01, ∗p < 0.05).

FIGURE 3. MSE (Figs. (a)-(e)) and RCMSE (Figs. (f)-(j)) curves and the repeated-measure one-way ANOVA results of the healthy and insomnia groups in
five different stages. (H, healthy; I, insomnia; ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05).

and RCMSE curves of the healthy and insomnia groups,
respectively. We find that the averaged MSE and RCMSE
values of the insomnia groups are lower than those of the
healthy groups when the scale factor is larger than 4. More-
over, the averaged MSE and RCMSE values between the
healthy and insomnia groups are very close when the scale
factor is less than 4. This finding proved that the MSE and
RCMSE analysis can be used to detect insomnia. In addition,
One-way repeated-measure analysis of variance (ANOVA)
was applied to the data as shown in Fig. 2 for statistical analy-
sis. The results show that the SampEn values are significantly
different (p < 0.05) between the healthy and insomnia groups
for almost all scale factors. This finding proves that the MSE
and RCMSE results from sleep EOG data can be used to
detect insomnia.

MSE and RCMSE value of each scale factor and the inde-
pendent sample t-test results of the healthy and insomnia
groups in five sleep stages were also compared. Fig. 3 (a)-(e)
and Fig. 3 (f)-(j) shows the MSE and RCMSE results of the
comparison in theWake, N1, N2, N3, and REM, respectively.
A few interesting characteristics can be noted from Fig. 3.

1) The tendency of the MSE and RCMSE curves of the
healthy groups are similar to those of insomnia groups
in each sleep stage.

2) In the Wake and N1 stages, the averaged SampEn
values of MSE and RCMSE of the healthy groups are
clearly higher than those of the insomnia groups.

3) The N2 and REM stages between the healthy and
insomnia groups almost overlap for each scale factor.

4) When the scale factor is larger than 5, the SampEn val-
ues of the REM stage are less than those of Non-REM
stages. In each sleep stage, almost all of the MSE
and RCMSE values between the healthy and insomnia
groups exhibit significant differences for each scale
factor.

B. EVALUATION OF THE SHORT-TIME
INSOMNIA DETECTION
1) CLASSIFICATION RESULTS FOR EACH SCALE FACTOR
We utilized the average of the MSE and RCMSE values
with different sleep times as the SVM input, to determine
how much sleep needed to detect insomnia. Fig. 4 shows
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FIGURE 4. Averaged overall accuracy curves of the fixed scale factor for different sleep times. The x-axis represents the first 2.5, 5,
7.5, . . . , and 120 minutes of sleep, and the y-axis represents the average overall accuracy.

the averaged overall accuracy curves of each fixed scale
factor with different sleep times. Using the averaged MSE
or RCMSE values of the first 25 to 35 minutes of sleep to
detect insomnia exhibit a good result for each scale factor, and
the average overall accuracy is approximately 85% or more,
but using the average MSE or RCMSE values of the first
47.5 minutes or more during sleep produces a bad result: the
averaged overall accuracy drops below 80%. Fig. 5 (a) and (b)
show a heat map of the averaged overall accuracy from using
different lengths of sleep to compute the MSE and RCMSE
means for each scale factor, respectively. Each cell which
used average MSE and RCMSE of the different sleep times
and scale factors is the average accuracy of the 100 validation
results. This map more clearly displays the above condition.
Therefore, we determined that the most suitable length of
sleep time to detect insomnia is the first 25 to 35 minutes of
sleep.

Table 2 shows the best averaged overall accuracy (mean±
standard deviation) values of the different classification
strategies. The best classification strategy is to combine

the average of the RCMSE (scale factor of 8) of the first
27.5 minutes of sleep with the SVM. The best averaged over-
all accuracy is obtained by using the averageMSE or RCMSE
of the first 27.5 minutes of sleep in different classification
strategies, except the strategy which combined RCMSE with
LDA. Comparing SVM with LDA, although the computa-
tional complexity of LDA is lower than that of the SVM,
the classification agreement is poor, so the standard deviation
of the overall accuracy is higher. Ensemble includes multiple
LDA classifiers, and therefore, the mean and standard devia-
tion of the accuracy are better than the single LDA classifier,
but the classification agreement is slightly poorer than for
the SVM. In this study, we that find the best classification
strategy is the combined average of the RCMSE values (scale
factor of 8) of the first 27.5 minutes of sleep and that its best
averaged overall accuracy is 89.31 ± 6.04%.

