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ABSTRACT In this paper, a vision-based physiological signal measurement system is proposed to instantly
measure driver fatigue. A remote photoplethysmography (rPPG) signal is a type of physiological signal
measured by a camera without any contact device, and it also retains the characteristics of the PPG,
which is useful to evaluate fatigue. To solve the inconvenience caused by the traditional contact-based
physiological fatigue detection system and to improve the accuracy, the system measures both the motional
and physiological information by using one image sensor. In a practical application, the environmental
noise would affect the measured signal, and therefore, we performed a preprocessing step on the signal
to extract a clear signal. The experiment was designed in collaboration with Taipei Medical University,
and a questionnaire-based method was used to define fatigue. The questionnaire that could directly react to
the feeling of the subject was treated as our ground truth. The evaluated correlation was 0.89 and the root
mean square error was 0.65 for ten-fold cross-validation on the dataset. The trend of driver fatigue could be
evaluated without a contact device by the proposed system. This advantage ensures the safety of the driver
and reliability of the system.

INDEX TERMS Fatigue monitoring, remote photoplethysmography, biomedical monitoring, image
sequence analysis.

I. INTRODUCTION
Road traffic accidents have been predicted to be the third
leading cause of death and disability in 2020 [1]. For most of
the population of the world, the burden of road traffic injury
in terms of societal and economic costs is rising substantially
[2]. Statistics show that driver fatigue is a contributing factor
in numerous accidents and yearly approximately 20% of the
total accidents are related to sleepiness [3]. To reduce these
economic costs, finding a method to detect driver fatigue has
become an important issue.

A few years ago, vision-based methods were proposed to
detect fatigue by capturing specific features with one or more
cameras and image processing. In these methods, a driver
monitor system captures the face of the driver and extracts
features such as blinking, yawning, and the headmovement of
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the driver [4]–[8]. Further, a driver assistance system captures
the road image, labels the lane line to determine the lane
departure, and decides the fatigue state [7], [8]. However,
these methods are sensitive to the shield on the images. In
addition, these methods raise an alarm after the fatigue has
occurred. Physiological-based methods utilizing physiolog-
ical signals for determining the fatigue state have been pro-
posed to solve the above problem. In addition, a physiological
signal directly transmits the information of the subject and
is rarely affected by different scenarios. Electrocardiograms
(ECGs), electroencephalograms (EEGs), electromyograms
(EMGs), respiration, galvanic skin response (GSR), heart rate
(HR), heart rate variability (HRV), and pulse rate variability
(PRV) are common indicators for determining the fatigue
state [9]–[12]. However, the above signals require a subject
to be equipped with complex devices while driving, which
might make the subject feel inconvenient.More seriously, this
requirement might affect the driving and lead to accidents.
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Photoplethysmography (PPG) is also one of the widely used
physiological signals that can convert the data to HR and PRV.
PPG can be sensed by wearable devices and improves the
convenience. Al-Libawy et al. used PPG signals to calculate
PRV and classified the fatigue state by a support vector
machine (SVM) or an artificial neural network (ANN); the
total accuracy reached 88.3% and 91.3% for six subjects [13].
Huang also used PPG and PRV to measure the fatigue state
and set a threshold for its determination by a functional link-
based fuzzy neural network (FLFNN) [14]. Choi combined
various information such as HR, HRV, GSR, temperature,
acceleration, and rate of rotation to determine the status
of subjects [9]. Despite the extreme convenience of a PPG
sensor, it still requires the subjects to wear extra devices.
In addition, it has some limitations such as forbidding the
subject to press or shake, which might influence the driver.

As mentioned above, conventional vision-based methods
have the weakness that they cannot measure fatigue imme-
diately, and physiological-based methods use inconvenient
sensors. Consequently, measuring a physiological signal by
vision-based methods is an effective solution for the above
problems. A remote photoplethysmography (rPPG) signal is
a type of physiological signal measured by a camera without
any contact device while retaining the characteristics of PPG.
Qi and Wang applied rPPG to calculate PRV and analyzed
the relationship between fatigue and PRV [15]. Tayibnapis
combined facial features, rPPG signals, and the SVMmethod
to classify the fatigue state [16].

The above methods did not provide a unified and precise
definition of fatigue estimation. To define an explicit criterion
for fatigue estimation, we collaborated with Taipei Medi-
cal University and designed a questionnaire-based experi-
ment to measure the fatigue state of a subject. In our study,
Swedish Occupational Fatigue Inventory (SOFI) [17] and
fatigue assessment scale (FAS) [18] which can reflect dif-
ferent aspects of fatigue were treated as baselines to eval-
uate the fatigue state. Moreover, in medical research, a the
visual analogue scale (VAS) [19] is a type of commonly
used questionnaire, and therefore, VAS was also employed
to observe various fatigue states during the experiment. To
measure fatigue, we requested the subjects to fill out ques-
tionnaires such as SOFI, FAS, and VAS. After recording the
questionnaires, we converted the questionnaire scores into
indicators for assessing fatigue.

Considering all the complexities, we proposed a system
to obtain the trend of the subject fatigue state with only
one camera as the sensor. In the practical application, the
proposed system captured the face of the subject to measure
the physiological information and facial features. To acquire
a better signal for precisely estimating the fatigue trend,
the system consisted of a preprocessing stage to detect the
presence of the face and obtain the image with the frontal
face of the subject. Further, then the system converted col-
lected information such as rPPG and facial expression into
the HR, PRV, percentage of eyelid closure (PERCLOS) and
yawning state. Finally, it calculated the fatigue score for

TABLE 1. Experiment devices.

evaluating the trend of the fatigue state by an artificial neural
network (ANN).

