
SPECIAL SECTION ON ARTIFICIAL INTELLIGENCE FOR PHYSICAL-LAYER
WIRELESS COMMUNICATIONS

Received January 10, 2020, accepted February 1, 2020, date of publication April 7, 2020, date of current version April 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2986330

Deep Learning for Modulation Recognition:
A Survey With a Demonstration
RUOLIN ZHOU 1, (Member, IEEE), FUGANG LIU1,2, AND
CHRISTOPHER W. GRAVELLE1, (Student Member, IEEE)
1Department of Electrical and Computer Engineering, University of Massachusetts, Dartmouth, MA 02747, USA
2Department of Electronics and Information Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China

Corresponding authors: Ruolin Zhou (ruolin.zhou@umassd.edu) and Fugang Liu (fliu@umassd.edu)

This work was supported in part by UMass Dartmouth’s Marine and Undersea Technology (MUST) Research Program funded by the
Office of Naval Research (ONR) under Grant No. N00014-20-1-2170, and in part by startup funding from Office of the Provost.

ABSTRACT In this paper, we review a variety of deep learning algorithms and models for modulation
recognition and classification of wireless communication signals. Specifically, deep learning (DL) has
shown overwhelming advantages in computer vision, robotics, and voice recognition. Recently, DL has been
proposed to apply to wireless communications for signal detection and classification in order to better learn
the active users for electromagnetic spectrum sharing purposes. Therefore, we aim to provide a survey on
the most recent techniques which use DL for recognizing and classifying a wireless signal. We focus on
the most widely used DL models, emphasize the advantages and limitations, and discuss the challenges as
well as future directions. In addition, we also apply a DL algorithm, convolutional neural network (CNN),
to demonstrate the feasibility of using CNN to recognize and classify the over-the-air wireless signals using
Mathworks DL toolbox with PlutoSDR and Universal Software Radio Peripheral (USRP), respectively.

INDEX TERMS Convolutional neural network, deep learning, deep belief network, modulation recognition,
recurrent neural network, software defined radio.

I. INTRODUCTION
Modulation recognition and classification of wireless com-
munication signals is vital when the electromagnetic spec-
trum is shared among civilian, government, and military to
improve spectrum efficiency and resolve the shortage prob-
lem. Fast recognition and classification of a wireless signal is
a significant process for accurately learning and reliably shar-
ing the spectrum to improve spectrum utilization efficiency.

Machine learning (ML) and deep learning (DL) have
shown overwhelming advantages in computer vision,
robotics, and voice recognition. Recent research on the
application of ML techniques in wireless communications
is blooming. For example, National Institute of Standards
and Technology (NIST) researchers have applied deep learn-
ing (DL) algorithms by training models with pre-existing
offshore radar signals for accurate radar detection. Results
confirmed that some deep learning algorithms outperform the
traditional energy based radar detectors, which can enable
successful sharing of 3.5GHz band between potential users

The associate editor coordinating the review of this manuscript and

approving it for publication was Guan Gui .

and Navy, as well as other Department of Defense members
without RF interference.

In this paper, we review the most recent techniques which
use DL for recognizing and classifying a wireless signal
in terms of modulation schemes. We focus on the most
widely used DL models, emphasize the advantages and limi-
tations, and discuss challenges as well as future directions.
In addition, we also apply a DL algorithm, convolutional
neural network (CNN), to demonstrate the feasibility of
using CNN to recognize and classify the over-the-air wireless
signals using Mathworks DL toolbox with Pluto Software
Defined Radio (SDR) and Universal Software Radio Periph-
eral (USRP), respectively.

The paper is organized as follows: Section II briefly intro-
duces ML and DL for recognizing and classifying signal
modulations as well as the differences between DL and ML
for modulation recognition; Section III reviews four major
DLmodels and summarizes the advantages and limitations of
such models in modulation recognition; Section IV demon-
strates the feasibility of using CNN to recognize and clas-
sify the over-the-air wireless signals using Mathworks DL
toolbox with Pluto SDR and USRP, respectively. Finally,
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challenges and open issues involved in modulation recogni-
tion are discussed in Section V.