2) INSOMNIA DETECTION PERFORMANCE
Table 3 (A) and (B) show the best performance of the strategy
of the SVM combined with the MSE or RCMSE features,
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FIGURE 5. Heat map of the average overall accuracy resulting from using different lengths of sleep to compute the MSE
and RCMSE means for each scale factor.

TABLE 2. Best average overall accuracy for each scale factor with different sleep times (bold letters indicate the best results).

TABLE 3. (A) Confusion matrix and performance rate of the strategy that combines the average MSE (scale factor of 9) of the first 27.5 minutes of sleep
with SVM. (B) Confusion matrix and performance rate of the strategy that combines the average RCMSE (scale factor of 8) of the first 27.5 minutes of
sleep with SVM.

respectively, in terms of the confusion matrix, sensitivity,
specificity, and accuracy rates when comparing expert and
our proposed method. The confusion matrix contains 100 test
results from the random testing index. When using the aver-
age MSE (scale factor of 9) of the first 27.5 minutes of sleep
the as SVM input, the average overall accuracy is 89.06% and
the kappa value is 0.78. Moreover, when using the average
RCMSE (scale factor of 8) of the first 27.5 minutes of sleep
as the SVM input, the average overall accuracy is 89.31%
and the kappa value is 0.79. These result shows that RCMSE
is superior to MSE.

IV. DISCUSSION AND CONCLUSIONS
In this study, we used the average RCMSE of the first
27.5 minutes of sleep with a scale factor of 8 as a classifier
input to achieve a short-time insomnia detection system.
The first 27.5 minutes of sleep mostly constitute the Wake
and N1 stages. The healthy group required approximately
15-20 minutes to enter the N1 stage, while the insomnia

groups required more time to enter the N1 stage. In addi-
tion, the MSE and RCMSE values of the sleep EOG signal
clearly distinguish the two groups in theWake and N1 stages,
as shown in Figure 3, and therefore, we can utilize this feature
to implement short-time insomnia detection. In our experi-
ment, the averages of the overall accuracy, sensitivity, speci-
ficity, kappa, and F1 score over 100 tests are 89.31%, 96.63%,
82.00%, 0.79, and 90.04%, respectively. Compared with cur-
rently clinical measurement methods, the proposed method
only needed to measure the first few minutes (27.5 min) of
sleep.

In Fig. 2, it observed that the MSE and RCMSE values
of the insomnia group are smaller than those of the healthy
group. This may be because the sleep stages of healthy people
undergo significant changes with respect to Non-REM and
REM, with no excessive sleep stage transition, but the insom-
nia groups often experience arousal after sleep onset, which
causes eye movement and a lack of significant changes with
respect to Non-REM and REM. These results indicate that
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FIGURE 6. Averaged RCMSE curves of the all-night EEG data derived from the healthy and insomnia groups. SampEn was evaluated for scale
factors of 1-20. The symbols represent the mean values of SampEn for each group. (∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05).

TABLE 4. Best average overall accuracy for each scale factor with different sleep times (bold letters indicate the best results).

the sample entropy values obtained using RCMSEwere more
consistent than those obtained using MSE.

We also compared the MSE and RCMSE values of the
EOG with the EEG. Fig. 6 (a) and (b) show the EEG all-night
averaged MSE and RCMSE curves of the healthy and insom-
nia groups, respectively. We also find that the averaged MSE
and RCMSE values of the insomnia groups are higher than
those of the healthy groups the scale factors less than 12.
Moreover, the average RCMSE values between the healthy
and insomnia groups are close when the scale factor is 1;
the difference of the averaged MSE and RCMSE values
between the healthy and insomnia groups when the scale
factor ranged from 2 to 8 are more obvious than for other
scale factors. In addition, the EEG signal (C3-A2), instead
of EOG, was applied in our proposed method with the same
classifier (SVM) and validation processing in this study. The
comparisons of the results between EEG and EOG was listed
in Table 4. The best accuracy and kappa value from the MSE
of EEG is 88.81% and 0.77, respectively. The best accuracy
and kappa value from the RCMSE of EEG is 89.19% and
0.78, respectively. Compare to the result of the EOG, the per-
formances of EOG based method are better than EEG based
method. Moreover, the best result of EOG used the length of
time and the number of the features (scale factors) are less
than the best result of EEG.

Moreover, the main advantages of our proposed method
are three innovations: (1) Our proposed method only need the
first 27.5 minutes of data during sleep (i.e., 1st–55th epochs).
The previous researches [13]–[16] were usually used sleep

signals from the specific sleep stages to compute features for
detection insomnia.