II. EXPERIMENTS AND DATA
A. EXPERIMENT DEVICES AND QUESTIONNAIRE
As summarized in Table 1, a Logitech C920 camera was cho-
sen as the image sensor of the system. The camera resolution
and frame rate were set as VGA and 30 fps, respectively. Con-
tact measurement signals, such as ECG and PPG, could be
the criteria of the contactless measurement signal. However,
ECG devices often complicate the equipment and measure-
ment, which can easily affect the subjects in executing the
experiment. Thus, in the experiment, CMS50EW, which is a
Food and Drug Administration (FDA) certified device, was
used to obtain the PPG signal as the ground truth.

Fatigue is a type of physiological phenomenon, and the
exact standards for fatigue have not been established yet.
Because we aimed to establish a clear rule to quantify fatigue,
the questionnaire method [20] was used to estimate the
fatigue state. Here, SOFI, FAS, and VAS were chosen as our
questionnaires. SOFI categorizes fatigue into five classifica-
tions: lack of energy, physical exertion, physical discomfort,
lack of motivation and sleepiness. Following this, it designs
25 cross-reference questions related to at least one classifica-
tion to investigate the degree of performance of the subject
in various fatigues. According to Leung et al. translation of
SOFI into Chinese did not have a strong cultural effect, and
so we used the Chinese version of SOFI [21]. FAS easily
classifies fatigue into physical and psychological categories,
and then designs five questions to survey. VAS is a simple
and quick survey for grading sleepiness levels from 1 to
10, and it is widely used in medical research owing to its
convenience and effectiveness. Sleepiness fatigue is a mixed
result of numerous factors, and although some classifications
of SOFI and FAS do not directly focus on it, the impact of
these classifications on the subjects still cannot be ignored.
Therefore, SOFI, FAS, and VAS were mixed to evaluate the
fatigue state.

B. PARTICIPANTS
The subjects included 20–50 years old healthy people who
were required to have a driver’s license and cooperate with
the limitations of the clinical trials. All of the subjects had
given their informed consents before participating in the
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FIGURE 1. Driving simulation experiment scenario. (a) Experimental site.
(b) Schematic of the experiment facility. (c) Actual shot. (d) Experiment
scenario.

experiment. The subjects did not suffer from major diseases
such as sleep apnea or medical history, use of psychotropic
medications, tobacco, and alcohol, or drug addiction. In this
experiment, there were 32 subjects, including 12 males and
20 females, and their age ranged from 22 to 46 years. The
average age was 30.9±8.4 years. To prevent the data from
interference by external factors, the subjects were demanded
to follow the below three rules:

1. Consumption of drinks and alcoholic food was prohib-
ited 24 h before the experiment.

2. Caffeinated beverages such as tea or coffee were for-
bidden for 4 h before the experiment.

3. They were required to complete their meal 1 h before
the experiment.

C. EXPERIMENT PROCESS
Considering the risk of the driver fatigue, a driving simulation
experiment is the appropriate method to simulate a real case
and record the experiment data. In this study, the experi-
mental site was set indoors with sufficient light to avoid the
interference from the external environment and ambient light,
as shown in Fig. 1 (a). During the experiment, the subjects
were required to wear CMS50E to record the current HR and
PPG signals. To capture the image for the rPPG calculation,
webcam C920 was set in front of the subject, as shown in
Fig. 1 (b) and (c). The used experiment software was Euro
Truck Simulator 2, and the experiment scenario was set in
a monotonous highway to reduce scenarios that may irritate

FIGURE 2. Driving simulation experiment process.

TABLE 2. Experiment and questionnaire for obtaining the data.

a driver like a traffic light or pedestrians, as displayed in
Fig. 1 (d).

The driving simulation experiment process is shown in
Fig. 2. We followed the standard procedures approved by
Taipei Medical University to design the experiment treat-
ments, and the experiment had received the Institutional
Review Board (IRB) certification. The total experiment dura-
tion for each subject was two weeks. The subjects were
demanded to sleep for more than eight hours before the
experimentation to ensure adequate sleep in the first week
of the normal state experimentation. In the second week
of the sleep deprivation experimentation, the subjects were
demanded to reduce their sleep time by four hours compared
to the previous week so that the subjects remained tired
during the experiment. The experiment details are listed in
Table 2. On the day of the experimentation, each subject
would fill out the SOFI and FAS questionnaires in 5 min
before the driving experiment started and participate in the
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FIGURE 3. Waveform of CMS50E. (a) In the normal case. (b) In the
abnormal case, the sensor was pressed by the user, and the waveform
was destroyed.

driving experimentation for 60 min in the morning and after-
noon. During the driving experiment execution, the subjects
were requested to execute theVAS questionnaire survey every
10 min to confirm their fatigue state. After performing the
experimentation in the morning, each subject would take a
60-minute break. To prevent the fatigue state from being
affected by other factors, the subjects were reminded not to
doze off during the break time.

D. DATASET DESCRIPTION
The purpose of the dataset was to record the images of
the subjects for calculating the rPPG signal. The fatigue
questionnaires were used for recording the fatigue state, and
information such as the HR and PPG from the PPG sensor
were employed for comparing the accuracy of the rPPG
signal.

To simulate the actual driving scenario, we did not delib-
erately restrict the subject in this dataset. Because the subject
needed to manipulate the steering wheel in the experimenta-
tion, finger shaking was inevitable, which might affect the
accurate measurement of the PPG by the sensor. A wrong
value of the PPG sensor would impede the accurate evaluation
of the rPPG. Accordingly, the bad PPG signal should be
filtered out before detecting fatigue. In addition, the necessary
element of rPPG was the image with a face looking forward,
and so the images with the face looking at the side mirror
were also filtered out.

