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ABSTRACT This study was conducted to develop a novel tracking control strategy for aeroengines with
strong nonlinearity and uncertainty. Compared to existing robust gain-scheduling control strategies, the
proposed control strategy has relatively low conservatism and can markedly improve engine performance.
An improved on-board adaptive aeroengine model was established to estimate engine performance degra-
dation and eliminate the degradation term contained in the perturbation block of the engine uncertain
model in the design process. Robust controllers under engine normal and performance degradation states
were designed at a set of operating points and scheduled according to relevant scheduling and health
parameters. A desired robust gain-scheduling controller, which works based on performance degradation,
can be precisely constructed via this approach. Simulation results are given to demonstrate the effectiveness
of the proposed method, where the response speed of engine is improved by 38%.

INDEX TERMS Robust conservative, performance degradation, aeroengine, gain-scheduling, nonlinear
system.

I. INTRODUCTION
The modern aeroengine is a complex nonlinear dynamic
system with a wide range of functions and parame-
ters. Its working state changes continuously with changes
in external conditions and flight conditions. Any engine
model as-established based on the aerodynamic thermody-
namic relationship of its components is a strong nonlinear
model [1], [2].

Many previous researchers have explored nonlinear sys-
tems [3]–[9]. Zhao et al. [3], for example, proposed a fuzzy-
approximation-based asymptotic tracking control for a class
of uncertain switched nonlinear systems.Most fuzzy adaptive
control strategies can only achieve bounded error tracking
performance, but this control scheme can guarantee local
asymptotic tracking performance for the uncertain switched
nonlinear system under consideration. Wang et al. [4] pro-
posed an adaptive neural output-feedback decentralized con-
trol scheme for large-scale nonlinear systems with stochastic
disturbances which guarantees that all signals in the closed-
loop system are semi-globally uniformly ultimately bounded
in the fourth-moment.Wang et al. [5] researched the adaptive
fuzzy finite-time control of nonlinear systems with actuator
faults. Wang et al. [6] built a fault-tolerant tracking control
strategy for Takagi Sugeno fuzzy model-based nonlinear
systems which combines integral sliding mode control and
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adaptive control techniques. Li et al. [8] explored adaptive
fuzzy tracking control for a class of uncertain switched
nonlinear systems considering arbitrary switching, unmod-
eled dynamics, input saturation, unknown dead-zone output,
dynamic disturbances, and unmeasurable states, whichmakes
their results widely applicable.

Existing control methods for strong nonlinear systems tend
to be inconvenient. For example, the feedback lineariza-
tion method requires a high-precision nonlinear model [10];
the sliding mode control has chattering problems [11]
and fuzzy control relies on prior knowledge [12]. Linear
methods can be applied in the gain-scheduling context to
control nonlinear or time-varying systems [13], [14]. The
control performance of these systems is very prominent,
so gain-scheduling control can be used to process various
nonlinear problems [15]–[19]. As a typical strong nonlinear
system, gain-scheduling control can be widely applied in the
control of aircraft engines [20]–[27].

Jung et al. [21] and Yazar et al. [25] designed
linear controllers using the proportion-integra-derivative
(PID) technique, where PID controllers are linked via
gain-scheduling to a tail-sitter unmanned aerial vehicles
and a small-scale turbojet aeroengine, respectively. The
limits of the PID controller can be mitigated by the
so-called L1 adaptive controller, which considers the cou-
pling effect [21]. Yasar et al. [22] designed a gain-scheduling
feedback controller for a turbofan engine to maintain
specified performance. In an effort to resolve the problem
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of speed-control at startup, Rodriguez-Martinez et al. [23]
designed a PI fuzzy gain-scheduling controller for a
gas-turbine power plant by synthesizing a gain-scheduling
controller from multiple locally tuned generalized propor-
tional integral algorithms in a fuzzy system; theirs outper-
formed the traditional single PI controller. Gilbert et al. [24]
systematically designed gain-scheduling control laws
with low complexity for a turbofan engine by extend-
ing another polynomial fixed-order controller design
to SISO gain-scheduling with guaranteed stability and
H∞ performance over the whole scheduling parameter
range. Pakmehr et al. [27] demonstrated the stability of
gain-scheduling control for gas turbine engines.

