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ABSTRACT The burgeoning growth of Big Data not only matures and improves the data management
efficiency and useful information extraction techniques, but also motivates the computational science
researchers to come upwith a newmethod or solution that can be repurposed for problems across the domain.
Computational Sustainability joins this movement for a transferrable computational technique for sustainable
development and a better future. Internet-of-energy (IoE)– leveraging IoT to smart grids associated with
advanced analytics– is one of the prominent efforts in this regard. This paper presents a qualitative analysis
on the elements of the energy and power management ecosystem in the United States. This qualitative
study includes the Grid Overview of the United States; Weather and Climate and its impact on the entire
energy generation and consumption dynamics; Peak Load Forecasting and its techniques and burgeoning
challenges; Variable Renewable Energy, its reliability challenges and how we can take advantage of this
variability; Commodity Prices and its criticality; Energy Disaggregation and its impact on consumption-
awareness; and Generation Expansion and Decision Analysis. Besides, IoE integration, associated trade-
offs, challenges, research opportunities and transferable computational techniques are addressed in this
communication. Furthermore, schematics and quantitative analysis are presented in support of this study.

INDEX TERMS Computational sustainability, Internet of Things, smart grid, Internet of Energy, big data,
transferable computational techniques.

I. INTRODUCTION
Computational Sustainability, a massively interdisciplinary
field of study, lies in the intersection of the multiple
domains, such as applied mathematics, statistics, computer
and information science, electrical and electronic engineer-
ing, economics, environmental science, operational research,
and policymaking [1], [2]. The overarching goal of this
field of study is leveraging the knowledge of these mul-
tiple domains to meet the essentials and demands of the
current generation without compromising the future genera-
tion’s potentiality to confront their known needs and prosper
[3]–[5]. Computational Sustainability joins the movement of
sustainable development through developing data-driven and
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robust computational models and adopting scientific methods
to optimize decisions regarding resource allocation and man-
agement with the motivation to solve the most challenging
sustainability problems [6]–[9]. The rise of Big Data and
advanced analytics have contributed to the recent surge in this
effort [10], [11].

The advent of the Big Data era brings scopes and oppor-
tunities for computational sustainability research regarding
multi-dimensional challenges, complexities of the problems,
scalability issues, computational efficacy, and impact towards
overarching motivation [12]–[14]. This abundance of data
not only comes with ample information and potential knowl-
edge but also offers a scientific approach driven by multi-
source data and enhances the efficiency and accuracy of
problem-solving. That is why the growth of extensive multi-
dimensional data and computational sustainability are crucial
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to meet the sustainability challenges [12], [15]. They con-
tribute to addressing tradeoffs in scientific decision making,
understanding complicated systems, and explaining uncer-
tainties with complex reasoning [16], [17]. CompSustNet,
a unique virtual network led by Carla Gomez at Cornell
University and supported by the National Science Founda-
tion (NSF) of the United States, establishes on the research,
results, and achievements of the ICS (Institute of Compu-
tational Sustainability) [1], [2], [18]. It unites and helps
more and more scholars, across the domain, use data mining
techniques to solve the most complex and pressing prob-
lems of this time, such as efficient and reliable energy man-
agement [19], [20], healthcare [21]–[23], biodiversity loss
protection, addressing issues regarding climate change and
environmental collapse [24], [25], poverty eradication [26],
[27], meteorology [28]–[30], disaster management [31], [32],
and material discovery for renewables sources [33]–[36].
The most compelling aspect of this virtual network– besides
making a platform for computational science researchers to
put their muscle towards making the world a more sustainable
and livable place– is that a new method or solution created to
solve one particular problem can be repurposed for another
distinct problem.

One of the major attention of computational sustainability
research is centered around the question of how we can
leverage Big Data accumulated from the smart grid compo-
nents and raise collective awareness and proactive demeanor
towards smart and sustainable energy management [37], [38].
Besides Big Data, the recent advancement of information and
communication technologies allows the regime switch from
a traditional ‘‘predict (forecast) and provide’’ approach to
a more flexible and responsive demand-based approach of
power system management. The purpose of this approach is
to reach several policy targets regarding sustainability, such as
reducing carbon emissions, generating power from renewable
resources to a certain percentage, smoothing peak demand,
assuring a better rate of return on investments, and preventing
network overprovisioning [15], [39], [40].