The pattern in Fig. 3 (a) displays remarkable peaks origi-
nating from heartbeats, and in Fig. 3 (b), the signal loses the
feature of heartbeat and is deliberately polluted by noise. The
energy of the maximum peak and noise ratio (PNR) in 512
frames at 30 fps is the PPG filter indicator. The threshold is

chosen as zero which represents the energy of PPG signal is
larger than the noise and PNR was selected as the property to
monitor the PPG signal quality.

III. METHOD
The contactless fatigue detection system architecture is pre-
sented in Fig. 4. First, the system captures the image of
the face of the driver by a camera or webcam, and then
using the face detection algorithm and landmarks to mark
the face position with the relevant features on the image.
These coordinates decide the region of interest (ROI) to cal-
culate the physiological signal. Second, the system converts
the image data in the ROI into rPPG signals. Third, after
the system collects more than 5 min of data, it captures the
time and frequency domain characteristics of the rPPG signal
and converts them into HR and PRV, serving as indicators
of fatigue. In addition, facial expressions are also important
indicators for determining fatigue, and so, behaviors such as
blinking and yawning are also detected and used for fatigue
decision after labeling the landmarks. Finally, the system uses
the features, including HR, HRV, and behavior, as the input
parameters to train the ANN model by a python code, and
then the ANN model is applied and used for predicting the
fatigue state.

A. ROI EXTRACTION
A human face contains significant information, which can be
used for fatigue detection. For example, eyes and mouth can
reflect behavior, and physiological information is also hidden
in the skin. Hence, the system selected specific regions to
measure, in the first step.

Multi-task Cascaded Convolutional Networks (MTCNN)
[22] was chosen for finding the face position, and then Dlib
[23] provided the facial landmarks. Facial landmarks can
indicate the eyes and mouth position on the image directly.
However, to obtain a clear physiological signal, it is necessary
to select a small area with a strong signal to reduce the
efficiency of the operation and avoid the influence of the
noise. According to Kwon et al., the signal quality from the
cheeks and philtrum is extremely good, and so, these areas
were selected as ROI [24]. The ROI extraction was performed
using the result of the MTCNN and Dlib landmarks, as Fig. 5
(a) shows. The calculation process is expressed in (1) where
D(x,y) is the Euclidean distance of x and y. The definitions of
the notations are listed in Table 3, and the result is displayed
in Fig. 5 (b).

L = D(
1
2
EL +

1
2
ER,

1
2
ML +

1
2
MR)

ROIx = Cx − 0.65Facewidth ∗ L
ROIy = Cy + 0.2Faceheight ∗ L
ROIwidth = 1.3L
ROIheight = 0.6L

(1)

B. rPPG EXTRACTION
rPPG is a signal arising from the changes in the blood vol-
ume, and it reveals physiological information such as the HR
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FIGURE 4. Overview of the proposed fatigue detection framework.

FIGURE 5. Result of the ROI extraction. (a) The yellow rectangle and cyan
points are the MTCNN output, and blue points are the Dlib landmarks. (b)
The blue rectangle is ROI for calculating the signal.

and PRV. The system executed an optical flow and took the
average for each pixel in ROI to obtain three-channel average
value R, G, and B after extracting ROI [25]. Then, according
to the method of chrominance-based rPPG proposed by De
Haan et al. in 2013, the R, G, and B signals were converted
to acquire the rPPG signal [26].

C. SIGNAL PROCESSING
Fatigue is a unique physiological state, which is different
from the waking state. When people feel tired, there are

TABLE 3. Notation of ROI extraction.

numerous distinct reactions such as blinking and yawning.
In addition to the visual behavior, physiological signals also
contain some information related to fatigue. Liang et al.
pointed out that HR and HRV were strong indicators for
fatigue estimation [27]. Hence, the following content explains
how to obtain these features.

According to the research of Moco, rPPG signals arise
from the blood volume change in the blood vessels, and this
change is produced by heartbeats [28]. Therefore, after a
system performs a fast Fourier transform (FFT) on the rPPG
signal, there will exist a strong component on the spectrum
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FIGURE 6. Systolic peak selection of the JMIPS. The red circles denote the
systolic peaks of the rPPG signal, and the blue triangles denote the
dicrotic notches of the rPPG signal.

representing the HR. However, an rPPG signal is highly
susceptible to the environmental noise and motion signal.
Our previous work proposed an algorithm, Motion Resistant
Spectral Peak Tracking (MRSPT), to resist the motion signal
and reduce the influence of environmental noise, which was
helpful to predict the correct HR value [29].

1) PRV CALCULATION
The HRV is an indicator calculated by the interbeat interval
(IBI) of the R peak in an ECG signal. The characteristic of the
HRV can represent the relationship between the heartbeats
and the fatigue state [27]. An ECG is necessary to calculate
the HRV; however, in the existing methods, the ECG must be
measured by contact devices. PRV is an indicator that uses
the systolic peak of a pulse wave to replace the R peak in
an ECG signal to obtain the IBI. It is calculated similarly as
the HRV. N. Pinheiro et al. pointed out that for people who
did not suffer from cardiovascular diseases, the result of the
PRV was similar to that of the HRV [30]. Therefore, here,
the PRV originating from the rPPG was selected to replace
the HRV. Because the rPPG waveform can more easily be
affected by the environment than the PPG, a robust peak
selector was required. Here, the method called joint magni-
tude and interval features peak selection (JMIPS) was used
to detect the systolic peaks of the rPPG and prevent it from
being influenced by the dicrotic notches of the rPPG [31]. As
shown in Fig. 6, JMIPS can detect the systolic peaks of the
rPPG signal and avoid selecting the position of the dicrotic
notches. This algorithm considers both the influence of the
magnitude and time interval, and so regardless of the presence
of a dicrotic notch, it can still decide if a reasonable systolic
peak exists or not. After the system obtained the systolic peak
positions, the HRV toolkit was used to calculate the PRV
[32], and the standard deviations of all the normal to normal
intervals (SDNN), power in low frequency (0.04–0.15 Hz) of
the PRV (LF), power in high frequency (0.15–0.4 Hz) of the

FIGURE 7. Landmarks detected by Dlib. (a) Six landmarks around the eye.
(b) Four landmarks around the mouth.