II. ML AND DL FOR MODULATION RECOGNITION
ML algorithms for modulation recognition mainly include
decision tree [1], [2], the k-nearest neighbor [3], support
vector machine [4], [5], artificial neural network [6] and some
hybrid algorithms [7]–[9].

DL, a branch of ML, originates from the study of artificial
neural networks and aims at simulating the neural structure
of the human brain. Currently, DL has made remarkable
achievements in computer vision, speech recognition and
natural language processing. In 2006, Hinton proposed an
unsupervised greedy algorithm and used ‘‘complementary
priors’’ to ‘‘eliminate the explaining away effects that made
inference difficult in densely connected belief nets’’ [10],
where the new net structure had many hidden layers. In 2007,
Bengio validated the deep belief network (DBN) model [11].
Their research proved that multi-hidden layer neural net-
work have excellent feature learning ability. The difficulty of
deep neural network training could be effectively overcome
by ‘‘layer-by-layer initialization’’. This discovery not only
solves the computational complexity of the neural network,
but illustrates the superiority of the deep neural network in
learning. In recent years, DL algorithms are being applied
into wireless communication system, such as non-orthogonal
multiple access (NOMA) technology [12], [13], multi-
ple input-multiple output (MIMO) technology [14], [15],
resource allocation scheme [16], [17] and signal modulation
recognition.

Many of them are semi-supervised learning algorithms.
They are used to deal with large data sets with a small amount
of unlabeled data.

DL usually consists of multiple layers, which combine
simple models and transfer data from one layer to another to
build more complex models. Compared to ML algorithms for
modulation recognition, DL requires a hardware accelerator
to expedite computation.

III. MAIN DL MODELS IN AMR
The basic models in DL can be divided into three categories:
multi-layer perceptron, deep neural network, and recursive
neural network. Its representatives include DBN [18]–[25],
convolutional neural network (CNN) [26]–[38], recurrent
neural network (RNN) [39]–[41] and some hybrid mod-
els [42]–[45], respectively. In recent years, researchers use
these basic models or improved models to recognize and
classify signal modulation types.

A. DBN MODEL
DBN has been introduced by Hinton and his collaborators
in 2006 [10]. It consists of multiple layers of restricted
Boltzmann machines (RBM). RBMs are energy-based mod-
els and have the modeling capacity to represent complex
distributions. As shown in Fig. 1, DBN consists of three RBM
units stacked together. Each RBM has two layers: an upper

FIGURE 1. Structure of deep belief network.

hidden layer and a lower visible layer. When stacked into the
network, the RBM1 hidden layer h1 encodes features from
the input layer v and then the data acts as the input layer of
RBM2. If there is labeled data in the training set, the visible
layer of the last RBM contains both the hidden layer unit of
the previous RBM and the labeled layer unit.

DBN is a probabilistic generation model and can estab-
lish a joint distribution between observation data and labels.
It has achieved unprecedented success in speech recogni-
tion [46]–[48], image recognition [49]–[52], automatic mod-
ulation recognition [18]–[25] and other fields [53]–[55].
Table 1 summarizes the recent DBN-based modulation
recognition.

In [18], [19], the authors employ spectral correlation func-
tion (SCF) as pre-processed data to feed into DBN-based
identification scheme. They transform the 3-D SCF patterns
of received modulation signals into 2-D SCF patterns. Then,
the grayscale images of the 2-D SCF patterns are used as the
input data for the semi-supervised training of the DBN. They
obtain a higher accuracy of classification in the presence of
environment noise. Using the scheme, the authors of [20]
could detect and identify micro unmanned aerial systems
(UASs). The authors of [21] use amplitude information and
spectrum of receiving signals as the training data of DBNs.
The limitation of this scheme is that the recognition accuracy
of noisy PSK is lower because phase information is more
obscure in training data.

A common application of DBN is feature extraction. Its
feature extraction function can be used in different concepts
with different granularity. The authors of [22] propose a
combination of DBN and SVM, where the stacked RBM
networks are used to form a DBN structure to extract features
of input data. SVM is used to classify extracted features.