Due to the undue influence of modeling errors, artificial
model reduction for convenience, engine degradation over
long-term operation, external interference, noise, and other
factors, a controller designed for the nominal model may not
give the actual system stability or enhanced performance even
when it can effectively control the nominal model. Many
previous researchers have explored robust gain-scheduling
control as an alternative [28]–[33]. Peng et al. [28] used
a series of decoupling controllers to formulate a multi-
variable gain-scheduled controller which has strong decou-
pling performance and robustness in large-transient turbofan
engines. Wolodkin et al. [29] designed H∞ controllers at
fixed operating points for linear parameter variable (LPV)
systems of a turbofan engine. Their gain-scheduled con-
troller was obtained directly as part of the described design
process, as opposed to conventional processes wherein it
would be established after-the-fact to connect point designs.
The National Aeronautics and Space Administration (NASA)
Glenn Research Center (GRC) developed a unified robust
multivariable approach which encompasses a series of H∞
controllers and a simplified controller scheduling scheme for
propulsion control.

The above robust gain-scheduling control techniques have
strong robustness for aeroengines. However, they are very
conservative as they consider engine degradation as an uncer-
tainty. In fact, the degree of engine performance degradation
can be estimated by measuring certain parameters [34]–[40].
In the late 1980s, Luppold et al. [34] first combined the
engine on-board model with a Kalman filter to establish an
on-board adaptive aeroengine model for estimating engine
performance degradation. However, as the engine degrades,
the steady-state reference value of the nonlinear model
appears to be biased resulting in estimation errors. Xue Wei
and Guo Yingqing [35] estimated the health condition of
an engine over its lifetime by tracking filters. They applied
a bank of Kalman filters for fault detection and isolation
(FDI) sensors in the engine. Liu et al. [36] updated the
health reference baseline for an airborne engine model via
channel controller to accurately estimate engine degradation.
Liu et al. [39] established a new adaptive modeling method
with an equilibrium manifold for aeroengines that is accurate
and simple in structure.

The above estimations of engine performance degradation
can be used in engine fault diagnosis tomaintain effectiveness
as the engine degrades, but are not used for robust gain-
scheduling control. In actuality, the performance degradation
of engine components can be assessed by establishing an
on-board adaptive model. This allows degradation terms to
be estimated in the uncertainty model, narrowing the scope
of the uncertainty model and reducing the conservativeness
of the robust gain-scheduled controller.

In this study, perturbation was added to the nominal model
and a set of uncertain models were established containing
the actual engine as-reflected in a series of selected operating
points. We built an accurate gain-scheduling robust controller
based on the estimation of performance degradation for a
turbofan engine, with special focus on the problems discussed
above. The main contributions of our work can be summa-
rized as follows:

1) The on-board engine model can be updated online
using the health parameters estimated by piecewise
linearized Kalman filters; the improved on-board adap-
tive model provides accurate estimations of engine
performance degradation.

2) The degradation term contained in the perturbation
block in the engine uncertain models is eliminated. The
perturbation radius of the engine uncertain models is
reduced, the conservativeness of the designed robust
controller is reduced, and the performance of the engine
is improved on the whole.

3) Numerous operating points are selected under dif-
ferent working conditions and the degree of perfor-
mance degradation in the full flight envelope of the
engine. Robust controllers are then designed to guaran-
tee stability and enhance the performance of uncertain
models in the perturbation range. A gain-scheduling
method which works based on scheduling parameters
and engine performance degradation information is
used to effectively control the engine in the full flight
envelope.

The rest of this paper is organized as follows. Engine per-
formance degradation is estimated in Section II. The robust
controller design for uncertain models with health parameters
is presented in Section III. Section IV presents the proposed
robust gain-scheduled control design for uncertain models
based on performance degradation. In Section V, simulation
and verification results are given to evaluate the controller.
Section VI concludes the paper and discusses relevant future
research directions.

II. ESTIMATION OF ENGINE PERFORMANCE
DEGRADATION
A. NONLINEAR ENGINE MODEL WITH HEALTH
PARAMETERS
‘‘Engine performance degradation’’ refers to the normal
aging phenomenon characterized by natural wear, fatigue,
fouling, and other factors after several cycles of operation.
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Certain engine performance indicators slowly deviate from
the rated state over time. The working efficiency of the tur-
bine component, for example, slowly decreases as it services
the engine for several cycles. The ability to convert high-
temperature, high-pressure gas into mechanical energy is
reduced and the linearized engine model at any one operating
point changes accordingly.

Engine performance degradation is ultimately character-
ized by variations in operating efficiency and the gas flow of
different rotor components, which are observable by changes
in the efficiency coefficient and flow coefficient of the fan,
compressor, main burner, and high- and low-pressure tur-
bine components. These parameters characterizing engine
performance degradation are often referred to as ‘‘health
parameters’’.

Based on the component method, the nonlinear model
of the engine with health parameters can be written as
follows [41]

ẋ (t) = f (x (t) , u (t) , h (t))

y (t) = g (x (t) , u (t) , h (t)) (1)

where u (t) ∈ Rm is the control input vector, x (t) ∈ Rn is
the state vector, y (t) ∈ Rm is the output vector, h (t) ∈ Rl

is the vector of health parameters, f (·) represents dynamics
of the plant, and g (·) generates the plant outputs.

