
Received March 19, 2020, accepted April 3, 2020, date of publication April 7, 2020, date of current version April 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2986214

Proactive Scenario Characteristic-Aware Online
Power Management on Mobile Systems
SODAM HAN 1, (Student Member, IEEE), YONGHEE YUN2,
YOUNG HWAN KIM 1, (Senior Member, IEEE), AND SEOKHYEONG KANG 1, (Member, IEEE)
1Department of Electronic and Electrical Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea
2System LSI Business, Samsung Electronics Company Ltd., Hwaseong 18448, South Korea

Corresponding author: Seokhyeong Kang (shkang@postech.ac.kr)

This work was supported in part by Samsung Electronics Company, Ltd., and in part by the Ministry of Science and ICT (MSIT), South
Korea, through the ICT Consilience Creative Program, supervised by the Institute for Information and Communications Technology
Planning and Evaluation (IITP), under Grant IITP-2019-2011-1-00783.

ABSTRACT Modern mobile systems are requested to execute diverse user scenarios. Depending on the
types of user scenarios, mobile systems utilize hardware resources differently. Thus, power management
policies of mobile systems must adapt to various user scenarios. In this paper, we propose a dynamic
voltage/frequency scaling (DVFS) policy to increase the energy efficiency of multicore mobile systems
by adapting to user scenarios. The proposed policy provides effective power management regardless of
user scenarios by using operation characteristics that can represent the execution behavior of various
user scenarios. Furthermore, the proposed policy is suitable for modern mobile systems in which online
power management is essential, because it does not require preliminary knowledge of target scenarios.
To balance the trade-off between energy consumption and quality-of-service (QoS), the proposed scenario-
aware policy provides ‘just enough’ processing speed to process the requested amount of work at the given
parallelism level. To demonstrate the practicality of the proposed policy, we evaluated the effectiveness of the
proposed scenario-aware policy for real-world user scenarios. Compared to the conventional DVFS policies,
the proposed scenario-aware policy achieved a maximum of 25.5 % energy saving on the mobile system that
uses asymmetric multicore CPU, and a maximum of 30.7 % energy saving on the mobile system that uses
symmetric multicore CPU, without any QoS violation that degrades user experiences.

INDEX TERMS Dynamic voltage/frequency scaling (DVFS), energy efficiency, quality-of-service (QoS),
workload-aware power management, application-aware power management.

I. INTRODUCTION
Nowadays, the usage of mobile devices, such as smartphones
and tablets, is not limited to communication. End users use
modern mobile devices to execute various user scenarios
beyond communication, such as web browsing, social net-
working, multimedia streaming, and gaming. In this con-
text, mobile devices require high processing speed without
degrading user satisfaction. Thus, modern mobile devices
generally adopt high-performance processors such as CPU
that has asymmetric multicore architecture (e.g., big.LITTLE
technology [1]), GPU, and AI accelerator.

Integration of high-performance processors and multiple
IPs increases quality-of-service (QoS) of mobile devices but

The associate editor coordinating the review of this manuscript and

approving it for publication was Jing Bi .

decreases power budget allocated to each component due to
the limited capacity of batteries. Consequently, the decrease
in power budget for each component shortens the entire bat-
tery life of mobile devices [2]. Furthermore, as the size of
mobile devices is scaling down, their power density increases.
High power density can cause thermal hot spots and over-
heating of devices; these problems can degrade the sys-
tem’s reliability [3]. Thus, to satisfy user requirements and
avoid system threats, power consumption of modern mobile
devices must be managed appropriately. To manage dynamic
power consumption, modern mobile systems utilize OS-
level approaches such as dynamic voltage/frequency scaling
(DVFS) and dynamic power management (DPM) [4].

User scenarios on mobile devices have a wide range of
operation characteristics (in this paper, operation character-
istics of user scenarios are called scenario characteristics).

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 69695

https://orcid.org/0000-0002-6351-8830
https://orcid.org/0000-0002-5532-610X
https://orcid.org/0000-0003-3015-1806
https://orcid.org/0000-0002-4610-0141


S. Han et al.: Proactive Scenario Characteristic-Aware Online Power Management on Mobile Systems

FIGURE 1. Normalized parallelism and workload processed by CPU for
diverse user scenarios.

For example, user scenarios have various combinations of
parallelism and workload (Fig. 1). In Fig. 1, parallelism is
the number of runnable/running threads, and workload is the
number of CPU clock cycles. Scenario characteristics directly
affect the execution behavior of mobile systems. In this exam-
ple, depending on the parallelism and workload, the number
of active CPU cores and their usage will be determined.
Thus, to provide effective power management regardless of
the scenario that is running on the system, powermanagement
policies must consider the scenario characteristics.

Modern mobile devices are highly user-interactive, and
scenario characteristics can change depending on user input.
For example, during web browsing, user input determines the
amount of information and data types that will be included
in the loaded page, and scenario characteristics are differ-
ent when different pages are loaded. However, future input
is inherently impossible to predict in the mobile systems.
Therefore, user-interactive mobile systems require runtime
power management, and the power management policies of
mobile systems must monitor scenario characteristics and
adapt instantly to changes in characteristics.

In this paper, we propose a new power management policy
that can increase the energy efficiency of modern mobile
devices for various user scenarios. The proposed policy is
designed as a DVFS policy for multicore CPUs, to con-
trol the operating frequencies of CPU clusters. To prevent
energy waste and performance loss in advance, the proposed
policy adjusts CPU frequencies proactively. To evaluate the
suitability of the proposed method for modern mobile sys-
tems, we investigated whether the proposed policy provides
satisfactory QoS, which is an important metric to evaluate
the responsiveness of user-interactive mobile systems, and
whether the policy balances QoS with consumed energy
effectively. Our research makes three contributions:

1) The proposed policy performs DVFS for CPU clus-
ters by considering thread-level parallelism and the
requested amount of work; these characteristics can be
used to represent the behavior of various user scenarios.
Especially, the proposed policy uses thread-level paral-
lelism of the requested work, so that it can consider the
available hardware resources (in this research, the num-
ber of active cores) when it makes DVFS decisions; this

ability is distinct from existing scenario-aware policies,
which consider the amount of work only.

2) The proposed policy uses scenario characteristics that
can be predicted during runtime; in this way our policy
is unlike existing policies that require the preliminary
knowledge of target scenarios. Thus, the proposed pol-
icy is appropriate for modern mobile devices in which
online power management is essential.

3) To demonstrate the practicality of the proposed pol-
icy, we evaluated the policy by using real-world
user scenarios that are frequently executed by end
users. Besides, to demonstrate the effectiveness of the
proposed policy for user-interactive mobile devices,
we evaluated whether the proposed policy provides
satisfactory QoS andmaintains a good balance between
energy efficiency and QoS.

The rest of this paper is organized as follows. Section II
reviews previous research for effective CPU DVFS and
presents the motivation of our research. Section III
describes scenario characteristics used in the proposed pol-
icy. Section IV describes the proposed scenario-aware CPU
DVFS policy. Section V presents experimental results to
verify the effectiveness of the proposed policy. Section VI
concludes the paper.

II. RELATED WORK
DVFS is one of the widely used techniques to manage power
consumption; it scales voltage and frequency settings of the
target component. Dynamic power is linearly proportional to
the square of the voltage and to operating frequency [5]. Suit-
able voltage and frequency scaling lets the target component
consume just enough dynamic power while satisfying the
requested QoS. Furthermore, consumption of a reasonable
level of dynamic power can prevent excessive increase in on-
chip temperature. Therefore, an appropriate DVFS algorithm
can contribute both to reducing dynamic power consumption
and to preventing loss of system reliability due to various
thermal problems such as hot spots and overheating.

In this research, we focus on DVFS policies for multicore
CPUs. Commercial mobile devices with Linux-based OSes
(e.g., Android) contain predefined DVFS policies (CPUFreq
governors) for CPUs; examples include ondemand, inter-
active, and performance [4], [6]. However, CPUFreq gov-
ernors do not adapt to scenario characteristics. To over-
come the limitation of CPUFreq governors in the commer-
cial devices, approaches in [7]–[18] attempt to adjust CPU
frequencies in response to scenario characteristics. How-
ever, these approaches are not appropriate for general, user-
interactive mobile systems, for two reasons. First, approaches
in [7]–[14] focus on the limited types of user scenarios, and
therefore are ineffective for the user scenarios beyond the
target types. Second, approaches in [15]–[18] require pre-
liminary knowledge of target scenarios, and therefore cannot
be used for modern mobile devices in which online power
management is essential.