Because the huge amount of floating-point multiplication
operations and the nonlinear activation functions of artificial
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TABLE 1. DBN-based MR.

neuron units are inevitable, DBN models in MR have a
high computational complexity. In [23], the MR problem is
converted into an image recognition problem by projecting
the original data into a graphic constellation image. After
that, they use DBN as the classifier and achieve a supe-
rior result compared to conventional ALRT in computational
complexity. The authors of [24] use the average SCF of
I- and Q- components as the input for the DBN-based pattern
recognition and obtain a low-complexity DBN-based MR
scheme. They represent the multiplication weight constants
during the training procedure by using -1, 0, or 1 and employ
approximation functions to achieve direct mapping to digital
logic circuits. Such a scheme can realize the identification on
FPGA hardware for real-time processing.

There are also problems with over-fitting in DBN. Because
of the vanishing gradient, the training effect of lower and
higher levels in network depth is different. In this case,
the compulsory errormonitoring trainingwill make themodel
fit the input data directly, leading to the over-fitting phe-
nomenon. Under different training data and network parame-
ters, appropriate network depth should be selected to achieve
better recognition results. In scheme of [21], the DBN with
3 hidden layers shows the best result.

B. CNN MODEL
CNN is a feedforward neural network which contains con-
volutional computation and deep structure. It is a popular
DL model. The first convolutional neural network is Time
Delay Neural Network (TDNN) [56]. It has two hidden layers
and can discover acoustic-phonetic features as well as the
temporal relationships between them. One of the advantages
of CNN is translation-invariance. It is not blurred by tem-
poral shifts in the input. After TDNN, LeCun constructed
a convolutional neural network, LeNet [57], for image clas-
sification, and LeNet-5 for recognition of handwritten num-
bers [58]. LeNet-5 and its subsequent variants define the basic

structure of modern convolutional neural networks. With the
improvement of deep learning theory, the application of CNN
models has developed rapidly and grown deeper in structure.
Various learning and optimization theories are introduced
and developed. The representative CNN algorithms include
AlexNet [59], ZFNet [60], VGGNet [61], Google LeNet [62],
and ResNet [63].

CNN has a number of merits such as local perception,
weight sharing and shift invariance. It exploits spatially local
correlation by enforcing a local connectivity pattern of adja-
cent layers, sharing weights across each layer [64]. An essen-
tial hypothesis of CNN is that input data is localized and
shift invariant. The sampled data of communication signals
are in accordance with the basic hypothesis. In the past few
years, deep learning techniques have achieved state-of-the-art
performance in pattern recognition tasks. InMR, the common
architecture of CNN is shown in Fig. 2. The recent related
work is summarized in Table 2.
For example, Wang et al. apply CNN to radar wave-

form recognition by transforming one-dimensional radar sig-
nals into time-frequency images (TFIs) using time-frequency
analysis and design a convolutional neural network to
recognize the frequency variation patterns exhibited in
TFIs [26]. One-dimensional radio signals are transformed
into spectrogram images using the short-time discrete Fourier
transform (STFT) and fed into CNN [33]. The constella-
tion diagrams are used to train CNN in [30] and [35].
In [30], the authors combine two convolutional neural net-
works (CNNs) trained on different datasets. Besides con-
stellation diagrams, they also use phase and quadrature (IQ)
samples and obtain a better result in classifying QAM signals
with a low signal-to-noise ratio. CNN in signal modula-
tion recognition is often hampered by insufficient data and
overfitting. In [35], the authors use the auxiliary classifier
generative adversarial networks (ACGANs) as the generator
and improved training method to alleviate the overfitting and
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FIGURE 2. Structure of convolutional neural network.

TABLE 2. CNN-based MR.

model collapse. It could improve CNN classification and
obtained 0.1%-6% increase in the accuracy.

C. RNN MODEL
Fully connected DNNs have a significant limitation. The sig-
nals of each neuron layer can only be transmitted to the upper
layer, and the processing of samples is independent at each
time. It cannot model changes in time sequences and can only
be used in the condition that inputs and targets can be encoded
with vectors of fixed dimensionality [65]. However, in many
cases, such as natural language processing, speech recogni-
tion, handwriting recognition and other applications, the time
sequence of sample occurrence is very important [66], [67].
As shown in Fig. 3, there are weights between the neu-
rons in the hidden layer. The output of neurons can directly
act on itself in the next time stamp. As the sequence pro-
gresses, the previous layer will affect the next hidden layer.