B. AUGMENTED STATE VARIABLE AEROENGINE MODEL
Considering the health parameter vector h as the control input
of the engine, the small-perturbation method or the fitting
method [42] can be used to linearize the engine nonlinear
model at a healthy steady-state reference point as follows:{

1ẋ = Ah1x + Bh1uh + w
1y = Ch1x + D1uh + v

(2)

where

Ah = A, Bh = (BL), Ch = C,

Dh = (DM ), 1uh = (1u1h)T

where ω is system noise, υ is measuring noise, h represents
the health parameters, and 1h = h− h0.

An augmented linear state variable model which reflects
the performance degradation of the engine can be written as{

1ẋ = A1x + B1u+ L1h+ w
1y = C1x + D1u+M1h+ v

(3)

where the matrices are obtained by

A =
∂f (.)
∂x (t)

| (x, u, h) , B =
∂f (.)
∂u (t)

| (x, u, h) ,

L =
∂f (.)
∂h (t)

| (x, u, h)

C =
∂g (.)
∂x (t)

| (x, u, h) , D =
∂g (.)
∂u (t)

| (x, u, h) ,

M =
∂g (.)
∂h (t)

| (x, u, h)

C. IMPROVED ON-BOARD ADAPTIVE MODEL
Health parameters are difficult or even impossible tomeasure.
The parameters such as pressure, temperature, and rotational
speed in each section of the engine can, however, be relatively
easily measured; these are usually referred to as ‘‘measure-
ment parameters’’. When the engine working environment
does not change, changes in health parameters cause corre-
sponding changes in the measured parameters. The two sets
are related in an aerodynamic thermodynamic relationship.
An optimal estimation filter can be designed to estimates the
health parameters as per the measured parameters.

The engine performance degradation process is relatively
slow, so it is reasonable to assume that 1h = 0. The health
parameter can be further transformed into a set of state vari-
ables. Formula (3) can be rewritten as:{

1ẋnew = Anew1xnew + Bnew1u+ w
1y = Cnew1xnew + Dnew1u+ v

(4)

where

Anew =
(
A L
0 0

)
, Bnew =

(
B
0

)
,

Cnew = (CM ),Dnew = D, 1xnew =
(
1x
1h

)
.

1) TRADITIONAL ON-BOARD ADAPTIVE MODEL
The best estimate of the state variables in the form of
Formula (4). The method most commonly used in engi-
neering practice is the Kalman filter first proposed by
the American-Hungarian mathematician Kalman in the late
1960s.

As mentioned above, Luppold et al. [34] first combined
the engine on-board model with the Kalman filter to establish
an on-board adaptive aeroengine model. The basic working
principle is to correct the estimated state variables as per
the error between the output data of the linear state variable
model and the measured data of the actual engine, so as to
correct the estimated state variables. The variance in the error
between state variables and real state variables is minimized
to achieve optimal filtering in the sense of minimum variance
according to the estimated state variables for on-line correc-
tion of the on-board model under steady-state or quasi-steady
state conditions. Thereby, effective online tracking for the real
engine can be achieved.

2) IMPROVED ON-BOARD ADAPTIVE MODEL (IOBAM)
The steady-state reference value in the on-board adaptive
model established by Kalman filter is usually obtained by
interpolation method, but when there is a certain deviation
of the steady-state reference value due to performance degra-
dation for the engine in service, the estimation of the Kalman
filter is biased. Thus, the on-board adaptive model loses its
effectiveness in tracking the real engine.
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FIGURE 1. IOBAM structure.

In this study, we developed an improved on-board adap-
tive model (IOBAM) by updating the nonlinear on-board
engine model (NOBEM) using the health parameter vector
estimated by the piecewise linearized Kalman filters (PLKF).
The IOBAM mainly consists of two parts: the NOBEM
based on performance degradation and the PLKF composed
of piecewise linearization models and Kalman filters cor-
responding to their steady-state points. The basic working
principle is to use the NOBEM output as the steady-state
reference value of the PLKF, augment the health parameter in
the form of Formula (4), perform online real-time estimation
via the PLKF, and finally feed back to the NOBEM for
online real-time updating. This technique allows for real-time
tracking of real-world engines.