69696 VOLUME 8, 2020



S. Han et al.: Proactive Scenario Characteristic-Aware Online Power Management on Mobile Systems

Approaches in [7]–[14] consider scenario characteristics
of the specific types of user scenarios; these approaches are
impractical, or even inapplicable, when the running scenar-
ios are not among the target types. Approaches in [7]–[9]
focus on power management for gaming scenarios. These
approaches go through an offline phase that uses a limited set
of gaming scenarios to build performance and power models
by observing frames-per-second (FPS) and power behavior
when utilization and frequency of target components change.
Then, these approaches go through an online phase to scale
CPU operating frequencies by using the pre-constructed per-
formance and power models in a way to increase estimated
energy efficiency. However, these approaches construct per-
formance and powermodels only from a limited set of gaming
scenarios, and are therefore only useful within these and
similar gaming scenarios.

Some other approaches [10]–[12] are applicable to a
wider range of multimedia-centric user scenarios. One
approach [10] uses machine learning to construct perfor-
mance and power models by considering a training set
composed of multimedia-centric user scenarios with diverse
scenario characteristics. To optimize energy efficiency for
multimedia-centric scenarios, the approach in [11] exploits
the frame-level time slack and the approach in [12] uses the
fluctuation in FPS. These approaches consider characteristics
of a wider range of scenarios than the approaches described
in [7]–[9], but are not suitable for user scenarios in which FPS
is not a vital factor. Two approaches in [13], [14] attempt to
optimize energy efficiency for web browsing, but they exploit
the characteristics of web browsing such as HTML tags and
DOM tree nodes, and therefore cannot be used for other types
of user scenarios.

Some methods [15]–[18] were developed to increase
energy efficiency for diverse types of user scenarios.
However, these approaches require preliminary informa-
tion about the user scenarios that will be executed; these
approaches cannot be used for runtime power management.
The approach in [15] classifies user scenarios into three cat-
egories (performance-sensitive, QoS-sensitive, and insignifi-
cant) before execution, and applies different DVFS strategies
depending on the target scenario’s categories. Some other
approaches [16], [17] require target performance (e.g., target
FPS and throughput) of user scenarios to calculate the optimal
CPU frequency. Another approach in [18] goes through an
offline phase to profile the expected speedup and energy for
various CPU frequency levels under the execution of the
target scenario, and uses the profiled data to guide online
power management.

The existing scenario-aware DVFS policies cannot cover
a wide range of user scenarios [7]–[14] and are not suitable
for online power management of mobile devices [15]–[18].
To overcome these drawbacks of the existing approaches,
we propose a new scenario-awareDVFS policy. The proposed
policy considers scenario characteristics that can represent
the behavior of a wide range of scenarios. Thus, it can adapt
to diverse user scenarios. Furthermore, the proposed policy

does not require preliminary knowledge of target scenarios,
and therefore can be used for online power management of
modern mobile devices.

III. PRELIMINARY WORK
In this section, we define the scenario characteristics that
the proposed policy considers, and describe how we can
obtain these characteristics online. For effective management
of power consumption regardless of user scenarios, scenario-
aware policies must use appropriate characteristics, which
can represent a wide range of execution behavior of mobile
systems for diverse user scenarios. Furthermore, although
several existing scenario-aware policies use performance
monitoring counters (PMCs) to consider the characteristics
during runtime [18], [19], the task of accessing and read-
ing PMCs is challenging or impossible for many mobile
platforms [20]. Therefore, to define scenario characteristics,
we also consider whether runtime access to the characteristic
is achievable for diverse mobile platforms.

Most existing scenario-aware DVFS policies use the sce-
nario characteristics that indicate the amount of work, such as
FPS, the number of clock cycles, and CPU usage. However,
considering the amount of work only is not sufficient to
enable estimation of the processing speed required to process
the requested work by using available resources. In fact, most
user scenarios consist of multiple threads. When a user sce-
nario is running, the number of concurrently-runnable threads
can change depending on dependency among threads and
their CPU affinity. If the number of concurrently-runnable
threads is smaller than the core count of the target platform,
the number of cores that may engage in the execution is also
smaller than the original core count. Therefore, even though
the operating frequency is the same, the amount of work
that the CPU can process can be different depending on the
thread-level parallelism. Thus, the proposed policy considers
both the amount of work and the thread-level parallelism to
provide the best operating frequency for the requested amount
of work and the number of utilizable cores.

In this research, we use two scenario characteristics to
adjust CPU frequencies: (1) thread-level parallelism (TLP)
[21] to consider parallelism, and (2) clock cycle count per
cluster (ccluster ) to consider the amount of work. Both char-
acteristics are calculated from the utilization of CPU cores.1

A. THREAD-LEVEL PARALLELISM
1) DEFINITION
TLP [21] indicates parallelism of user scenarios running on
the target mobile devices when one or more CPU cores are
active. The core count of the target mobile devices and data

1In mobile systems with Linux-based OSes, each CPU core’s utilization
can be calculated using the accumulated active and inactive times of each
core, which are provided by using a jiffy unit. One jiffy means a period of
interrupts triggered by the kernel timer system. The default jiffy interval is
set as 10 ms [22].

VOLUME 8, 2020 69697



S. Han et al.: Proactive Scenario Characteristic-Aware Online Power Management on Mobile Systems

FIGURE 2. Context-switching events captured on Galaxy S7 when Angry
Birds Classic was executed; each color bar indicates execution of the
corresponding thread.

locality of threads are reflected in the TLP.

TLPi =

∑Ni
k=1 tfk,ik

1− tf0,i
(1)

The proposed policy uses TLP of each CPU cluster. Thus, a
variable i is added as an index of the CPU clusters. TLP of
CPU cluster i (Eq. 1) is calculated by dividing the sum of
fractions of active times of all cores in the CPU cluster by the
fraction of active time of the CPU cluster. In Eq. 1, tfk,i is a
fraction of time that k cores in the cluster i are concurrently
active (a fraction of active time), tf0,i is a fraction of idle time
of the cluster i, 1 − tf 0,i is a fraction of active time of the
cluster i, and Ni is the core count of the CPU cluster i.

2) ESTIMATION OF THREAD-LEVEL PARALLELISM
To achieve the exact value of 1− tf 0,i in Eq. 1, we must track
when context-switching events occur, and on what CPU cores
they occur. Then, from the tracked information, we must
extract the amount of time that threads occupy each core.
Performing this process online is challenging or impossible
for many mobile platforms due to the limited size of the trace
buffer. Thus, instead of calculating the exact value of 1− tf 0,i
online, the proposed policy estimates 1− tf 0,i by considering
utilization values of CPU cores.

When representing utilization from 0 (idle) to 1 (fully
active), the lower bound of 1− tf 0,i is the utilization of CPU
cluster i when active times of CPU cores overlap as much as
possible. On the contrary, the upper bound of 1− tf 0,i is the
utilization of CPU cluster i when active times of CPU cores
have minimum overlaps.

The frequency level selected by the proposed policy tends
to increase as TLP decreases (Section IV-B). This relationship
means that if we estimate 1 − tf 0,i as the upper bound,
the estimation error can cause significant energy waste. Thus,
the proposed policy estimates 1 − tf 0,i as the lower bound;
under the assumption that active time of the busiest core
covers active times of the other cores, 1 − tf 0,i can be
calculated as the utilization of the busiest core in cluster i
during one sampling period. Active time of a CPU core is
the total time occupied by all threads running on the core,
so the estimated 1 − tf 0,i reflects the execution behavior
of both normal and real-time threads. To clarify estimation
technique, Fig. 2 provides an example of context-switching

FIGURE 3. Examples of measured (black) and estimated (blue and red)
active times of big and LITTLE CPU clusters.

events captured on the LITTLE cluster (CPU0-3) of Galaxy
S7. During the 10 ms, the actual 1 − tf 0,i is (a

′
+ c) divided

by 10 ms and the estimated 1− tf 0,i is (a+ b+ c) divided by
10 ms.

To the best of our knowledge, this is the first attempt to
trace TLP online. As shown in Fig. 3, the tendencies of the
measured and estimated active times are generally consistent,
although subtle inconsistency exists depending on scenarios.
We discuss effectiveness of the current estimation technique
in Section V-C-3.

B. CLOCK CYCLE COUNT PER CLUSTER
1) DEFINITION
In this paper, ccluster indicates the number of effective clock
cycles that the cores in the corresponding CPU cluster need
to consume. The number of CPU clock cycles is generally
proportional to the amount of work allocated to the CPU [16],
[23], so we define ccluster to represent the amount of work that
each CPU cluster must process.