PRV (HF), total power in range 0–0.4Hz (TPW), and ratio of
LF and HF were obtained.

2) BEHAVIOR DETECTION
Behavior can be observed mainly from the positions of the
eyelids and the lips.With the eye aspect ratio (EAR) proposed
by Soukupov’a, the closure degree of an eyelid can be decided
[33]. The definition of EAR is

δ =
||E2 − E6|| + ||E3 − E5||

2||E1 − E4||
, (2)

where δ is EAR and E1 to E6 are the landmarks around the
eyelid, as shown in Fig. 7 (a). After the system detects the
landmarks from Dlib, blink detection can be performed by
checking if EAR exceeds the threshold.

In addition to blink detection, Luo et al. proposed
PERCLOS as an indicator of fatigue [4]. The definition of
PERCLOS is

ε =

∑
Cn∑
Fm
, (3)

where ε is the notation of PERCLOS, Cn is the closed-eye
picture in 1 min and Fm is the total number of the frames in
1 min. Then EAR can help to determine if the eyelids in the
frame are close to the calculated PERCLOS.

Yawning is also a common reaction of fatigue, and it can
be detected by the open degree of the mouth. The mouth
aspect ratio (MAR) can be defined as the analogous method
to EAR as

ζ =
||M2 −M4||

||M1 −M3||
, (4)

where ζ is MAR and M1 to M4 are the landmarks around the
mouth, as presented in Fig. 7 (b). MAR can demonstrate the
open degree of the mouth, and yawning can be detected by
deciding the threshold of MAR.

D. FATIGUE ESTIMATION
Fatigue is a mixed physiological state. Prior detection is much
more difficult than posterior detection. Posterior detection
can be done after a specific phenomenon occurs. Prior detec-
tion should consider a large amount of information; however,
which type of information correlates with fatigue has not been
asserted. Besides, the relationship between the information
and fatigue is also uncertain. Thus, the following content
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FIGURE 8. Mixture of the fatigue scores. (a) Morning fatigue score in the
normal experiment. (b) Afternoon fatigue score in the normal experiment.
(c) Morning fatigue score in the sleep deprivation experiment. (d)
Afternoon fatigue score in the sleep deprivation experiment.

explains how to choose a reliable determination indicator and
design a model that can learn the necessary information.

1) DEFINITION OF FATIGUE
The filled questionnaires provided by the subjects, such as
SOFI, FAS, and VAS, were selected to define fatigue. As
opposed to the methods that define the fatigue degree based
on the experiment time slot or observe specific actions of
the subjects, a questionnaire survey can better reflect the
feelings of the subjects and reduce the influence of a wrong
detection. Each type of questionnaire has its focus field of
fatigue, and we mixed them into one score to evaluate the
fatigue state. To avoid different questionnaires affecting the
accuracy of the fatigue score, each score of the questionnaire
was preprocessed by the min–max normalization defined as

y =
10(x − xmin)
xmax − xmin

, (5)

where x is the survey score of each questionnaire, xmin and
xmax are the minimum and maximum of the questionnaire,
respectively, and y is the normalized score. Then we summed
the normalized scores of all the questionnaires for each sub-
ject and interpolated the fatigue score every second. The
result is displayed in Fig. 8, and it is treated as an indicator to
evaluate fatigue.

2) FEATURE SELECTION
A good feature could help model learning and reduce the
calculation resource for processing the noise in the data.
Eleven features were extracted from the signal to estimate the
fatigue score.

The physiological signals contained a large amount of
information that the conventional visualize method could not
observe. However, such a method can detect the behavior
and has been widely used to determine fatigue in the past.
Therefore, the features detected by the conventional visualize
method were also added in our feature sets. In addition, the
fatigue state or physiological information varied from person

TABLE 4. Features notation and definitions.

TABLE 5. Parameters of SVR and ANN model.

to person, which highlights the importance of the individual
parameters. The system combined the features from the phys-
iological signal, conventional visualize method, and personal
parameters, as listed in Table 4.

3) MODEL DESIGN AND TRAINING
Because the relationship between the used features and
fatigue state was not extremely obscure, the complex learning
methods may suffer the risk of overfitting. The supervised
learningmethods, support vector regression (SVR) andANN,
were used for training the regression models here. Both can
determine the hidden relationship between input features and
the target by either the optimized support vectors or the best
weights between each node in the neural network. The setting
of the methods is summarized in Table 5. The SVR selected
the radial basis function as the kernel function, and set C to
1, gamma to 1 and epsilon to 0.1 by a grid search. The ANN
used five hidden layers and each layer set thrice the number of
nodes, and the activation function was Relu. The loss function
chose the mean square error to minimize the variance and
bias of the estimated result. During the training process, we
separated 10% of the data as the validation data to determine
when to terminate the training to avoid overfitting. Ten-fold
cross-validation was used for verification. This validation
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FIGURE 9. Estimated result of the rPPG HR.

could prevent training only specific data and avoided an
inaccurate estimated result.

IV. RESULT AND DISCUSSION
A. HR ESTIMATION
1) EVALUATION METRICS
In several types of research, the physiological parameters
originated from the PPG signal, and here, we used the rPPG
signal to replace the PPG signal. Hence, comparison of the
accuracies of the PPG and rPPG signals was first required.
Here, we compared the accuracy of HR. The PPG signal and
HR were measured using CMS50EW and then compared to
the HR calculated by the rPPG signal. The percentage of
the HR estimation difference within 5 or 10 bpm (Suc5 or
10), mean absolute error (MAE), and root mean square error
(RMSE) were treated as the evaluation indices [34].