The main function of piecewise linearization models is to
preserve the engine model parameters and their correspond-
ing Kalman gain matrices under different working conditions
by interpolation, and to schedule them based on the schedul-
ing parameter α so that the Kalman filter adapts to different
working states of the engine. In this study, the fan speed Nf
was selected as the scheduling parameter α.
The structure of the proposed IOBAM is shown in Fig. 1.
The Kalman estimation equation for Formula (4) is{
1 ˙̂xnew = Anew1x̂new + Bnew1u+ K (1y−1ŷ)
1ŷ = Cnew1xnew + Dnew1u

(5)

where K is the gain of Kalman filter satisfying K =

PCT
newR

−1; P is the solution to the Ricati equation AnewP +
PATnew + Q− PC

T
newR

−1CnewP = 0.
The PLKF can be calculated using the healthy steady-state

reference value (xNOBEM, u, yNOBEM, hNOBEM) of the non-
linear on-board model instead of the healthy steady-state
reference value (x0, u0, y0, h0) from Eq. (5) as follows:{

˙̂xnew = Anew
(
x̂new − xnew,NOBEM

)
+ K (y− ŷ)

ŷ = Cnew
(
x̂new − xnew,NOBEM

)
+ yNOBEM

(6)

The healthy steady-state reference value h0, hNOBEM is the
health parameter value estimated by the Kalman filter at the

FIGURE 2. Internal PLKF structure.

FIGURE 3. Output multiplicative perturbation configuration.

corresponding steady-state point under engine performance
degradation conditions. The internal PLKF structure is shown
in Fig. 2.

III. ROBUST CONTROLLER DESIGN FOR UNCERTAIN
MODELS WITH HEALTH PARAMETERS
A. INTRODUCTION TO UNCERTAINTY
Uncertainty inevitably exists in any actual system [41] and
may be characterized by external interference signals or
model uncertainty. The external interference signals include
input disturbance, output disturbance, and noise, among
others. Model uncertainty expresses the difference or error
between the actual plant and its mathematical representation.

Model uncertainty may have the following sources:

1) Inherent inaccuracies in the nonlinear model as- estab-
lished;

2) Error in the linearization of the nonlinear model;
3) The unknown structure of the model (even at high

frequencies), where uncertainty may exceed 100%;
4) Performance degradation of the actual plant due to

abrasion and other factors causing error.

Uncertainty may adversely affect the stability and perfor-
mance of a system.

B. UNCERTAIN MODELS WITH HEALTH PARAMETERS
The difference between the actual engine and its nomi-
nal model is expressed by a single perturbation block 1.
As shown in Fig. 3, we established engine uncertain models
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FIGURE 4. Perturbation configuration with performance degradation
extracted.

FIGURE 5. Perturbation configuration with performance degradation
extracted.

with a perturbation block as follows:

ẋ (t) = f (x (t) , u (t))

= [I +11] fnom (x (t) , u (t))

y (t) = g (x (t) , u (t))

= [I +12] gnom (x (t) , u (t)) (7)

The above formula can be rewritten in the form

G (s) = [I +1(s)]Gnom (s) (8)

where G (s) denotes uncertain models containing the model
of the actual plant, Gnom (s) is a nominal model, and 1(s) is
a perturbation block.

The perturbation block 1(s) reflects the performance
degradation (Fig. 4) and can be predicted by the measurement
parameters. As shown in Fig. 5, we added the perturbation
block with the health parameters to the nominal model and
established new engine uncertain models as follows:

ẋ (t) = f (x (t) , u (t) , h (t))

= [I +1h1] fnom (x (t) , u (t) , h (t))

y (t) = g (x (t) , u (t) , h (t))

= [I +1h2] gnom (x (t) , u (t) , h (t)) (9)

The above formula can also be expressed in the form

G (s) = [I +1h (s)]Gh_nom (s) (10)

where 1h (s) denotes a perturbation block without engine
performance degradation. Gh_nom (s) is the new nominal
model established at the state of the engine performance
degradation h, which satisfies the following:

G (s) = [I +1(s)]Gnom (s)

= [I +1h (s)+ h (s)]Gnom (s)

= [I +1h (s)]Gh_nom (s)

FIGURE 6. Uncertain model structure.

Gh_nom (s) =
[

h (s)
I +1h (s)

+ I
]
Gnom (s) . (11)

In Fig. 6, the upper and lower small circled areas represent the
linear uncertainmodels of the engine without degradation and
with performance degradation h, respectively; the large cir-
cled area represents the linear uncertain models of the engine
under general robust control. Engine degradation in the gen-
eral robust controller is directly treated as an uncertainty in
the engine model. Therefore, the radius of the uncertainty
in the uncertain term must be large enough to contain the
uncertain models of the engine under degradation, but this
makes the perturbation radius of the uncertain model too
large.

In this study, when the engine performance degrades by h,
a new nominal model is established alongside engine uncer-
tain models with the new nominal model as the center.
By selecting a new nominal model in a different degraded
state, we ensured that the perturbation radius of the uncertain
models with minimum values cover all possible models of the
engine.