The number of clock cycles consumed by a core during
a specific period can be calculated by integrating the multi-
plication of core utilization and frequency over the period.
However, when a core’s utilization is 1, there is a possibility
that the core is a bottleneck due to the low operating fre-
quency; in this case, ccluster can be calculated lower than the
value actually requested. Thus, this paper introduces an up-
scaling coefficient, which scales up ccluster when one or more
cores in the cluster are fully active during the given period.
Eq. 2 defines the number of clock cycles consumed by the
jth core in cluster i, where uj,i is the utilization of the jth core
in the cluster i, fi is the operating frequency of cluster i, tp
is a duration of one sampling period, and si is an up-scaling
coefficient of cluster i:

cj,i =

{
tpuj,ifi, uj,i < 1
tpsiuj,ifi, uj,i = 1

(2)

69698 VOLUME 8, 2020



S. Han et al.: Proactive Scenario Characteristic-Aware Online Power Management on Mobile Systems

TABLE 1. Given parameters for up-scaling coefficient determination.

Eq. 3 defines ccluster of cluster i, which is the sum of cj,i for
all cores in cluster i:

ccluster,i =
∑Ni−1

j=0
cj,i (3)

2) UP-SCALING COEFFICIENT DETERMINATION
When one or are bottlenecks, ccluster can be underestimated.
To avoid this problem, we introduce an up-scaling coefficient.
Up-scaling coefficients differ depending on platforms and
cpu clusters. Table 1 explains parameters (nfa, fprev, and ut )
used for the coefficient determination. Ranges of nfa, fprev,
and ut are dependent on platforms and cpu clusters. nfa is the
number of fully-active cores. fprev is the previous frequency
level. ut is the total utilization of cores in the target cpu cluster
when nfa cores are fully active. Effectiveness of coefficient
candidates needs to be evaluated for given ranges of nfa, fprev,
and ut .
The up-scaling coefficient is determined considering two

aspects: relaxation of the CPU bottleneck, and minimal
energy increase. First, we need to investigate whether each
coefficient candidate contributes to the effective relaxation of
the cpu bottleneck. When one or more cores are bottlenecks,
the bottleneck phenomenon can be alleviated by increasing
the operating frequency. Thus, a specific coefficient candi-
date s is considered to contribute to the bottleneck relax-
ation if the next frequency selected under the corresponding
candidate fnext (si = s, ut ) is higher than fnext (si = 1, ut ).
Second, we need to investigate how much dynamic power
increases due to each coefficient candidate. In general, oper-
ating frequency and voltage are linearly correlated [24], [25].
Dynamic power consumption is proportional to the square of
voltage and to frequency, so it can be modeled as a function
of the cube of frequency [25], [26]. Therefore, the ratio of
dynamic power increment caused by a coefficient candidate
s is calculated as the cube of fnext (si = s, ut ) divided by the
cube of fnext (si = 1, ut ).
The up-scaling coefficient si of CPU cluster i is deter-

mined by evaluating the effectiveness of coefficient candi-
dates. For the numerical evaluation, we define Rperf , Rpower ,
and Reff (Table 2). Rperf represents the possibility of CPU
bottleneck relaxation, i.e., the proportion of cases in which
the fnext (si = 1, ut ) and fnext (si > 1, ut ) differ by one
level. Rpower is the ratio of dynamic power increment due
to coefficient candidates. Reff represents the effectiveness of

TABLE 2. Parameters to evaluate coefficient candidates.

FIGURE 4. Effectiveness evaluation of a coefficient candidate for specific
nfa and fprev; NF is the number of available frequency levels.

coefficient candidates considering both bottleneck relaxation
and minimal energy increase, and is used as the criterion for
final determination of the up-scaling coefficient.

The effectiveness evaluation is performed by quantifying
Rperf ,Rpower , andReff under the given nfa, fprev, and ut ranges.
Fig. 4 displays the procedure of effectiveness evaluation of
each coefficient candidate for given nfa and fprev values and
Fig. 5 shows examples of the steps described in Fig. 4. First,
in step 1, the profile of fopt (si, ut ) is investigated (Section
IV-B), and fopt (si, ut ) is mapped to the closest level among
available frequency levels; this process generates the fnext (si,
ut ) profile. in Fig. 5a, fnext (si, ut ) is generated by quantizing
fopt (si, ut ) to 450, 575, 700, 775, or 850MHz. Then, using the
obtained fnext (si, ut ) profile, Rperf (nfa, fprev) and Rpower (nfa,
fprev) are calculated in steps 2 and 3. In Fig. 5b, for each
coefficient candidate, the frequency level difference between
fnext (si = 1, ut ) and fnext (si > 1, ut ) is determined, then used
to calculate Rperf (nfa, fprev). in Fig. 5b, when fnext (si = 1, ut )
is 450 MHz, the frequency level difference is one, two, three,
and four if fnext (si > 1, ut ) is 575 MHz, 700 MHz, 775 MHz,
and 850 MHz, respectively. in Fig. 5c, for each coefficient
candidate, the ratio of dynamic power increment is calculated,
and Rpower (nfa, fprev) is calculated by averaging the ratios of
dynamic power increment of all ut points. Finally, in step
4, Reff (nfa, fprev) of each coefficient candidate is calculated.

VOLUME 8, 2020 69699



S. Han et al.: Proactive Scenario Characteristic-Aware Online Power Management on Mobile Systems

FIGURE 5. Example of the effectiveness evaluation when Ni = 4, nfa = 1,
and fprev = 450 MHz; available frequency levels are 450, 575, 700, 775,
and 850 MHz.

Fig. 5d shows Reff (nfa, fprev) obtained by dividing Rperf (nfa,
fprev) by Rpower (nfa, fprev) for each coefficient candidate.
Steps 1-4 in Fig. 4 are iterated by traversing given nfa and

fprev ranges. After all iterations, the average value of reff (nfa,
fprev) is calculated for all available frequency levels as

Reff .avg(nfa) =
∑NF−1

m=0
Reff (nfa, favailable(m))/NF (4)

where favailable(m) is the mth available frequency level and
nf is the number of available frequency levels. Finally, si is
determined as the coefficient candidate that maximizes the
average reff .avg(nfa).

IV. PROPOSED SCENARIO-AWARE POLICY
The proposed policy performs scenario-adaptive power man-
agement by adjusting CPU frequencies. Differentiated from
the existing approaches in [7]–[14], the proposed policy is
adaptive to various user scenarios because it uses scenario
characteristics that can represent the execution behavior of
a wide range of scenarios; TLP and ccluster described in

FIGURE 6. Flowchart of the proposed scenario-aware CPU DVFS policy.

Section III are used to consider parallelism and the amount of
requested work. Besides, the proposed policy is suitable for
online power management because it does not require prelim-
inary knowledge of target scenarios, whereas the approaches
in [15]–[18] do require it. The proposed policy targets the
platform, which defines the DVFS domain as a CPU clus-
ter, and supports both asymmetric and symmetric multicore
CPUs. The proposed policy manages power consumption
of each CPU cluster independently, so the execution time
of the proposed policy increases linearly as the number of
CPU clusters increases. Power management quality of the
proposed policy is not affected by the size of data used for
the scenario’s execution; the target platform’s performance
can be sensitive to the data size depending on the platform’s
hardware specification (e.g., cache size).

The proposed policy (Fig. 6) consists of three steps: (1)
prediction of scenario characteristics, (2) determination of
frequency, and (3) scaling of frequency. The proposed pol-
icy performs power management periodically by conducting
these three steps at the beginning of the next interval, and
holds the determined frequency until the end of the next
interval.

69700 VOLUME 8, 2020



S. Han et al.: Proactive Scenario Characteristic-Aware Online Power Management on Mobile Systems

In the first step, the proposed policy predicts scenario
characteristics described in Section III. In the second step, the
proposed policy uses the predicted characteristics to calculate
the optimal next frequency. In the last step, the proposed
policy scales the CPU frequency by using the userspace
governor [4], [6] pre-defined in Linux-based OSes, which
enables frequency adjustment at the user level. The following
sections focus on the first and second steps.

A. PREDICTION OF SCENARIO CHARACTERISTICS
For proactive power management, the proposed policy pre-
dicts the scenario characteristics of the next interval by using
the history values of TLP and ccluster that have been sampled
during previous intervals. In this paper, T L̂Pi and ĉcluster,i
indicate predicted TLPi and ccluster,i of the next interval.
To improve the prediction accuracy compared to existing

proactive approaches, we combine a normalized least-mean-
square (NLMS) linear predictor [27] with an exponentially-
weighted moving average (EWMA) predictor, which is
generally used by existing proactive policies [16], [28].