2) ESTIMATION RESULT
The result is shown in Fig. 9. Suc5 is 91% and Suc10 is
97%. The MAE and RMSE are also low in our dataset, which
exhibits that using the rPPG signal and frequency domain
peak selection can predict the HR appropriately.

B. PEAK SELECTION ESTIMATION
1) EVALUATION METRICS
The PRV is an interesting feature in the system, and it
was also calculated by the PPG signal in previous research;
therefore, we needed to compare the accuracy of the PRV.
However, the PRV summarized numerous indicators with
different calculation methods and each error peak position
would result in different extent of effects in each indicator.
Thus, the system chose the peak positions that were the origin
of the PRV as the comparison object, instead of the PRV.

Considering the time difference in the blood flowing from
heart to the face, the alignment between the rPPG and PPG
peaks should be handled before evaluating the peak selec-
tor. Hence, first, the alignment between the rPPG and PPG
peaks was calculated by cross-correlation using MATLAB.
The performance of the peak selector was evaluated by the
evaluation metrics quoted from JMIPS [31]. True positive

TABLE 6. Performance of the peak selector.

FIGURE 10. Pie chart of the peak selection accuracy.

(TP) implied the peaks of the rPPG aligned to the peaks of
the PPG. False positive (FP) implied the peak selector chose
the error position where the PPG peak did not exist. False
negative (FN) implied the peak selector missed the peak of
the PPG. Sensitivity (Se) is the hit rate of the PPG peaks; the
positive predictive value (PPV) is the accuracy of the rPPG
peaks, and the detection rate is the total error rate of the peak
selector. The definitions of Se, PPV, andDER are respectively
defined as

Sensitivity (Se) =
TP

TP+ FN
, (6)

Positive Predictive value (PPV ) =
TP

TP+ FP
, (7)

Detection Error Rate (Se) =
FP+ FN

TP+ FN + FP
. (8)

2) ESTIMATION RESULT
Owing to the elasticity and the resistance of the blood vessels,
here, two indices of the peak alignment were accepted. The
results are listed in Table 6 and presented in Fig. 10, where
most of the peak positions of the rPPG are aligned with the
peak positions of the PPG. However, some peaks mismatch
the peaks of the PPG, owing to the FN increase and some
peaks being situated at the dicrotic notch and response on
FP. In Fig. 11, the blue lines represent the rPPG signal, the
red circles are the peaks of the rPPG selected by JMIPS,
and the blue triangles are the peaks of the PPG selected by
JMIPS. Note that the positions of the peaks were adjusted
by calculating the cross-correlation between the rPPG and
PPG signal. In this experiment, the posture of the subjects
remained intact, and in most of the cases corresponded to a
stable case. The subjects kept looking straight ahead, and the
faces remained stable; therefore, the rPPG signal is clean as
shown in Fig. 11 (a).
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FIGURE 11. The selected peaks by JMIPS in the rPPG and PPG signals. (a)
The case where rPPG and PPG peaks are matching. (b) The case where
JMIPS detects a redundant dicrotic notch. (c) The case where rPPG and
PPG peaks are mismatching or missing.

However, the time domain analysis can be easily affected.
The subjects might have some subtle movement in their face
that can cause an unstable signal like in Fig. 11 (b) and (c).
This movement will enhance the noise, which either rein-
forces the dicrotic notch or conceals the specific waveform of
the rPPG. The above conditions will cause JMIPS choose the
error peak position, and so, need to be avoid. Hence, in the
experiment, the subjects remained stable and tried to avoid
violent motion. The TP of JMIPS reached 80%, which was
sufficient to calculate the exact PRV in most cases.

C. FATIGUE PREDICTION
1) EVALUATION METRICS
To analyze the accuracy of the fatigue regression, correlation
and RMSE were used for the prediction indices. Correlation
is defined as

ρ (X ,Y ) =

N∑
m=1

(Xm − µX ) (Ym − µY )

(N − 1) σXσY
, (9)

whereXm is the result of the regression, Ym is the ground truth,
N is the length of X and Y , µX and µY are the mean of X and

FIGURE 12. The histogram of correlation and RMSE for different fatigue
estimation method.

Y , respectively, and σX and σY are the standard deviations
of X and Y, respectively. The correlation value can illustrate
the relevance between the regression result and ground truth.
The value of correlation represents the existence of a close
relationship between the result and ground truth when the
absolute value of correlation is close to 1. Contrarily, the
relationship becomes far as the absolute value of correlation
approaches zero.

The definition of RMSE is

φ (X,Y) =

√√√√√ N∑
m=1

(Xm − Ym)
2

N
, (10)

where Xm is the result of the regression, Ym is the ground
truth, and N is the length of X and Y . Although correlation
can reflect the relevance between the regression result and
the ground truth, it cannot point out the prediction bias. The
RMSE can resolve this issue, and as φ lowers, both the bias
and variance of the result become lower, and the precision of
regression is higher.

2) ESTIMATION RESULT
Fatigue is a cumulative phenomenon. A fatigue state grad-
ually accumulates, and when the threshold is reached, it
will cause yawning, blinking, and other behavior. Conven-
tional visualization methods measure the behavior caused
by fatigue. Physiological-based methods can find the change
of state by observing physiological signals. However, the
general rule to measure the fatigue state is difficult to find.
Hence, personalization parameters can be expected to help in
the estimation. To verify the above argument and find useful
indicators for estimation, the following context presents the
analysis of the performance of each method and the influence
of each indicator.