As shown in Fig. 6, ‖1h‖ = ‖1‖ − ‖h‖ < ‖1‖; by
estimating engine performance degradation, the perturbation
radius of the perturbation block in the engine uncertainty
context can be reduced by ‖h‖. The perturbation range of the
uncertain model is reduced by:

‖1‖2 − ‖1h‖
2

‖1‖2
∗ 100% =

‖h‖
‖1‖

(
2−
‖h‖
‖1‖

)
∗ 100% (12)

C. H∞ LOOP-SHAPING DESIGN
TheH∞ loop-shaping design [43], [44] for the multiple input
multiple output system serves to solve a controller K to make
the shaping of singular values for the transfer function satis-
factory. This process and associated configuration are shown
in Fig. 7. The controller K and plant G interconnection is
driven by reference command r , input disturbance di, output
disturbance do, and noise n. u represents the control signals
and y the outputs to be controlled.

The following relationships hold:{
y = To(r − n)+ GSidi + Sodo
e = So(r − do)+ Ton− GSidi

(13)
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FIGURE 7. Feedback configuration with disturbance and noise.

where Si = (I + KG)−1 expresses the transfer function from
di to y, So = (I +GK )−1 is the transfer function from do to y,
and To = GK (I +GK )−1 is the transfer function from n to y.

These relationships determine several closed-loop
objectives:

1) For input disturbance attenuation, make σ̄ (Si(jω))
small;

2) For output disturbance attenuation, make σ̄ (So(jω))
small;

3) For noise suppression, make σ̄ (To(jω) small;
4) For good reference tracking, make σ̄ (To(jω)) ≈

σ (To(jω)) ≈ 1.
The controller designed by the H∞ loop-shaping design
method has a high order which restricts its real-time perfor-
mance and is difficult to achieve [45]. We used the absolute
error approximation method [46] to appropriately degrade
the designed robust controller to secure a reduced-order con-
troller Kr (s), i.e., to minimize

‖K (s)− Kr (s)‖ . (14)

IV. GAIN-SCHEDULED CONTROL DESIGN FOR
UNCERTAIN MODELS WITH HEALTH PARAMETERS
The essence of gain-scheduling control is to design a set
of linearized controllers and then combine them in a reg-
ular manner to be able to manipulate nonlinear systems.
Gain-scheduling belongs to the category of adaptive con-
trol, but it differs from adaptive control in that it does not
update feedback parameters through online identification, but
through offline designed scheduling strategies.

First, the designer selects a set of parameter values
which represent the range of the engine’s dynamics. He or
she then designs a linear time-invariant controller for
each. Then, in between operating points, the controllers
are interpolated for all frozen parameter values. Finally,
a gain-scheduling controller for the nonlinear system is
obtained.

The basic principle of robust gain-scheduling control
with performance degradation is to select a series of oper-
ating points and obtain linearized models for the engine
in the normal state and a state of certain performance
degradation. Robust controllers are then designed with
performance degradation isolated for the series of lin-
earized models. The robust controllers can then be sched-
uled via scheduling and health parameters to control the
system.

FIGURE 8. Nonlinear uncertain aeroengine model.

A. ROBUST CONTROLLER DESIGN FOR SELECTED
OPERATING POINTS
We designed a gain-scheduling controller for the sys-
tem reflected in Eq. (1) as discussed below [14], [15].
As shown in Fig. 8, we selected a family of operating points,
αi, i = 1, 2, . . . , q, which divide the flight envelope into q
regions. At these operating points,

0 = f
(
xpdi, udi, hdi

)
ri = g

(
xpdi, udi, hdi

)
(15)

where xdi is the ith selected operating point, udi is the control
input, and hdi represents the health parameters at xdi.

The linear model with health parameters at each selected
operating point can be obtained by the small-perturbation
method. The linear nominal models at the engine normal
state and performance degradation h state can be obtained
accordingly. Linear uncertain models at the normal state and
performance degradation h state of each selected operating
point for the engine are obtained once the perturbation block
is added.

In Fig. 8, the upper and lower solid red lines respectively
indicate the non-linear nominal model of the engine without
degradation and with performance degradation h; the red and
yellow dotted line enclosing areas respectively indicate the
nonlinear uncertain models of the engine without degradation
and with performance degradation h. The blue dotted area
represents the nonlinear uncertain models of the engine in
the general robust gain-scheduling controller design, which
directly incorporates engine degradation as an uncertain term
into the engine models.

Estimating the degradation of the engine and extracting
it from the uncertainties of engine models can reduce the
perturbation range of the engine nonlinear uncertain models.
The perturbation range of the uncertain models is reduced by

‖1h‖

‖1‖
∗ 100% =

(
1−
‖h‖
‖1‖

)
∗ 100%. (16)

A series of robust controllers were designed in this study for
the linear uncertain models at each selected operating point
in the normal state of the engine and in a degraded state,
respectively. The controllers were then obtained by linear
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FIGURE 9. Gain-scheduling control system.