The NLMS linear predictor is appropriate to identify
parameters of dynamic systems such as mobile devices [27].
Eq. 5 is a basic form of a linear predictor,

x̂[t + 1] =
∑N−1

k=0
wk [t]x[t − k] = W̄ [t]T X̄ [t] (5)

where x[t] is the target parameter x at the t th interval, x̂[t+1]
is the predicted (t + 1)thx, N is the order of the predictor, and
wk [t], for k = 0, . . . ,N − 1, are a linear predictor’s weights
at the t th interval, which are generally initialized to zero in
an NLMS linear predictor. The weights of the NLMS linear
predictor are calculated as

e[t] = x[t]− x̂[t] (6)

W̄ [t] = W̄ [t − 1]+
µe[t]∥∥X̄ [t − 1]

∥∥2 X̄ [t − 1] (7)

where e[t] is the t th prediction error andµ is the learning rate.
The NLMS linear predictor recursively updates its weights
(Eqs. 6-7) in a direction to reduce the prediction error. One
critical drawback of this predictor is that the prediction error
can be very large if the weights diverge [28].

To overcome this limitation, when the prediction error
exceeds a pre-defined threshold, the proposed policy resets
the weights by using a widely used form for EWMA predic-
tor’s weights (Eqs. 8-9).

λ =
2

N + 1
, (8)

ck [t] = λ(1− λ)k . (9)

We set the predictor with empirically obtained parameters.2

TLP prediction examples (Fig. 7) were obtained by apply-
ing the NLMS linear predictor, the EWMA predictor, and
the combination of NLMS linear and EWMA predictors
when a user used Chrome (a web browser) for 60 seconds.

2 We set N as 8, µ as 0.074, and the threshold of the prediction error as
70 %.

FIGURE 7. Prediction examples obtained using the NLMS linear predictor,
the EWMA predictor, and the combination of NLMS linear and EWMA
predictors.

The NLMS linear predictor followed peak values with high
accuracy initially, but after 15 seconds, the prediction error
became extremely large because the weights diverged. The
EWMApredictor achieved relatively low prediction error, but
could not sharply follow peak values. The combination of
NLMS linear and EWMA predictors overcame both of these
limitations.

B. DETERMINATION OF FREQUENCY
In this step, the proposed policy uses T L̂P and ĉcluster to deter-
mine the next operating frequencies of the CPU clusters. This
step consists of two phases: (1) determination of effective
core count and (2) calculation of next frequency.

1) DETERMINATION OF EFFECTIVE CORE COUNT
In this paper, effective core count means the number of cores
that are utilizable for the scenario’s execution. The proposed
policy calculates the next effective core count of each cluster
by using T L̂P,which indicates the number of threads that are
expected to be concurrently-runnable at the next interval. The
next effective core count neff ,i of CPU cluster i is calculated
by rounding T L̂Pi as

neff ,i =

{⌊
T L̂Pi + 0.5

⌋
, T L̂Pi ≥ 0.5

1, otherwise.
(10)

VOLUME 8, 2020 69701



S. Han et al.: Proactive Scenario Characteristic-Aware Online Power Management on Mobile Systems

When T L̂Pi is lower than 0.5 in the next interval, one core
will be effective to process the work requested to the CPU
cluster i. Thus, when T L̂Pi is lower than 0.5, we set neff ,i as
1 instead of 0, which is the rounding result of a value lower
than 0.5.

2) CALCULATION OF NEXT FREQUENCY
The proposed policy determines the next frequency as the
frequency level that is the most appropriate to process the
requested amount of work by using the utilizable CPU cores.
The key strategy of the proposed policy is to provide ‘just
enough’ CPU processing speed during execution of various
scenarios.

In this step, the proposed policy calculates the optimal level
of the next frequency of each CPU by considering the strategy
described above. Then, the proposed policy selects the next
frequency among the available frequency levels.

First, the proposed policy calculates the optimal frequency.
Eq. 11 describes the optimal frequency fopt,i of CPU cluster i.
ĉcluster,i indicates the clock cycle count that is expected to be
requested, and neff ,i is the expected number of effective cores.
Thus, fopt,i is the frequency level that provides ‘just enough’
processing speed to process ĉcluster,i using neff ,i cores at the
next interval.

fopt,i =
ĉcluster,i
neff ,itp

(11)

After calculating fopt,i, the proposed policy sets the next
frequency fnext,i of CPU cluster i as the closest level to fopt,i
among available frequency levels that are pre-defined in the
target platform.

V. EXPERIMENTAL STUDY
We conducted an experimental study to demonstrate the
effectiveness of the proposed scenario-aware policy. The fol-
lowing paragraphs describe the details of the experimental
setup and results.

A. EXPERIMENTAL SETUP
1) TARGET PLATFORM
The target platform is V2M-Juno development platform [29]
with Android OS. The target platform contains CPU based
on big.LITTLE architecture, where Cortex-A57 dual cores
(big CPU cluster) are paired with Cortex-A53 quad cores
(LITTLE CPU cluster). Each CPU cluster has five available
frequency levels: for the big CPU cluster they are 450, 625,
800, 950, and 1,100 MHz; for the LITTLE CPU cluster they
are 450, 575, 700, 775, and 850 MHz.

2) EVALUATION METRICS
General user scenarios that run on mobile systems interact
directly with end users. Thus, when evaluating performance
of mobile systems, QoS is much more important than raw
processing speed.

Mobile systems fail to guarantee satisfactory QoS in two
major ways [30]: they provide performance that is less than

the human-tolerable limit PU or they provide performance
that exceeds end users’ expectations PI . Violation of PU
causes QoS violations, and end users may abandon to use the
systems. Violation of PI makes the systems use unnecessary
energy, energy efficiency and battery life are reduced, ther-
mal problems occur, and the system’s reliability deteriorates.
Thus, evaluation of QoS must consider whether performance
is higher than PU and lower than PI .

As the primary goal of the proposed policy is to improve
the energy efficiency of mobile systems, we evaluated energy
and QoS of the proposed policy. To enable numerical eval-
uation of how the proposed policy manages the trade-off
between energy consumption and QoS, this paper introduces
a metric energy per QoS (EPQ) in Eq. 12. Lower EPQ means
that the policy balances the trade-off between energy andQoS
more effectively. In the study, performance in Eq. 12 indicates
FPS and the inverse of event latency

EPQ =
energy

performance
(12)

This paragraph describes how we measured CPU clusters’
energy consumption, and performance. We measured CPU
clusters’ energy consumption using energy meter registers
adopted in V2M-Juno development platform. The energy
meter registers in the target platform provide cumulative
energy consumption of each CPU cluster from the booting.
To obtain the energy consumed during scenario’s execution,
we measured the cumulative energy consumption at starting
and ending points of the execution, and then calculated the
difference between the two measured values. We also mea-
sured event latency by recording the visual output of user sce-
narios displayed on the connected monitor, and by analyzing
the recorded videos usingPotPlayer [31], a commercial video
player that provides 1-ms time resolution. We measured FPS
by using dumpsys [32], a tool that runs on Android OS by
default; it provides information about system services.

3) TEST SCENARIOS
To demonstrate the practicality of the proposed policy,
we conducted an experimental study when real-world user
scenarios (Table 3) were executed. Zhu et al. have classified
user scenarios by what metric must be used for QoS evalua-
tion, and have provided the evaluation guideline (PI and PU )
of each scenario category [30].

The first category is composed of ‘‘job delay’’ scenarios,
which require minimal user input to trigger intensive jobs; in
this category,PI is 1 second andPU is 10 seconds. The second
category is composed of ‘‘response latency’’ scenarios, which
consist of relatively a few events and have low event latency;
in the case of web-related scenarios in this category, PI is
1 second and PU is 3 seconds. The last category contains
‘‘FPS’’ scenarios, which consist of many events and have
low event latency, such as gaming and video playing; in this
category, PI is 60 FPS and PU is 30 FPS.

We constructed and executed test scenarios by using
RERAN [33], a macro program that records and replays user

69702 VOLUME 8, 2020



S. Han et al.: Proactive Scenario Characteristic-Aware Online Power Management on Mobile Systems

TABLE 3. Basic test scenarios used for the experimental study.

events (e.g., typing, clicking, and scrolling). We constructed
each basic test scenario to have duration of 15 seconds.