Fig. 12 shows the performance of each method in fatigue
estimation. The conventional visualization method was the
one used in [7]. Only visualization-related features were
selected to estimate the fatigue state. In [9], the PPG,
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TABLE 7. Result of fatigue regression.

temperature, acceleration, and galvanic skin response were
measured during the experiment, and the best combination
was attempted to be chosen for fatigue estimation. How-
ever, the experiment in this study did not have the sensor
to measure the temperature, acceleration, and galvanic skin
response. Therefore, we selected the features that could be
measured by the PPG sensor as the feature set. Conventional
visualization and physiological features were mixed in [16].

Referring to Fig. 12, the conventional visualizationmethod
is not good at fatigue estimation. The visualization method
can detect the phenomena caused by fatigue that might not
suit for estimation. Although physiological information can
be effectively used for fatigue estimation, the performance
is still not very good. The key point is that fatigue is a
personalized phenomenon. Personalization parameters can
help to find the personal rule for fatigue estimation. Hence,
in this study, we applied the personalization parameters,
and the result is highly significant. The correlation coeffi-
cient of the method with the personalization parameters and
physiological information is 0.89, which is the best result.
The correlation coefficient of the physiological-basedmethod
reached 0.43, which has a slightly large difference from the
best result. Lastly, the conventional visualization method has
a correlation coefficient of only 0.2.

Table 7 lists the performance and used features for each
method. In this study, we were interested in checking which
parameters were related to fatigue estimation. Hence, ANN1
to ANN5 chose different combinations of the parameters to
train the model. The result of ANN1 shows that the physio-
logical parameters are difficult to utilize without the personal-
ization parameters. In comparison to ANN5, ANN2 yields the
worse result because the PRV-related parameters are removed
from the feature list. It also verifies that the PRV is a strong
index to predict fatigue in previous research [27]. The result
of ANN4 is not much different from that of ANN5, which
exhibits that the conventional visualization parameters play
an unimportant role in fatigue estimation. Based on the above
discussion, we can draw the following conclusions:

1. Personalization parameters play an important role
when using physiological parameter in fatigue
estimation.

2. PRV can effectively reflect the changes in the state of
the human by observing the change of IBI.

3. Conventional visualization parameters are not suitable
for fatigue estimation.

V. CONCLUSION
The paper proposed a system that could measure physi-
ological information and specific behavior, and then used
these features to estimate the fatigue state. Because fatigue
is a personalized phenomenon, physiological parameters also
needed the assistance of personalization parameters, and then
the physiological parameters could exhibit their value. The
system combined behavior, physiological information, and
personalization parameters to estimate the fatigue state and
achieved 0.89 correlation coefficient, which was the best
result. Besides the personalization parameters, we also found
that the PRVwas an effective indicator for fatigue estimation,
during the experiment. Contrastingly, the conventional visu-
alization parameters could only detect the behavior after the
fatigue occurred, which was not suitable for fatigue estima-
tion, and it only achieved a 0.2 correlation coefficient in our
experiment.

The proposed system was convenient and useful to the
driver. All of the information could be obtained by one camera
and did not affect the driver. Most of all, the system could
inform the driver of his/her fatigue status in advance to avoid
accident occurrence. These results contributed greatly to traf-
fic safety.

ACKNOWLEDGMENT
The authors would like to express sincere appreciation to
Taipei Medical University Joint Institutional Review Board
(TMU-JIRB) and Ministry of Science and Technology,
Taiwan (MOST). The TMU-JIRB approved the above exper-
iment. Certificate of TMU-JIRB No is N201805008.

REFERENCES
[1] C. J. Murray and A. D. Lopez, ‘‘Alternative projections of mortality and

disability by cause 1990–2020: Global burden of disease study,’’ Lancet,
vol. 349, no. 9064, pp. 1498–1504, May 1997.

[2] S. Ameratunga, M. Hijar, and R. Norton, ‘‘Road-traffic injuries: Con-
fronting disparities to address a global-health problem,’’ Lancet, vol. 367,
no. 9521, pp. 1533–1540, May 2006.

VOLUME 8, 2020 67351



Y.-C. Tsai et al.: Vision-Based Instant Measurement System for Driver Fatigue Monitoring

[3] A. W. MacLean, D. R. T. Davies, and K. Thiele, ‘‘The hazards and preven-
tion of driving while sleepy,’’ Sleep Med. Rev., vol. 7, no. 6, pp. 507–521,
Jan. 2003.

[4] X.-Q. Luo, R. Hu, and T.-E. Fan, ‘‘The driver fatigue monitoring system
based on face recognition technology,’’ in Proc. 4th Int. Conf. Intell.
Control Inf. Process. (ICICIP), Jun. 2013, pp. 384–388.

[5] A. Punitha, M. K. Geetha, and A. Sivaprakash, ‘‘Driver fatigue monitoring
system based on eye state analysis,’’ in Proc. Int. Conf. Circuits, Power
Comput. Technol. [ICCPCT], Mar. 2014, pp. 1405–1408.

[6] K. J. Raman, A. Azman, V. Arumugam, S. Z. Ibrahim, S. Yogarayan,
M. F. Azli Abdullah, S. F. Abdul Razak, A. H. Muhamad Amin, and
K. Sonaimuthu, ‘‘Fatigue monitoring based on yawning and head move-
ment,’’ in Proc. 6th Int. Conf. Inf. Commun. Technol. (ICoICT), May 2018,
pp. 343–347.

[7] M. Li and H.-L. Meng, ‘‘A method of driver fatigue detection based on
multi-features,’’ Int. J. Signal Process., Image Process. Pattern Recognit.,
vol. 8, no. 10, pp. 107–114, Oct. 2015.

[8] R. Ahmed, K. Emrul Kayes Emon, and M. F. Hossain, ‘‘Robust driver
fatigue recognition using image processing,’’ in Proc. Int. Conf. Informat.,
Electron. Vis. (ICIEV), May 2014, pp. 1–6.