The biggest difference between RNN and basic neural net-
work is that the latter only establishes weighted connec-
tions between layers, while the former establishes weighted
connections between neurons in the same layer. The recent
related work is summarized in Table 3. The special memory
function of RNN can be applied to some forecasting problems
which are not independent of the data at the previous and
later moments. The authors of [39] propose an improved
structure based on RNN models which has two gated recur-
rent unit (GRU) layers and two dense fully-connected lay-
ers. In this scheme, temporal sequence characteristics of the
communication signals are used as input directly and obtain
a higher performance compared to the CNN model in [36].

In theory, there is no limit on the length of the sequence
data processed by RNN. However, the long sequence
data cannot be processed in practice due to the problem
of gradient vanishing or explosion. In 1997, Hochreiter
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TABLE 3. AMR using RNN, LSTM and hybrid model.

FIGURE 3. Structure of recurrent neural network.

and Schmidhuber [65] designed a Long Short-Term Mem-
ory (LSTM) architecture to address the vanishing and explod-
ing gradient problems of conventional RNNs. Subsequently,
researchers such as Graves and Hasim have improved the
algorithm [68]–[71] and LSTM has achieved consider-
able success and been widely used. In recent years, some
LSTM-based RNN architectures can obtain state-of-the-art
performance in MR. As shown in Table 3, researchers use the
same dataset (RML2016.10a [29]) as the initial communica-
tion signals and different LSTM structures for MR [40], [41].

D. HYBRID MODEL
As shown in Table 3, a combination of CNN and LSTM
called CLDNN is proposed in [41]. In the scheme, two or
three convolution layers are followed by recurrent layers.

It can be seen as a hybrid model. CNNs and LSTMs are
complementary in their modeling capabilities, as CNNs are
good at reducing frequency variations and LSTMs are good
at temporal modeling [71], [72].

Researchers often combine CNN with LSTM algorithm as
in [42]–[45] for recognizing modulation schemes. The hybrid
model of CNN and LSTM are shown in Fig. 4. In the hybrid
model, a LSTM layer is added into the CNN architecture. The
input data is imported into CNN layer and the outcome of
CNN is fed into LSTM layer. CNN layer extracts the implicit
information in time dimension and transmits higher quality
and high concentration features to LSTM layer. The authors
of [42] apply the CLDNN architecture and obtain the best
performance among all tested network architectures.

Due to its long-term memory ability, the hybrid method is
suitable for the causality characteristic of time domain radio
signals. Experimental results in [43] and [44] demonstrate
that the fusion model achieves much better performance than
the independent network. The lower computational com-
plexity is also mentioned in both papers. In addition to the
common combination of CNN and LSTM, there are other
combinations, such as DNN&LSTM, CNN&LSTM&DNN,
and so on. The related structural analysis is detailed in the
literature [71].

E. DISCUSSION
The representative DL algorithms have been applied forMRC
due to their ability to learn and extract features automatically
from sampled data, make decision, and complete classifica-
tion. Most of the literature only focuses on the advantages
of the algorithms they have adopted, and seldom mention
the shortcomings of the designed models. Less literature
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FIGURE 4. Structure of CNN & LSTM network.

TABLE 4. Advantages and limitations of the main DL models.

systematically analyzes the advantages and limitations of
various model structures. We summarize the advantages and
limitations of the such models in the Table 4.

DBN is a probabilistic generation model and can establish
a joint distribution between observation data and labels. In the
existing literature, using SFC-based features of modulated
signals can process the probability of the observation given
the label as well as the probability of the label given the
observation, and reflect the similarity of the same kind of
data itself, while the conventional discriminant model can
only evaluate the latter. However, the generated model does
not care where the optimal classification surface is between
different classes (SFC pattern in MR), so the classification
accuracy may not be as high as that of the discriminant
model when used in classification problems. The complexity
of learning process is higher to some extent as the generative
model learns from the joint distribution of data. CNN convo-
lution is good at approaching global features from local fea-
tures. Its weight sharing strategy reduces the parameters that
need to be trained, and the same weight can make the filter
detect the characteristics of the signal without the influence
of the position of the signal. In MR using CNN, the pooling
operation can reduce the spatial resolution of the network
and eliminate the small offset and distortion of the signals.
In the scheme, the translation invariance of the input data is
not required. In depth model of CNN, the vanishing gradient
problem is a distinct shortcoming. It has been partly solved
by introducing ReLu function. Compared with CNN, RNN is
a deep model in time dimension and is specially designed to
solve time series problems. Supplemented by LSTM, it has

a certain memory effect and may overcome the vanishing
gradient problem.