4) BENCHMARK POLICIES
We compared the proposed scenario-aware policy with two
CPUFreq governors that are in the commercial devices [4],
[6], and two existing approaches that have been proposed
in the literature [12], [34]. The interactive governor [4], [6]
(int) is widely used on modern Android devices; it adjusts
CPU frequencies by considering the current CPU utilization.
The powersave governor [4], [6] (pws) is another CPUFreq
governor; it always uses the lowest CPU frequency without
considering other factors such as CPU usage. The approach
in [34] scales CPU frequencies in a way to maximize CPU
utilization.We refer to this approach as the power-minimizing
policy (pwm). The approach in [12] mainly focuses on FPS
scenarios; it requires an offline phase to obtain initial val-
ues of the scenario-specific coefficients. Compared to the
other policies focusing on FPS scenarios in Section II, this
approach has the flexibility to a wider range of FPS sce-
narios and has a relatively simple offline phase. We refer to
this approach as the multimedia-centric policy (mmc). For
CPUFreq governors, we used parameter settings pre-defined
in the kernel. For pwm andmmc policies, we followed param-
eter selections and suggestions described in [34] and [12],
respectively.

B. PARAMETER DETERMINATION
1) UP-SCALING COEFFICIENT
In this paper, we introduce an up-scaling coefficient to avoid
underestimation of ccluster due to possible CPU bottlenecks.
To quantify the influence of the up-scaling coefficient on per-
formance and energy consumption, we define Rperf , Rpower ,
and Reff . Rperf is the possibility of CPU bottleneck relaxation,
Rpower is the ratio of dynamic power increment due to the
coefficient, andReff is the effectiveness of the coefficient con-
sidering both bottleneck relaxation and the minimal increase

FIGURE 8. Reff.avg of big and LITTLE CPU clusters for ten coefficient
candidates.

in energy consumption. Details of the investigation of Rperf ,
Rpower , and Reff are given in Section III-B-2.

This section describes how we determined the up-scaling
coefficients sbig for big CPU cluster and sLITTLE for LIT-
TLE CPU cluster in the target board. To determine sbig and
sLITTLE for the target platform, Reff .avg of the big and LITTLE
CPU clusters were calculated for ten coefficient candidates
(Fig. 8). We investigated Rperf (nfa, fprev), Rpower (nfa, fprev),
and Reff (nfa, fprev) for all available nfa and fprev values, and
calculated the average Reff for all candidates of fprev Reff .avg.
A largeReff .avgmeans that the corresponding up-scaling coef-
ficient effectively relaxes CPU bottlenecks while causing a
small increase in energy consumption. The big CPU cluster of
the target platform contains two cores, so we only considered
when nfa is 1 for the big CPU cluster.

In Fig. 8a, Reff .avg was highest when sbig is 1.30, and
in Fig. 8b, the average Reff .avg was highest when sLITTLE is

VOLUME 8, 2020 69703



S. Han et al.: Proactive Scenario Characteristic-Aware Online Power Management on Mobile Systems

FIGURE 9. Normalized energy consumption, performance, and EPQ for
four combinations of up-scaling coefficients (x-axis; Table 4 ); energy,
performance, and EPQ were normalized to the values with c1.

TABLE 4. Combinations of up-scaling coefficients.

1.25. To validate sbig and sLITTLE which provided the highest
Reff .avg for each CPU cluster, we quantified energy consump-
tion, performance, and EPQ by using PV-pdfld, HV-pgld, and
JJ-gpl, which process the large amount of work compared
to the other scenarios in the same category (Table 3 ). We
validated the coefficients (c3) with the highest Reff .avg values
by comparing with three other combinations (Table 4 ): no-
scaling (c1), small coefficients (c2), and large coefficients
(c4). Consumed energy and performance tended to increase
as the up-scaling coefficients were increased (Fig. 9). Com-
pared to the others, the combination with the highest Reff .avg
provided the lowest EPQ by balancing energy consumption
and performance the most effectively. EPQ was highest when
sbig and sLITTLE were set as the no-scaling combination; the
policy with the no-scaling combination could not relax CPU
bottlenecks effectively. Combinations of small and large coef-
ficients provided similar EPQs; the small coefficients pro-
vided lower performance, and the large coefficients provided
lower energy efficiency. Considering the above observations
(Fig. 8-9), we set sbig and sLITTLE as 1.30 and 1.25.

2) PERIOD OF FREQUENCY ADJUSTMENT
The period of the proposed policy affects energy consumption
and performance. In Linux-based OSes, CPU utilization is
calculated using active and inactive times that are repre-
sented in 10-ms units [22]. If the period is too short, the
resolution of CPU utilization can be too coarse. Scenario
characteristics are obtained from CPU utilization, so the too-
coarse resolution of CPU utilization degrades the accuracy of
scenario characteristic prediction, so that the quality of online
power management can also decrease. Furthermore, the too-
short period increases the additional CPU utilization caused
by the proposed policy (CPU runtime overhead) [35]; the
excessive CPU runtime overhead causes unnecessary energy
consumption by the cores [36]. In contrast, if the period is too

FIGURE 10. Normalized energy, performance, and EPQ for period
candidates; energy, performance, and EPQ were normalized based on the
values when the period is 50 ms.

FIGURE 11. Average CPU runtime overhead depending on the period.

long, the policy can lose responsiveness. The policy with low
responsiveness cannot rapidly adapt to changes in scenario
characteristics; this tendency can degrade QoS provided by
the policy.

To determine the period, we quantified how the period
affects energy consumption, performance, and EPQ, by using
PV-pdfld, HV-pgld, and JJ-gpl. Fig. 10 shows energy, perfor-
mance, and EPQ for various period candidates. Several obser-
vations were obtained. First, as the period decreases, energy
consumption of CPUs tends to increase. Too-frequent execu-
tion of the policy burdened CPUs, so they wasted energy. The
average CPU runtime overhead decreased as period increased
(Fig. 11); the runtime overhead was about 3.4 times higher at
a period of 50 ms than at a period of 100 ms. Because the
proposed policy performs file reading to sample CPU cores’

69704 VOLUME 8, 2020



S. Han et al.: Proactive Scenario Characteristic-Aware Online Power Management on Mobile Systems

FIGURE 12. Normalized EPQ with basic test scenarios; EPQ was
normalized based on the proposed policy. Pro is proposed
scenario-aware policy and others are defined in the text.

utilization, too-frequent execution of the policy burdened
the memory subsystem, and therefore, increased the overall
active time of CPU cores spent for the proposed policy.
Second, if the period increases, the responsiveness decreases,
so performance tends to decrease. However, the performance
when the period was 50 ms was lower than the performance
when the period was 100 ms; this reversal of the trend was
a result of coarser monitoring resolution. Considering all of
these observations, we set the period of the proposed policy
as 100 ms, which minimized the EPQ.

C. EVALUATION
To evaluate the effectiveness of the proposed scenario-aware
policy, we compared energy, performance, and EPQ of the
proposed policy with those of the benchmark methods.
To reduce the measurement noise, we conducted measure-
ments of all cases three times and took the average of the
measured values.

1) BASIC TEST SCENARIOS
First, we conducted the evaluation using basic test scenarios
(Table 3). To demonstrate that the proposed policy works
effectively for mobile systems that use either asymmet-
ric or symmetric multicore CPUs, we turned on and off the
big CPU cluster in the target platform during the evaluation.
In this experimental study, asymmetric CPU means that both
big and LITTLE CPU clusters are turned on, and symmetric
CPU means that only LITTLE CPU cluster is turned on.

First, we investigated EPQ to represent how polices trade-
off energy and QoS numerically. Fig. 12a shows EPQ in each
scenario and average EPQ in the target platform that uses
asymmetric CPU. On average, the proposed policy provided

the lowest EPQ, followed by pwm (5.4 % higher than that
of the proposed policy). These results imply that under the
asymmetric CPU condition, the proposed policy manages the
trade-off between energy consumption and QoS the most
effectively. Except for PV-pdfld, int provided higher EPQ,
which was on average 15.5% higher than that of the proposed
policy.

Fig. 12b shows EPQ of each scenario and average EPQ
in the target platform that uses symmetric CPU. Under the
symmetric CPU condition, EPQ also differed among scenar-
ios, but slightly more compared to the evaluation under the
asymmetric CPU condition. Turning off the big CPU cluster
caused a decrease in CPU capacity. LITTLE CPU cluster
had to process all of the work including the heavy jobs that
were originally processed by big CPU cluster. On average,
the proposed policy showed the lowest EPQ, followed by
pws (5.3 % higher than that of the proposed policy). On the
other hand, to compensate for the decreased CPU capacity,
int consumed too much energy, which is resulted as much
higher EPQ (28.3 % higher than that of the proposed policy).
This additionally implies that the proposed policy provides a
good trade-off between energy and QoS even when the CPU
capacity is relatively low.