[9] M. Choi, G. Koo, M. Seo, and S. W. Kim, ‘‘Wearable device-based system
tomonitor a Driver’s stress, fatigue, and drowsiness,’’ IEEE Trans. Instrum.
Meas., vol. 67, no. 3, pp. 634–645, Mar. 2018.

[10] K. T. Chui, K. F. Tsang, H. R. Chi, B. W. K. Ling, and C. K.Wu, ‘‘An accu-
rate ECG-based transportation safety drowsiness detection scheme,’’ IEEE
Trans. Ind. Informat., vol. 12, no. 4, pp. 1438–1452, Aug. 2016.

[11] S. Kar, M. Bhagat, and A. Routray, ‘‘EEG signal analysis for the assess-
ment and quantification of driver’s fatigue,’’ Transp. Res. F, Traffic Psy-
chol. Behaviour, vol. 13, no. 5, pp. 297–306, Sep. 2010.

[12] A. Sahayadhas, K. Sundaraj, and M. Murugappan, ‘‘Detecting driver
drowsiness based on sensors: A review,’’ Sensors, vol. 12, no. 12,
pp. 16937–16953, 2012.

[13] H. Al-Libawy, A. Al-Ataby, W. Al-Nuaimy, and M. A. Al-Taee, ‘‘HRV-
based operator fatigue analysis and classification using wearable sensors,’’
in Proc. 13th Int. Multi-Conf. Syst., Signals Devices (SSD), Mar. 2016,
pp. 268–273.

[14] Y.-P. Huang, N. N. Sari, and T.-T. Lee, ‘‘Early detection of driver drowsi-
ness by WPT and FLFNN models,’’ in Proc. IEEE Int. Conf. Syst., Man,
Cybern. (SMC), Oct. 2016, pp. 000463–000468.

[15] H. Qi, Z. J. Wang, and C. Miao, ‘‘Non-contact driver cardiac physiological
monitoring using video data,’’ in Proc. IEEE China Summit Int. Conf.
Signal Inf. Process. (ChinaSIP), Jul. 2015, pp. 418–422.

[16] I. R. Tayibnapis, D.-Y. Koo, M.-K. Choi, and S. Kwon, ‘‘A novel driver
fatigue monitoring using optical imaging of face on safe driving sys-
tem,’’ in Proc. Int. Conf. Control, Electron., Renew. Energy Commun.
(ICCEREC), Sep. 2016, pp. 115–120.

[17] E. Åhsberg, F. Garnberale, and A. Kjellberg, ‘‘Perceived quality of fatigue
during different occupational tasks development of a questionnaire,’’ Int.
J. Ind. Ergonom., vol. 20, no. 2, pp. 121–135, Aug. 1997.

[18] J. De Vries, ‘‘Assessment of fatigue among working people: A comparison
of six questionnaires,’’ Occupational Environ. Med., vol. 60, pp. 10–15,
Jun. 2003.

[19] K. A. Lee, G. Hicks, and G. Nino-Murcia, ‘‘Validity and reliability of
a scale to assess fatigue,’’ Psychiatry Res., vol. 36, no. 3, pp. 291–298,
Mar. 1991.

[20] E. M. A. Smets, B. Garssen, B. Bonke, and J. C. J. M. De Haes, ‘‘The
multidimensional fatigue inventory (MFI) psychometric qualities of an
instrument to assess fatigue,’’ J. Psychosomatic Res., vol. 39, no. 3,
pp. 315–325, Apr. 1995.

[21] A. W. S. Leung, C. C. H. Chan, and J. He, ‘‘Structural stability and
reliability of the swedish occupational fatigue inventory among chinese
VDT workers,’’ Appl. Ergonom., vol. 35, no. 3, pp. 233–241, May 2004.

[22] K. Zhang, Z. Zhang, Z. Li, andY. Qiao, ‘‘Joint face detection and alignment
using multitask cascaded convolutional networks,’’ IEEE Signal Process.
Lett., vol. 23, no. 10, pp. 1499–1503, Oct. 2016.

[23] D. E. King, ‘‘Dlib-ml: A machine learning toolkit,’’ J. Mach. Learn. Res.,
vol. 10, pp. 1755–1758, Jan. 2009.

[24] S. Kwon, J. Kim, D. Lee, and K. Park, ‘‘ROI analysis for remote photo-
plethysmography on facial video,’’ in Proc. 37th Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc. (EMBC), Aug. 2015, pp. 4938–4941.

[25] W. Wang, S. Stuijk, and G. de Haan, ‘‘Exploiting spatial redundancy of
image sensor for motion robust rPPG,’’ IEEE Trans. Biomed. Eng., vol. 62,
no. 2, pp. 415–425, Feb. 2015.

[26] G. de Haan and V. Jeanne, ‘‘Robust pulse rate from chrominance-based
rPPG,’’ IEEE Trans. Biomed. Eng., vol. 60, no. 10, pp. 2878–2886,
Oct. 2013.

[27] W. Liang, J. Yuan, D. Sun, and M. Lin, ‘‘Changes in physiological param-
eters induced by indoor simulated driving: Effect of lower body exercise
at mid-term break,’’ Sensors, vol. 9, no. 9, pp. 6913–6933, 2009.

[28] A. V. Moço, S. Stuijk, and G. de Haan, ‘‘New insights into the origin of
remote PPG signals in visible light and infrared,’’ Sci. Rep., vol. 8, no. 1,
p. 8501, Dec. 2018.

[29] B.-F. Wu, P.-W. Huang, C.-H. Lin, M.-L. Chung, T.-Y. Tsou, and Y.-L. Wu,
‘‘Motion resistant image-photoplethysmography based on spectral peak
tracking algorithm,’’ IEEE Access, vol. 6, pp. 21621–21634, 2018.