IV. DEMONSTRATION OF CNN-BASED SIGNAL
CLASSIFICATION USING SDR
As an example of a current deep learning model used to
automatically classify signal modulation types, Mathworks
has created a demonstration [73] which uses the CNN along
with PLUTO SDR peripherals as a proof-of-concept of the
MR. We expand upon the example by introducing USRP’s
to be used as the RF front-end in place of the PLUTO SDR
peripherals in order to demonstrate the efficacy of the CNN
model used in [73] across different hardware environments.
The comparison of two different RF front-end is summarized
in Table 5.

TABLE 5. Comparison of PLUTO and USRP.

A. TRAINING AND VALIDATION
The initial investigation into the behavior of the CNN begins
by removing a section of 4 hidden layers from the architecture
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of the model, shown in [73]. No adjustment to the hyper-
parameters of the CNN is made. The four removed hidden
layers are all unique, namely: a convolution layer, a batch
normalization layer, a ReLU (rectified linear unit) layer, and
a max pooling layer. All of the hidden layers follow this
pattern, respectively. As they are dependent on one another,
all 4 layers are removed as a unit. The network is then trained
using the generated waveforms. An example of a training
accuracy and loss graph is shown in Fig. 5. Notice that the
greatest leap in learning takes place over the course of the first
epoch, with much smaller increases in classification accuracy
occurring over the remaining 11 epochs.

FIGURE 5. Training accuracy and loss curves - remove a section of layers.

Training the CNNwith 4 layers removed achieved a valida-
tion accuracy of 92.37% after an elapsed time of 37 minutes
18 seconds operating on a single 12-core cpu. These values do
not differ significantly from the baseline validation accuracy
of 95.69% in [73], and the training time increases by about
12 minutes.

Then, the removed hidden layers are returned, and 4 more
hidden layers are added in the same manner that they are
removed (a convolution layer, a batch normalization layer,
a ReLU layer, and a max pooling layer). Adding layers
requires the stride length for the first two hidden layers be
adjusted in order to allow for the input to the final fully
connected layer to be of the proper dimensions. No other
hyperparameters are changed.

Training the CNN with an additional layer took a total
elapsed time of 80 minutes 16 seconds. The accuracy
increased relative to both the baseline network and the
network with 4 layers removed, ending with a validation
accuracy of 96.15%, shown in Fig. 6. Table 6 summarizes
the training statistics.

B. DEMO
Eight digital modulation types are recognized and classified
in this demonstration: 64-QAM, 16-QAM, 8-PSK, BPSK,
CPFSK, GFSK, PAM4, and QPSK. The transmitting radio
repeatedly and without interruption sends out the modulated
signal until 100 frames are captured by the receiving radio.
These frames are passed to the trained CNN model to be
classified as one of the eight digital modulation types. This
process is repeated for each modulation type. Upon com-
pletion of the demonstration a confusion matrix is displayed

FIGURE 6. Training accuracy and loss curves - add a section of layers.

TABLE 6. Summary of training statistics.

which details the accuracy of the CNN by comparing the true
signal type to the predicted signal type. An overall accuracy
is also calculated and displayed based on this result. The
physical system for the PLUTO SDR setup is shown in Fig. 7.
Notice that the PLUTOSDRs are about two feet apart without
any obstructions between them in a low-noise environment.
The given parameters are preserved for this portion of the
demonstration. Important parameters are center frequency
set to 900MHz, sample rate set to 200KHz, and a gain
value which is automatically set using the matlab parameters
related to the PLUTO SDR system object.