Fig. 13 represents the normalized energy and perfor-
mance (inverses of job delay and response latency, and FPS),
under the asymmetric CPU condition. The proposed policy
scaled CPU frequencies effectively to balance the trade-off
between energy and performance regardless of scenario types
(Fig. 13). On average, compared to int, the proposed policy
reduced energy consumption by 25.5 % and decreased the
performance by 15.2 %; the performance difference was
much smaller than the energy-consumption difference. Com-
pared to the other policies than int, the proposed policy
provided higher performance in most scenarios. On average,
compared to the proposed policy, pwm reduced performance
by 8.1 % while consumed 3.5 % less energy. Mmc satis-
fied the required QoS and consumed low energy for FPS
scenarios, but could not provide a good trade-off between
energy and performance for other scenarios. Pws showed the
worst performance because it fixed the operating frequencies
at the lowest levels. When the required performance was
relatively low (Figs. 13f-g; YT-vstr: 31 FPS, GL-vpl: 32 FPS),
the proposed policy consumed a similar amount of energy to
that consumed by pwm and pws, which tend to consume low
energy. On the contrary, int consumed the largest amount of
energy but could not increase the performance.

QoS was not always satisfied (Fig. 14). A red block means
that there was a QoS violation more than once, and a blue
block means that performance exceeded PI more than once.
The proposed policy provided ‘just enough’ performance
without any QoS violation. Int provided the excessive perfor-
mance (> PI ) when LT-pgld and YT-vld were executed; this
means that int tends to provide excessive performance, and
thus to waste the energy.Mmc and pws caused QoS violations
when HV-pgld was running; in this case, these policies failed
to satisfy end users.

VOLUME 8, 2020 69705



S. Han et al.: Proactive Scenario Characteristic-Aware Online Power Management on Mobile Systems

FIGURE 13. Normalized energy and performance with basic test
scenarios under the asymmetric CPU condition; energy and performance
were normalized based on the proposed policy.

FIGURE 14. QoS satisfaction with basic test scenarios under the
asymmetric CPU condition (red: performance < PU , blue: performance >

PI ).

Fig. 15 represents the normalized energy and perfor-
mance under the symmetric CPU condition. The results
in Fig. 15 support that for diverse scenarios, the proposed
policy effectively manages energy efficiency on the mobile
systems using symmetric CPU. Under the symmetric CPU
condition, the proposed policy saved on average 30.7 %
energy compared to int, while showing on average 12.3 %

FIGURE 15. Normalized energy and performance with basic test
scenarios under the symmetric CPU condition; energy and performance
were normalized based on the proposed policy.

lower performance; the performance difference was much
smaller than the energy-consumption difference. Further-
more, compared to pwm, the proposed policy provided 10.6
% higher performance on average while consumed only 4.7
% higher energy on average. Meanwhile, the decrease in
CPU capacity degraded the quality of power management
provided bymmc and pwm. Compared to the evaluation under
the asymmetric CPU condition, mmc consumed much higher
energy for FPS scenarios. Due to the decreased CPU capacity,
the fluctuation degree of LITTLE CPU cluster’s utilization
increased, and mmc failed to optimize its scenario-specific
coefficients. In addition, as the total CPU capacity decreased,
pwm caused more QoS violations (Fig. 16) than did under the
asymmetric CPU condition (Fig. 14).

To support the effectiveness of the proposed policy further,
we investigated time-in-states of available frequency levels
for basic test scenarios under the symmetric CPU condi-

69706 VOLUME 8, 2020



S. Han et al.: Proactive Scenario Characteristic-Aware Online Power Management on Mobile Systems

FIGURE 16. QoS satisfaction with basic test scenarios under the
symmetric CPU condition (red: performance < PU , blue: performance >

PI ).

FIGURE 17. Time-in-state of available frequency levels with basic test
scenarios under the symmetric condition; x-axis describes DVFS policies.

tion (Fig. 17); time-in-states indicate the proportion of time
spent at each frequency level during the execution. Int used
high-level frequencies aggressively. For instance, in Fig. 17a,
int spent only 0.2 seconds at the lowest frequency level
(450 MHz) during the execution. On the other hand, the pro-
posed policy utilized high-level frequencies when they were
necessary to process the requested work. Fig. 18 provides an
example of the normalized CPU utilization and frequency

FIGURE 18. Normalized CPU utilization and frequency for HV-pgld under
the symmetric CPU condition; CPU utilization was normalized based on
the estimated TLP to show the average utilization for active cores.

TABLE 5. Sequential scenarios.

when HV-pgld was executed; yellow region indicates the
interval from page loading completion to the start of scrolling.
No event occurred in this interval, so CPU utilization was
relatively low, and almost zero near 6 seconds. Int did not
scale down the frequency during this interval (Fig. 18a). This
tendency of int degraded the energy efficiency. In contrast,
the proposed method scaled down the frequency during this
interval (Fig. 18b), so energy efficiency was increased signif-
icantly.

2) SEQUENTIAL SCENARIOS
In the real world, end users can switch among various user
scenarios, and therefore scenario characteristics can change
severely. Therefore, we conducted the additional evaluation
using sequentially-combined scenarios (called sequential
scenarios), under the asymmetric CPU condition. Table 5
shows sequential scenarios used for the evaluation. Each
sequential scenario consists of two or three basic test sce-
narios. To minimize transient time from one basic scenario
to another one, we initially activated all applications that
correspond to the basic scenarios in the target sequential
scenario. For all cases, the transient time between two basic
test scenarios was less than 15 seconds. Each policy worked
continuously to the end of the sequential scenario.

VOLUME 8, 2020 69707



S. Han et al.: Proactive Scenario Characteristic-Aware Online Power Management on Mobile Systems

FIGURE 19. Normalized EPQ under the asymmetric architecture using
sequential scenarios; EPQ was normalized based on the proposed policy.

FIGURE 20. Normalized energy and performance with sequential
scenarios; energy and performance were normalized based on the
proposed policy.

The evaluation with sequential scenarios involved two sig-
nificant differences compared to the evaluation with basic
test scenarios. First, the scenario characteristic variation was
larger compared to the evaluation with basic test scenarios
because, generally, the variation of characteristics is larger
among user scenarios than within a user scenario. Second,
CPU loads increased because more than one application was
active, whereas only one application was active during the
execution of each basic test scenario.

The results in Figs. 19-21 imply that the proposed policy
effectively adapts to the large characteristic variation and
heavy CPU loads. Fig. 19 shows the normalized EPQ of each
policy.When sequential scenarios were running, the proposed
policy provided on average the lowest normalized EPQ.
Fig. 20 shows normalized energy and performance of each

FIGURE 21. QoS satisfaction with sequential scenarios (red: performance
< PU , blue: performance > PI ); ‘order’ means the execution order of
basic test scenarios included in the corresponding sequential scenario.

TABLE 6. PCC between measured and estimated active times.

policy. The proposed policy saved on average 29.6 % energy
consumption compared to int. Besides, in most scenarios,
the proposed policy provided higher performance compared
to the other policies except int. For Seq-3, the energy and
EPQ of themmcwere much higher than those of the proposed
policy (Figs. 19 and 20c). When Seq-3 (AB-stld - HV-pgld)
was executed, mmc used the scenario-specific coefficients
for AB-stld even when HV-pgld was executed. Thus, mmc
could not effectively adapt to the scenario changes. In Fig. 21,
the proposed policy never caused any QoS violation and
provided ‘just enough’ performance to optimize the trade-
off between energy and QoS. Int showed excessive perfor-
mance (> PI ) at Seq-4 and Seq-6. Besides, compared to
the evaluation with basic test scenarios under the asymmetric
CPU condition (Fig. 14), existing policies caused additional
QoS violations due to the increase in CPU loads. Pwm caused
QoS violations during the execution of YT-vstr (in Seq-2) and
HV-pgld (in Seq-3), and pws caused another QoS violation
during the execution of YT-vld (in Seq-5).

3) TLP ESTIMATION
As mentioned in Section III-A, the proposed policy estimates
the fraction of active time to estimate TLP of each CPU
cluster. To demonstrate the practicality of the estimation
technique, we compared the measured and estimated active
times of big and LITTLE CPU clusters; for this purpose,
we used ATrace [37], one of the tracing utilities of Android,
to trace and analyze context-switching events occurring on
CPU cores.