FIGURE 10. Controller interpolation schematics.

interpolation between the selected operating points to give the
closed-loop system good robustness.

A structural diagram of the gain-scheduling control system
is shown in Fig. 9. The parameter α represents the scheduling
variable, which in this study is the fan speed of the engine.
Another scheduling variable of the control system is a health
parameter vector h that reflects engine performance degra-
dation. The principle illustrated in Fig. 9 is to transmit the
input parameter u and the output parameter y of the actual
engine to the on-board adaptive model, perform scheduling
calculation according to the scheduling parameter and the
health degradation parameter h estimated by the model, and
select the corresponding optimal robust controller for the
engine to form a closed loop control system.

B. INTERPOLATION OF CONTROLLERS
A series of robust controllers were designed at the engine
normal state and performance degradation h state at each
selected operating point αi in this study, which produced a
set of controllers:

K i
: =

[
ACi BCi
CC
i DC

i

]
, i= 1, 2, . . . , q (17)

K i
h_base : =

[
ACi-h-base B

C
i-h-base

CC
i-h-base D

C
i-h-base

]
, i= 1, 2, . . . , q. (18)

The controllers were interpolated based on the scheduling
parameter α and health paramete h.

As shown in Fig. 10, based on the actual degree of degrada-
tion of the engine at the selected operating point αi, the con-

trollerKi at the engine performance degradation h state can be
obtained by linear interpolation using the controllers K i and
K i
h_base at the engine normal state and performance degrada-

tion hbase state at the selected operating point αi.

Ki = K i
+
‖h‖
‖hbase‖

(
K i
h_base − K

i
)
, ∀ ‖h‖ ∈ [0, ‖hmax‖]

(19)

As shown in Fig. 10, given the plant
∑
(α), the stability

interpolation method [47] generates controllers as follows:

K (α (t) , h (t))

:=

{
Ki, α ∈ Ui, α /∈ ∪

q−1
i=1 [ai, bi] , i = 1, 2, . . . q

K̂i (α (t)) , α ∈ [ai, bi] , i = 1, 2, . . . q− 1

(20)

where the controllers K̂i(α), i = 1, 2, . . . , q − 1 can be
linearly interpolated as

K̂i (α (t)) = Ki +
α (t)− αi
αi+1 − αi

(Ki+1 − Ki) , ∀α ∈ [ai, bi]

(21)

V. TURBOFAN ENGINE EXAMPLE
The proposed robust gain-scheduling controller based on
performance degradation was applied on a turbofan engine.
We selected 45 operating points for the engine. The schedul-
ing parameter α is the fan speed Nf . The performance degra-
dation of the engine was indicated in this case by the health
parameter vector h.

A. SIMULATION AT EACH OPERATING POINT
The linear nominal model with normalized and dimensionless
dual inputs and dual outputs at each operating point can be
written uniformly as:{

1ẋ = A1x + B1u
1y = C1x + D1u

(22)

where, 1x = [1PNF 1PNC ]T is the state variable, 1y =
[1PNC 1PT5]T is the output variable, 1u = [1PWF 1PA8]T

is the control variable, and PWF = Wf /Wf ,d ; PA8 =
A8/ A8d ; PNF = Nf /Nf ,dPNC = Nc/Nc,d ; PT5 = T5/T5,d .
The subscript d represents engine parameters at the

designed point. The uncertain models of the engine are
written as:

G = (I2 +1W )Gnom (23)

where

Gnom
= C(sI − A)−1B+ D

=


0.3389 s + 1.098
s2 + 11.02s+ 20.9

0.4046s2 − 3.91s− 11.27
s2 + 11.02s+ 20.9

-0.2256 s - 3.319
s2 + 11.02s+ 20.9

−0.0756s2 − 8.382s− 26.55
s2 + 11.02s+ 20.9
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FIGURE 11. Singular value of weighting functions.

1 =

[
1ball1 0
0 1ball2

]
, |1ball1| < 1, |1ball2| < 1

and

W =
[
w1 0
0 w2

]
is a matrix which provides weighting functions for the per-
turbation block 1.

1) BIG PERTURBATION BLOCK
Our focus in conducting this study was the range of low fre-
quencywhen building the enginemodel, so the perturbation is
greater in the high-frequency range. The singular values ofw1
and w2 for the small perturbation block are shown in Fig. 11.
The final reduced-order controller can be calculated as

K =
[
K11 K12
K21 K22

]
(24)

where K11,K12,K21,K22 as shown at the bottom of the next
page, Figure 12 shows the step responses of the uncertain
closed-loop system. For all uncertain models, the largest
settling times of the step response for the two outputs were
0.5 s and 0.8 s, respectively. The largest overshoots were 6%
and 10%, respectively, and the steady-state error was 0.