Therefore, they needed all-night sleep signal recording and
sleep scoring by clinical staff or automatic sleep scoring
system. Subjects may need to wait more than one night
to know the diagnosis. In our proposed method, RCMSE
features used to detect insomnia were computed by the first
27.5 minutes sleep EOG. In other words, RCMSE features
in our proposed method is dependent on sleep time. There-
fore, our proposed method can screen insomnia in a short
time and eliminate the need for clinical staffs to monitor the
quality of the sleep signal all night. (2) The proposed method
doesn’t need manual scoring in the preprocessing. Unlike
the previous studies [13]–[16], their methods need manual
scoring in the preprocessing (need to know the information of
all-night sleep stage or some specific sleep stages). Because
our proposed method to detect insomnia was only dependent
on sleep time, instead of the specific sleep stages, it can save
clinical staff time to manually score sleep stages. In the other
hand, the patients do not have to wait clinical staff for a sleep
report. (3) The use of a single-channel sleep EOG. When
using EEG [13]–[16], the electrodes must be placed above the
hairline on the scalp and expert help is needed to set up the
system and collect data. Compared with EOG, EOG offers
the advantage of easy placement and can be operated by the
user him/herself.

Additionally, it let our proposed method easy to imple-
ment in a wearable eye-mask device in the future that allows
users to easily measure at home environment. Therefore, our
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TABLE 5. Comparison between our proposed method and other insomnia detection methods.

proposed method can obviate the need for sleep scoring to
achieve short-time insomnia detection. As a result, a large
amount of medical costs can be saved. In terms of medical
personnel, no medical personnel are required to monitor the
PSG signals throughout the night. In terms of subjects, each
subject can assess insomnia at home, and the ‘‘first-night
effect’’ is also reduced.

Table 5 shows a comparison between our proposed method
and other insomnia detection methods with respect to the
overall accuracy, sensitivity, specificity, and kappa value.
Except for reference [15], all of the other methods use a
single-channel EEG for insomnia detection. These methods
all utilize hand-engineered features [14]–[17], including sta-
tistical, spectral, and nonlinear features. These methods for
insomnia detection have been proposed by the above refer-
ences and exhibit good performance. Reference [14] used
hypnograms, which were generated from automatic sleep
scoring, to find all epochs between the first Wake stage
until the last N2 stage. The method then used the epochs
prior to the first N3 stage to detect insomnia. Comparing
our proposed method with reference [14], the lengths of
sleep times for using insomnia detection are almost the
same. References [15]–[17] used expert hypnograms to select
non-Wake stages as the feature of insomnia. Good result can
be obtained compared with our proposed method, but our
proposed method does not need manual scoring by experts or
automatic sleep scoring. The novelty of our proposed method
is that RCMSE from sleep single EOG channel were first
applied in detection insomnia. It does not need all-night PSG
recording and sleep scoring and only takes a short time (less
than 30 mins) to classify the subject with insomnia or not.
Therefore, it also can reduce the human resources of medical
care. Besides, only RCMSE with scale factor of 1-9 and a
simple classifier are utilized, it let our proposed method easy
to implement in a wearable eye-mask device in the future that
allows users to easily measure at home environment.

In future work, we can integrate the proposed system with
an EOG eye mask or portable PSG system for sleep quality
assessment or insomnia screening in the home environment,
as home-based measurements are less affected by the first
night effect than hospital. In addition, the all-night PSG
recording, and sleep scoring does not need in this system,
because of the short time insomnia screening. At the same

time, a large amount of medical resources is reduced. The
number of subjects was currently 32 persons in the experi-
ment which contained 16 healthy individuals and 16 primary
insomnia patients. The limitations of this study are the sub-
jects belong to healthy individual or with primary insomnia.
The subject groups with other sleep disorder, such as apnea,
restless legs syndrome, should be considered in the future.
We will increase the number of subjects to improve the sys-
tem generality, and made our method be applied to the groups
of different genders and age in future work. In addition, MSE
analysis of the EEG can distinguish different groups, such as
epilepsy, Parkinson’s, and insomnia. EOG may contain some
EEG information, and MSE analysis of EOG may be able
to distinguish between these different groups. We hope that
a large amount of data can be used to find the correlations
between the MSE analyses of the EEG and EOG in the spe-
cific groups so that EOG can become a simple examination
tool.
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