To represent the estimation accuracy numerically, we cal-
culated the Pearson correlation coefficient (PCC) between
measured and estimated active times. Table 6 shows that

69708 VOLUME 8, 2020



S. Han et al.: Proactive Scenario Characteristic-Aware Online Power Management on Mobile Systems

FIGURE 22. Part of predicted TLP (0-30 seconds) during the execution of
Seq-2; a dashed line in (c) is the moving average (N = 8) of the measured
TLP.

PCC values were over 0.9 except the case with LITTLE
CPU cluster for AB-stld, where PCC was 0.867; these all
indicate strongly-positive correlations [38]. The average PCC
was 0.991 for big CPU cluster and 0.925 for LITTLE CPU
cluster. Although the level of consistency can differ due to
different parallelism levels among scenarios, the estimated
value tended to be strongly correlated with the measured one;
this means that the proposed policy successfully estimates
TLP during runtime.

4) PREDICTION TECHNIQUE
To prevent energy waste and QoS degradation in advance,
the proposed policy performs proactive power manage-
ment by predicting scenario characteristics. As explained in
Section IV-A, the proposed policy uses the combination of
NLMS linear and EWMA predictors (combined predictor)
to increase the prediction accuracy compared to the existing
proactive approaches that use the EWMA scheme.

To verify the accuracy of the combined predictor, we pre-
dicted the upcoming TLP during the execution of Seq-2 in
Table 5 (Fig. 22a). The NLMS linear predictor provided
unstable prediction, and the EWMA predictor could not
sharply follow peak values. Zoomed-in predicted TLPs
(Fig. 22b-c) illustrate the advantages of the combined pre-
dictor compared to the NLMS linear and EWMA predictors.
The combined predictor consistently gave stable prediction,
whereas the NLMS linear predictor provided unstable predic-

TABLE 7. Prediction error (RMSE).

FIGURE 23. Normalized EPQ with NLMS, EWMA, and NLMS+EWMA
predictors; EPQ was normalized based on the NLMS+EWMA predictor.

tion after few seconds from the start of prediction (Fig. 22b).
The combined predictor could predict the measured peak
values with the high accuracy, whereas the EWMA predictor
could not (Fig. 22c); the predicted TLP from the EWMA
predictor was similar to the moving average of the measured
TLP (dashed line).

We measured root mean square errors (RMSEs) of the
predicted TLPs obtained from the NLMS linear predictor,
the EWMA predictor, and the combined predictor under
the symmetric CPU condition (Table 7 ). The NLMS linear
predictor tends to provide unstable prediction after few sec-
onds from the start of prediction, so we used sequential
scenarios that have longer execution time than the basic test
scenarios. The combined predictor gave the lowest prediction
error in all sequential scenarios. On average, the prediction
error of the combined predictor was 56.6 % lower compared
to the NLMS linear predictor, and 30.6 % lower compared to
the EWMA predictor.

To demonstrate the effectiveness of the combined pre-
dictor, we measured energy consumption, performance, and
EPQ for three prediction techniques. The proposed pol-
icy with the combined predictor provided the lowest EPQ
(Fig. 23); this result means that the policy with the combined
predictor gave the most effective balance of the trade-off
between energy consumption and performance. Compared
to the policy with the combined predictor, the average EPQ
of the policy with the NLMS linear predictor was 17 %
higher, and that of the policy with the EWMA predictor
was 14 % higher. The policy with the combined predictor
provided the best performance while consuming a reasonable
amount of energy (Fig. 24), except for the execution of Seq-
6 (Fig. 24f). On average, compared to the policy with the
combined predictor, the policy with the NLMS linear predic-
tor provided 11.8 % higher energy consumption and 2.1 %
lower performance, and the policy with the EWMA predictor
provided 2.1 % higher energy consumption and 8.7 % lower

VOLUME 8, 2020 69709



S. Han et al.: Proactive Scenario Characteristic-Aware Online Power Management on Mobile Systems

FIGURE 24. Normalized energy and performance with NLMS, EWMA, and
NLMS+EWMA predictors; energy and performance were normalized
based on the NLMS+EWMA predictor.

FIGURE 25. QoS satisfaction with NLMS, EWMA, and NLMS+EWMA
predictors (red: performance < PU, blue: performance > PI ); ‘order’
means the execution order of basic test scenarios included in the
corresponding sequential scenario.

performance. Furthermore, both NLMS linear and EWMA
predictors caused QoS violations, while there was no QoS
violation for the policy with the combined predictor (Fig. 25).
The NLMS linear and EWMA predictors failed to optimize
energy efficiency and performance due to the instability of
prediction and the inability of peak-value prediction.

VI. CONCLUSION
We suggested the appropriate scenario characteristics for
effective power management of modern mobile devices and
proposed a new scenario-aware DVFS policy that adjusts
operating frequencies of CPU clusters. The proposed policy
considers the parallelism level to provide appropriate pro-
cessing speed for optimal energy efficiency. The proposed
policy was intended for online power management of mod-

ern mobile systems. For this purpose, the proposed policy
does not use any preliminary information about the target
scenarios. The proposed policy manages power consump-
tion proactively to avert energy waste, thermal emergencies,
and performance degradation in advance. Using real-world
user scenarios, we validated the proposed policy for mobile
systems that use either asymmetric or symmetric multicore
architecture-based CPUs. Compared to existing DVFS poli-
cies, the proposed policy achieved up to 25.5% energy reduc-
tion on the mobile system that uses asymmetric CPU, and up
to 30.7 % energy reduction on the mobile system that uses
symmetric CPU. For all cases, the proposed policy caused
no QoS violation. The experimental results demonstrated that
the proposed policy successfully trades-off energy consump-
tion and QoS regardless of user scenarios.

REFERENCES
[1] H. Chung, M. Kang, and H. Cho, ‘‘Heterogeneous multi-processing solu-

tion of Exynos 5 octa with ARM big.LITTLE technology,’’ Samsung
Electron., White Paper, 2012.

[2] M. Kim, Y. G. Kim, S. W. Chung, and C. H. Kim, ‘‘Measuring variance
between smartphone energy consumption and battery life,’’ Computer,
vol. 47, no. 7, pp. 59–65, Jul. 2014.

[3] K.-C. Chen, E.-J. Chang, H.-T. Li, and A.-Y. Wu, ‘‘RC-based temperature
prediction scheme for proactive dynamic thermal management in throttle-
based 3D NoCs,’’ IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 1,
pp. 206–218, Jan. 2015.

[4] Y. G. Kim, J. Kong, and S. W. Chung, ‘‘A survey on recent OS-level
energy management techniques for mobile processing units,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 29, no. 10, pp. 2388–2401, Oct. 2018.

[5] M. Keating, Low Power Methodology Manual for System-on-Chip Design.
New York, NY, USA: Springer, 2017, pp. 3–9.

[6] D. Brodowski, N. Golde, R. J. Wysocki, and V. Kumar. (Nov. 8, 2019).
CPUFreq Governors. [Online]. Available: https://www.kernel.org/doc/
Documentation/cpu-freq/governors.txt

[7] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra, ‘‘Integrated CPU-GPU
power management for 3D mobile games,’’ in Proc. DAC, 2014, pp. 1–6.

[8] A. Pathania, ‘‘Power-performance modelling of mobile gaming workloads
on heterogeneous MPSoCs,’’ in Proc. DAC, 2015, pp. 1–6.

[9] A. Pathania, S. Pagani, M. Shafique, and J. Henkel, ‘‘Power management
for mobile games on asymmetric multi-cores,’’ inProc. ISLPED, Jul. 2015,
pp. 243–248.

[10] J.-G. Park, N. Dutt, and S.-S. Lim, ‘‘ML-gov: A machine learning
enhanced integrated CPU-GPU DVFS governor for mobile gaming,’’ in
Proc. ESTIMedia, 2017, pp. 12–21.

[11] N. C. Nachiappan, P. Yedlapalli, N. Soundararajan, A. Sivasubramaniam,
M. T. Kandemir, R. Iyer, and C. R. Das, ‘‘Domain knowledge based energy
management in handhelds,’’ in Proc. HPCA, Feb. 2015, pp. 150–160.

[12] P.-K. Chuang, Y.-S. Chen, and P.-H. Huang, ‘‘An adaptive on-line CPU-
GPU governor for games on mobile devices,’’ in Proc. ASP-DAC,
Jan. 2017, pp. 653–658.

[13] Y. Zhu, A. Srikanth, J. Leng, and V. J. Reddi, ‘‘Exploiting Webpage
characteristics for energy-efficient mobile Web browsing,’’ IEEE Comput.
Archit. Lett., vol. 13, no. 1, pp. 33–36, Jan. 2014.