2) SMALL PERTURBATION BLOCK
The perturbation block decreases in size after isolating the
degradation term in the engine uncertainty models. The sin-
gular values of w1 and w2 for the small perturbation block are
shown in Fig. 13.

The final reduced-order controller can be calculated as

K =
[
K11 K12
K21 K22

]
(25)

where K11,K12,K21,K22 as shown at the bottom of the next
page, Figure 14 shows the step responses of the uncertain
closed-loop system. The systems are stable in all uncer-
tain models, which indicates that the designed controller
has robust stability. The largest settling times of the step

FIGURE 12. Step responses of uncertain closed-loop system at 0 H and
0 Ma.

FIGURE 13. Singular value of weighting functions.

FIGURE 14. Step responses of uncertain closed-loop system at 0 H and
0 Ma.

response for the two outputs in this case were 0.3 s and
0.5 s, respectively, the largest overshoots were 6% and 10%,
respectively, and the steady-state error was 0. The mutual
influence between the two channels was very small.
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FIGURE 15. Singular values of Si for uncertain system.

Under the same steady-state error and overshoot, the set-
tling times of the two outputs of the closed-loop system with
the small perturbation block decreased by 40% and 37.5%,
respectively. The perturbation block is reduced after isolat-
ing the degradation term in the engine uncertainty models.
The conservativeness of the proposed robust controller is
thus reduced and the performance of the engine is greatly
improved.

The singular values of Si, So, and To for the uncertain
system are shown in Fig. 15, Fig. 16, and Fig. 17, respec-
tively. The singular values of Si, So are very small in the
low-frequency range, which suggests that the system can
effectively suppress input disturbance and output disturbance.
The singular value of To is very small in the high-frequency
range, which indicates that the system can effectively sup-
press noise.

We next gave the nominal system a unit step input and
added a step input disturbance with an amplitude of 0.2 at 3 s,

FIGURE 16. Singular values of So for uncertain system.

FIGURE 17. Singular values of To for uncertain system.

plus a step output disturbance with an amplitude of 0.2 at 5 s
and a noise signal (Fig. 18) to the system.



K11 =
6.333× 104s3 + 7.025× 106s2 + 2.225× 107s+ 1.003× 10−5

s4 + 4164s3 + 3.638× 105s2 + 7.035× 10−7s+ 1.886× 10−19

K12 =
3.389× 105s3 − 3.275× 106s2 − 9.449× 106s− 6.358× 10−6

s4 + 4164s3 + 3.638× 105s2 + 7.035× 10−7s+ 1.886× 10−19

K21 =
−1480s3 − 1.826× 105s2 − 2.89× 106s+ 2.233× 10−6

s4 + 4164s3 + 3.638× 105s2 + 7.035× 10−7s+ 1.886× 10−19

K22 =
−7962s3 − 1.842× 105s2 − 9.752× 105s− 3.967× 10−6

s4 + 4164s3 + 3.638× 105s2 + 7.035× 10−7s+ 1.886× 10−19



K11 =
1.247× 105s3 + 1.383× 107s2 + 4.379× 107s− 2.6× 10−5

s4 + 4178s3 + 4.888× 105s2 − 1.165× 10−7s− 9.815× 10−20

K12 =
6.672× 105s3 − 6.449× 106s2 − 1.86× 107s+ 9.152× 10−6

s4 + 4178s3 + 488800s2 − 1.165× 10−7s− 9.815× 10−20

K21 =
−2915s3 − 3.733× 105s2 − 5.947× 106s+ 2.489× 10−6

s4 + 4178s3 + 488800s2 − 1.165× 10−7s− 9.815× 10−20

K22 =
−1.567× 104s3 − 3.862× 105s2 − 2.05× 106s− 2.492× 10−6

s4 + 4178s3 + 488800s2 − 1.165× 10−7s− 9.815× 10−20
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FIGURE 18. Noise signal added on closed loop system.

FIGURE 19. Verification of anti-interference and anti-noise capabilities.

The simulation results reflecting the anti-interference and
anti-noise performance of the nominal system are shown
in Fig. 19. The influence of the input disturbance and the
output disturbance on the system appears to be quickly
offset within 0.5 s and 0.4 s, respectively, and the noise
signal apparently has little influence on the system out-
put. The system has good anti-interference and anti-noise
capabilities.