[30] N. Pinheiro, R. Couceiro, J. Henriques, J. Muehlsteff, I. Quintal,
L. Goncalves, and P. Carvalho, ‘‘Can PPG be used for HRV analysis?’’ in
Proc. 38th Annu. Int. Conf. IEEE Eng.Med. Biol. Soc. (EMBC), Aug. 2016,
pp. 2945–2949.

[31] B.-F.Wu, Y.-Y. Yang, B.-R. Tsai, P.-W. Huang, Y.-C. Tsai, and K.-H. Chen,
‘‘Remote HeartRate measurement based on signal feature detection in time
domain,’’ in Proc. Int. Conf. Syst. Sci. Eng. (ICSSE), Jul. 2019, pp. 88–93.

[32] B. S. J. E. Mietus and M. D. A. L. Goldberger. (2009). Heart Rate
Variability Analysis with the HRV Toolkit. [Online]. Available: https://
physionet.org/tutorials/hrv-toolkit/

[33] T. Soukupová and J. Cech, ‘‘Real-time eye blink detection using facial
landmarks,’’ in Proc. 21st Comput. Vis. Winter Workshop, 2016, pp. 1–55.

[34] M.-Z. Poh, D. J. McDuff, and R. W. Picard, ‘‘Advancements in noncon-
tact, multiparameter physiological measurements using a webcam,’’ IEEE
Trans. Biomed. Eng., vol. 58, no. 1, pp. 7–11, Jan. 2011.

YIN-CHENG TSAI (Student Member, IEEE)
received the B.S. degree in electrical and computer
engineering from National Chiao Tung University
(NCTU), Hsinchu, Taiwan, in 2018. His researches
are focused on image-based physiological signal
processing and driver fatigue detection. He is also
interested in algorithm, digital signal processing,
and artificial intelligence.

PENG-WEN LAI (Student Member, IEEE)
received the B.S. degree in surveying engineering
from the National Chung Cheng Institute of Tech-
nology (CCIT), Taoyuan, Taiwan, in 1991. He is
currently pursuing the Ph.D. degree in electrical
control engineering with NCTU. His research
is focused on image-based physiological signal
measurement and biomedical signal processing.
He is also interested in artificial intelligence, data
analysis, and image processing.

PO-WEI HUANG (Student Member, IEEE)
received the B.S. degree in electrical and computer
engineering from National Chiao Tung Univer-
sity (NCTU), Hsinchu, Taiwan, in 2017, where
he is currently pursuing the Ph.D. degree in elec-
trical control engineering. He received the IEEE
SMC Outstanding B.Sc. Theses Grant, in 2017.
His research is focused on image-based vital signs
measurement.

67352 VOLUME 8, 2020



Y.-C. Tsai et al.: Vision-Based Instant Measurement System for Driver Fatigue Monitoring

TZU-MIN LIN received the M.D. degree from Fu
Jen Catholic University, New Taipei City, Taiwan,
in 2009. She is currently pursuing the Ph.D. degree
in electrical control engineering with National
Chiao Tung University (NCTU), Hsinchu, Tai-
wan. She received internship with the National
Taiwan University Hospital, Taipei City, Taiwan,
from August 2009 to July 2010, resident special-
ized in internal medicine with the Taipei Medical
University Hospital, Taipei, from August 2010 to

July 2013. She received a Chief Resident and a Fellowship in rheumatol-
ogy, allergy, and immunology with the Taipei Medical University Hospital,
Taipei, from August 2013 to January 2016. She has been working as an
Attending Physician with the Department of Rheumatology, Immunology,
and Allergy, Taipei Medical University Hospital, since February 2016.

BING-FEI WU (Fellow, IEEE) received the
B.S. and M.S. degrees in control engineering
from National Chiao Tung University (NCTU),
Hsinchu, Taiwan, in 1981 and 1983, respectively,
and the Ph.D. degree in electrical engineering from
the University of Southern California, Los Ange-
les, CA, USA, in 1992.

Since 1992, he has been with the Department
of Electrical and Computer Engineering, where he
was promoted to be a Professor, in 1998, and a

Distinguished Professor, in 2010, respectively. He founded and has served
as the Chair of the Taipei Chapter of IEEE Systems, Man, and Cybernetics
Society (SMCS), in 2003, and was the Chair of the Technical Committee
on Intelligent Transportation Systems of IEEE SMCS, in 2011. He has
served as the Director of the Institute of Electrical and Control Engineering,
NCTU, in 2011. He was the President of the Taiwan Association of Sys-
tem Science and Engineering and the Director of the Control Engineering
Program, Ministry of Science and Technology, Taiwan, both in 2019. He is
currently an Associate Editor of the IEEE TRANSACTIONS ON SYSTEMS, MAN

AND CYBERNETICS: SYSTEMS. His research interests include image recognition,
vehicle driving safety and control, intelligent robotic systems, intelligent
transportation systems, and multimedia signal analysis.

Dr. Wu is a Fellow of IET and CACS. He received many research honors,
including the Outstanding Automatic Control Engineering Award from the
Chinese Automatic Control Society, in 2007, the Outstanding Research
Award of Pan Wen Yuan Foundation, in 2012, the Best Paper Award in The
12th International Conference on ITS Telecommunications, in 2012, the Best
Technology Transfer Contribution Award from National Science Council,
Taiwan, in 2012, the National Invention and Creation Award of Ministry of
Economic Affairs, Taiwan, in 2012 and 2013, respectively, the Technology
Invention Award of Y. Z. Hsu Scientific Award fromY. Z. Hsu Foundation, in
2014, the Outstanding Research Award, in 2015, all fromMinistry of Science
and Technology, Taiwan, and the FutureTech Breakthrough Award, in 2017
and 2019.

VOLUME 8, 2020 67353