[14] J. Ren, L. Gao, H. Wang, and Z. Wang, ‘‘Optimise Web browsing on
heterogeneous mobile platforms: A machine learning based approach,’’ in
Proc. INFOCOM, May 2017, pp. 1–9.

[15] J.M.Kim,M.Kim, and S.W. Chung, ‘‘Application-aware scaling governor
for wearable devices,’’ in Proc. PATMOS, Sep. 2014, pp. 1–8.

[16] R. A. Shafik, S. Yang, A. Das, L. A. Maeda-Nunez, G. V. Merrett, and
B. M. Al-Hashimi, ‘‘Learning transfer-based adaptive energy minimiza-
tion in embedded systems,’’ IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 35, no. 6, pp. 877–890, Jun. 2016.

[17] E. Del Sozzo, G. C. Durelli, E. M. G. Trainiti, A. Miele,
M. D. Santambrogio, and C. Bolchini, ‘‘Workload-aware power
optimization strategy for asymmetric multiprocessors,’’ in Proc. DATE,
2016, pp. 531–534.

69710 VOLUME 8, 2020



S. Han et al.: Proactive Scenario Characteristic-Aware Online Power Management on Mobile Systems

[18] K. Rao, J.Wang, S. Yalamanchili, Y.Wardi, andY.Handong, ‘‘Application-
specific performance-aware energy optimization on Android mobile
devices,’’ in Proc. HPCA, Feb. 2017, pp. 169–180.

[19] B. K. Reddy, G. V. Merrett, B. M. Al-Hashimi, and A. K. Singh, ‘‘Online
concurrent workload classification for multi-core energy management,’’ in
Proc. DATE, Mar. 2018, pp. 621–624.

[20] M. J. Walker, ‘‘Run-time power estimation for mobile and embedded
asymmetric multi-core CPUs,’’ in Proc. HiPEAC, 2015.

[21] G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner, ‘‘Evolution of
thread-level parallelism in desktop applications,’’ ACM SIGARCH Com-
put. Archit. News, vol. 38, no. 3, pp. 302–313, Jun. 2010.

[22] (Jan. 15, 2020). Kernel Timer Systems. [Online]. Available:
https://elinux.org/Kernel_Timer_Systems

[23] K. Choi, R. Soma, and M. Pedram, ‘‘Dynamic voltage and frequency
scaling based on workload decomposition,’’ in Proc. ISLPED, 2004,
pp. 174–179.

[24] J. M. Kim, Y. G. Kim, and S. W. Chung, ‘‘Stabilizing CPU frequency
and voltage for temperature-aware DVFS in mobile devices,’’ IEEE Trans.
Comput., vol. 64, no. 1, pp. 286–292, Jan. 2015.

[25] F. Paterna and T. S. Rosing, ‘‘Modeling and mitigation of extra-SoC
thermal coupling effects and heat transfer variations in mobile devices,’’
in Proc. ICCAD, Nov. 2015, pp. 831–838.

[26] P. Eitschberger, S. Holmbacka, and J. Keller, ‘‘Trade-off between per-
formance, fault tolerance and energy consumption in duplication-based
taskgraph scheduling,’’ in Proc. ARCS, 2018, pp. 3–17.

[27] B. Dietrich, D. Goswami, S. Chakraborty, A. Guha, and M. Gries, ‘‘Time
series characterization of gaming workload for runtime power manage-
ment,’’ IEEE Trans. Comput., vol. 64, no. 1, pp. 260–273, Jan. 2015.

[28] B. K. Reddy, A. K. Singh, D. Biswas, G. V.Merrett, and B.M. Al-Hashimi,
‘‘Inter-cluster thread-to-core mapping and DVFS on heterogeneous multi-
cores,’’ IEEE Trans. Multi-Scale Comput. Syst., vol. 4, no. 3, pp. 369–382,
Jul. 2018.

[29] ARM Versatile Express Juno Development Platform, V2M-Juno Technical
Reference Manual, ARM Corp., 2014.

[30] Y. Zhu, M. Halpern, and V. J. Reddi, ‘‘Event-based scheduling for energy-
efficient QoS (eQoS) in mobile Web applications,’’ in Proc. HPCA,
Feb. 2015, pp. 137–149.

[31] PotPlayer. Multifunctional Media Player. Accessed: Nov. 8, 2019.
[Online]. Available: https://daumpotplayer.com

[32] Dumpsys. Accessed: Nov. 8, 2019. [Online]. Available: https://developer.
android.com/studio/command-line/dumpsys

[33] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, ‘‘RERAN: Timing- and
touch-sensitive record and replay for Android,’’ in Proc. ICSE, May 2013,
pp. 72–81.

[34] A. Carroll and G. Heiser, ‘‘Unifying DVFS and offlining in mobile multi-
cores,’’ in Proc. IEEE RTAS, Apr. 2014, pp. 287–296.

[35] (Mar. 5, 2020). Intel VTune Profiler User Guide. Accessed: Feb. 7, 2020.
[Online]. Available: https://software.intel.com/en-us/vtune-help-cpu-
utilization

[36] W. Jung, ‘‘DevScope: A nonintrusive and online power analysis tool
for smartphone hardware components,’’ in Proc. CODES+ISSS, 2012,
pp. 353–362.

[37] K. Yaghmour. (2013). Android Platform Debugging and Development.
Accessed: Nov. 8, 2019. [Online]. Available: https://elinux.org/images/
5/54/Yaghmour-android-platform-debug-dev-clean-131030.pdf

[38] K. Witz, D. E. Hinkle, W. Wiersma, and S. G. Jurs, ‘‘Applied statistics for
the behavioral sciences,’’ J. Educ. Statist., vol. 15, no. 1, p. 84, 1990.

SODAM HAN (Student Member, IEEE) received
the B.S. degree in computer science and electri-
cal engineering from Handong Global University,
Pohang, South Korea, in 2015, and theM.S. degree
in electrical engineering from the Pohang Univer-
sity of Science and Technology, Pohang, in 2017,
where she is currently pursuing the Ph.D. degree
in electrical engineering.

Her current research interests include MPSoC
design methodology, system-level power/thermal

analysis and management, and low power and thermal-aware system design.

YONGHEE YUN received the B.S. degree
in electronics and electrical engineering from
Dankook University, Yongin, South Korea,
in 2014, and the Ph.D. degree in electrical engi-
neering from the Pohang University of Sci-
ence and Technology, Pohang, South Korea,
in 2019.

His current research interests include MPSoC
design methodology, and system-level
power/thermal analysis and management.

YOUNG HWAN KIM (Senior Member, IEEE)
received the B.E. degree in electronics from
Kyungpook National University, South Korea,
in 1977, and the M.S. and Ph.D. degrees in electri-
cal engineering from the University of California
at Berkeley, Berkeley, CA,USA, in 1985 and 1988,
respectively.

From 1977 to 1982, he was with the Agency
for Defense Development, South Korea, where he
was involved in various military research projects,

including the development of autopilot guidance and control systems. From
1983 to 1988, hewas a Postgraduate Researcher with the Electronic Research
Laboratory, University of California at Berkeley, where he was involved
in developing VLSI CAD programs. He is currently a Professor with the
Division of Electronic and Computer Engineering, POSTECH, South Korea.
His research interests include plasma and liquid crystal display systems,
multimedia circuit design, MPSoC and GPGPU system design for display
and computer vision applications, statistical analysis and design technology
for deep-submicron semiconductor devices, and power noise analysis.

Dr. Kim has served as an Editor for the Journal of the Institute of Electron-
ics Engineers of Korea, and as theGeneral Chair and a CommitteeMember of
various Korean domestic and international technical conferences, including
the International SoC Design Conference, the IEEE ISCAS 2012, and the
IEEE APCCAS 2016.

SEOKHYEONG KANG (Member, IEEE) received
the B.S. andM.S. degrees in electrical engineering
from the Pohang University of Science and Tech-
nology, Pohang, South Korea, in 1999 and 2001,
respectively, and the Ph.D. degree in computer
engineering from the University of California at
San Diego (UCSD), La Jolla, CA, USA, in 2013.

He was with the System-on-Chip (SoC) Devel-
opment Team, Samsung Electronics, Suwon,
South Korea, from 2001 to 2008, where he was

involved in development and commercialization of multimedia SoC. He
was with the Department of Electrical Engineering, Ulsan National Insti-
tute of Science and Technology, Ulsan, South Korea, from 2014 to 2018.
Since 2018, he has been with the Department of Electrical Engineering,
Pohang University of Science and Technology. His current research interests
include low power design optimization and cost-drivenmethodology for chip
implementation.

VOLUME 8, 2020 69711