Using the above method, we verified that the controllers
designed at all operating points ensure closed-loop system
stability, anti-interference capability, and anti-noise capabil-
ity. For the sake of brevity and to prevent redundancy, only the
average maximum settling time of small and large perturba-
tion systems under the same steady-state error and overshoot
at 10 typical operating points are provided here (Table 1). The
‘‘average maximum settling time’’ here refers to the average
of the maximum settling times of the two output values of
the dual-input and dual-output uncertain systems under the
given step response. Under the same steady-state error and
overshoot, the average settling time of the two outputs of
the closed-loop system with the small perturbation block
decreased by approximately 38%.

TABLE 1. Average maximum settling time of step response.

B. SIMULATION OF ESTIMATED DEGRADATION
PARAMETERS
The nominal state variable model with health parameters is{

1ẋ = A1x + B1u+ L1h+ w
1y = C1x + D1u+M1h+ v

(26)

where 1x = [1PNF 1PNC ]T is a state variable, 1y =
[1PNF 1PNC 1PP3 1PT3 1PP4 1PP45 1PT5 1PP5 1PP6
1PT6 ]T is an output variable, 1u = [1PWF 1PA8]T is a
control variable, and

1h = [1FAN_ETA, 1HPC_ETA, 1MainBurner_ETA,

1HPT_ETA, 1LPT_ETA, 1FAN_WA,

1HPC_WA, 1MainBurner_WA, 1HPT_WG,

1LPT_WH]T

is a health parameter variable; w and v are system noise and
measurement noise, respectively.

The zero-mean white noise with uncorrelated normal dis-
tribution and corresponding covariance matrices are Q and R;
Q = 0.0052I2×2,R = 0.0012I10×10.

Let
1h = [−0.03, −0.03, −0.04, −0.03, −0.02,

−0.03, −0.03, −0.04, −0.03, −0.05]T
.

The estimated health parameters are shown in Fig. 20, where
the proposed model accurately and precisely estimates the
degree of engine degradation.

C. SIMULATION FOR ROBUST GAIN-SCHEDULING
CONTROLLER
By linear interpolation, we obtained a robust gain-scheduling
controller based on performance degradation for an aero-
engine in the flight envelope in this study. We selected
four operating points in the flight envelope of the turbofan
engine and used its nonlinear component-level model as the
controlled object. The robust gain-scheduling controller was
substituted for the control of engine. We made a wide range
of speed steps at different operating points. We observed the
step response effect through the obtained non-linear dynamic
response data to verify the performance of the system.
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FIGURE 20. Estimated health parameters.

FIGURE 21. Simulation for small perturbation system.

FIGURE 22. Simulation for large perturbation system.

The step responses of the small and large perturbation
systems are shown in Fig. 21 and Fig. 22, respectively.
The dashed red line represents the expected percentage
speed of the compressor. The solid blue lines represent the
actual percentage speed of the compressor of the uncer-
tain system. As shown in Fig. 21, the designed controller
gives the closed-loop system good tracking ability and the

robust gain-scheduling controller appears to guarantee stabil-
ity in the entire parameter scheduling range under the vari-
able parameter scheduling scheme; the system shows strong
robustness.

By comparison against the results shown in Fig. 22,
the response speed of the small perturbation system is better
than that of the large perturbation system. The proposed
controller greatly improves the performance of the system.

VI. CONCLUSION
A robust gain-scheduling control technique based on per-
formance degradation for aeroengines was developed in this
study. We first constructed an improved on-board adaptive
aeroengine model to estimate engine performance degrada-
tion and eliminate the degradation term contained in the
perturbation block of the engine uncertain models. Then,
nonlinear uncertain models with engine health parameters
were established and linear uncertain models of the engine
were obtained by linearization at a series of operating points
without degradation and with a certain degree of degradation,
respectively. We also designed robust controllers at selected
operating points without degradation and with a certain
degree of degradation. The controllers of other non-selected
operating points without degradation and with a certain
degree of degradation were obtained by linear interpolation
to establish the robust gain-scheduling controller.

Finally, we ran a series of simulations to find that the
system has good robustness when equipped with the pro-
posed controller. Compared with the traditional robust gain-
scheduling controller, under the same overshoot, the proposed
controller runs approximately 38% faster which markedly
reduces its conservativeness.

A. FUTURE RECOMMENDATION
The controller design presented in this paper is based on the
traditional gain-scheduling algorithm with health parameters
introduced. Indeed, this is a relatively complicated design.
The parameters are actually time-varying, so it is impos-
sible to theoretically prove that the closed-loop system is
globally stable and has desirable properties in the full flight
envelope. It is typically impossible as well to assess a priori
guarantee stability, robustness, and performance properties
in gain-scheduling designs. Rather, any such properties are
inferred from extensive computer simulations. These design
steps are likewise highly complicated.

Robust gain-scheduling control based on LPV systems can,
theoretically, ensure global stability and robustness while
minimizing complexity. We plan to investigate this further in
the near future.
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