FIGURE 7. Physical system using PLUTO SDR peripherals.

A classification accuracy of 95.5% is achieved using
PLUTO SDR. The resultant confusion matrix is shown
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FIGURE 8. Confusion matrix for PLUTO CNN classification demonstration.

in Fig. 8. As may be gathered by the overall classification
accuracy, as well as the confusion matrix, the CNN model
successfully classifies a very high percentage of signals prop-
erly indicating it can be useful for practical implementations.

FIGURE 9. Physical system using USRPs.

In order to further demonstrate the efficacy of the CNN
used in [73], we introduce USRPs in place of the PLUTO
radios to show the example is scalable and not hardware
dependent. The physical system is similar to the previous and
is shown in Fig. 9. Notice that the distance between the radio
peripherals is larger, about six feet; however, there are still
no obstructions in the same low-noise environment. Certain
parameters must be changed in order for the demonstration to
be optimized for the USRPs as opposed to the PLUTO radios.
A center frequency of 2.483 GHz is used with a sample rate
of 400KHz. The gain is manually set to be 15dB which we
found to be the best value for this demonstration under the
specified conditions.

A classification accuracy of 96.25% is achieved using
USRPs. The resultant confusion matrix is shown in Fig. 10.
The classification accuracy is similarly high compared to
the demonstration using PLUTO radios, indicating further
that such a CNN implementation is feasible in classifying
over-the-air signals and can work with different hardware
peripherals.

FIGURE 10. Confusion matrix for USRP CNN classification demonstration.

V. CHALLENGES AND FUTURE RESEARCH DIRECTIONS
As stated in the existing literature, compared with the tra-
ditional modulation recognition methods, the application
of deep learning can simplify the signal processing steps
and improve the system recognition performance as well as
provide more accurate and efficient modulation recognition
methods.

However, many papers are based on ideal assumptions and
depend on a large number of labeled signal samples. Most
of the research work stays in the simulation stage. In the
practical application scenario, the communication environ-
ment is more complex, the signal frame length is diverse,
the length and systems are usually different. Although LSTM
model can partially solve the problem of variable input vector
length, there is an urgent need for effective variable length
learning algorithm to make up for the current gap in the field
of signal processing. Another challenge is how to extract fea-
tures effectively under negative signal-to-noise ratio (NSNR).
In the complex communication environment, the quality of
communication is often too difficult to be guaranteed. The
classification effect of existing algorithms in harsh environ-
ments still needs to be greatly improved. How to use learning
algorithms to effectively separate noise and excavate deeper
features still requires effective investigation.

The dataset is a key factor in the application of deep
learning. In the existing works, some authors [39]–[42],
[44], [45] used the same dataset (RadioML2016.10a or
RadioML2016.10b) to train the different DL models. Others
used the dataset generated by themselves. However, with
the increasing complexity of the communication environment
and the increasing demand for various specific tasks, it is
impossible to ensure that a large training data set is carefully
constructed for each task. To solve this problem, the con-
struction of semi-supervised algorithm systems is desired.
By collecting a large amount of data, only a few of which
are labeled samples, effective semi-supervised algorithms can
meet the rapid growth of various signal processing needs.

Another challenge in the future is how to build hardware
platforms, transplant programs and validate the algorithms
through measured data. In this direction, the authors of [22]
propose a flexible end-to-end wireless communications
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prototype platform for real physical environments. The
authors of [24] design an intelligent system for the proposed
low complexity DBN targeting Xilinx-vertex6 FPGA chip.
They apply the system to identify the micro unmanned aerial
systems and realize automated modulation classification in
cognitive radio. However, the micro unmanned aerial systems
in the experiment is indoor static. The detecting accuracy
of ASK, BPSK, and QPSK modulation is lower than that
achieved via conventional DBN due to more constrained
parameters in the low-complexity DBN. In the future, it is
necessary to consider how to implement DL-based commu-
nication signal modulation identifier on the FPGA, which
requires further research on data quantization, model com-
pression and other related research. Finally, as an effective
tool for analyzing data and extracting features, DL techniques
have great application and expansion value. Combining the
DL model with other intelligent algorithms can achieve more
powerful performance in different fields.
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