Smart Grid technology facilitates more accurate energy-
loss monitoring and more precise control and adaptive tech-
niques by escalating the intelligence and capacity of the
energy distribution, as well as the control system, from the
central cores to numerous peripheral nodes [13], [41], [42].
On a different note, recent studies showed that IoT is looming
as a significant trendsetter in realizing the advancement of
information and communication technologies, and analytics
at a considerable dimension. IoT enables connecting, moni-
toring, and controlling the physical objects used in our day-
to-day life by extending the web paradigm. It engenders more
frequent and impactful human-to-machine and machine-to-
machine interactions in everyday life. Smart Grid is one of
the recent inclusions in this avenue, realizing the concept of
the Internet of Energy (IoE) [43]–[46].

The overarching motivation behind the Internet of Energy
(IoE) is assuring a flexible but highly reliable and resilient,
cost-effective, and efficient power supply network in the com-

bination of large-scale centralized generators and small-scale
renewable sources. IoE can convincingly be defined as a net-
work infrastructure that enables a real-time balance between
the local and global generation and storage capability based
on the energy demand of the consumer [47]. It allows for a
high level of consumer awareness and involvement with the
help of advanced analytics. From the functional point of view,
IoE, de facto, integrates power distribution, energy storage,
grid monitoring, and synchronous and asynchronous commu-
nication, as illustrated in Figure 1. This network infrastructure
is built on the standard and interoperable communication
transceivers, gateways, and protocols. Besides, by taking
advantage of widely accepted security and privacy frame-
works, it can assure seamless interoperability and broad con-
nectivity. And, by leveraging the power of cloud computing
systems, it can promote service virtualization and distribution
[48].

To benefit the new entrants and scientists in the domain of
smart grid and IoE around the world, the authors of this article
decided to take a step back and take a more in-depth look
at specific research issues before delving into the IoE inte-
gration, challenges, and possible solutions to address these.
These research issues are not only studied for long to under-
stand the entire dynamics of energy production, transmission,
distribution, and consumptions system but also anticipated to
be addressed by IoE in the large scale deployment. In this
paper, we primarily discuss the Grid Overview of the United
States; Weather and Climate and its impact on the entire
energy generation and consumption dynamics; Peak Load
Forecasting and its techniques and burgeoning challenges;
Variable Renewable Energy, its reliability challenges and
how we can take advantage of this variability; Commod-
ity Prices and its criticality; Energy Disaggregation and its
impact in consumption awareness; andGeneration Expansion
and Decision Analysis and trade-offs before addressing IoE
integration, and challenges. The article manifests how these
research issues are correlated with each other in the energy
internet. This qualitative study pursues a process of scientific
inquiry that seeks an in-depth understanding of scientific
phenomena and its cause and effect in respective contextual
settings. It primarily concentrates on answering ‘‘why’’ rather
than ‘‘what’’ of the scientific phenomena and entrusts on the
evidence manifested in the literature, in addition to comments
and suggestions by the domain experts at Oregon Renewable
Energy Center (OREC) at Oregon, United States.

The organization of this article is as follows. Section II
presents an overview of the United States energy grid.
Load forecasting is outlined in Section III, highlighting the
impact of weather and climate and state-of-the-arts fore-
casting techniques. Section IV features the penetration of
renewable energy, investigating the variability of renewables
and the effect of commodity prices. Section V delves into
understanding energy consumption and explores energy dis-
aggregation techniques and generation expansion decision
analysis. In section VI, we dissect our discussion on IoE into
IoE architecture, broader impact, challenges, computational
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FIGURE 1. Functional layers of IoT application, accumulating physical, data and operational layers with communication and
power lines.

FIGURE 2. Information flow of each of the aspects in this paper.

sustainability and IoE, future works, and opportunities. Con-
sidering the breadth of the article, Figure 2 summarizes
each of the sections and subsections to help the reader
navigating concepts and research issues discussed in this
paper.

II. GRID OVERVIEW OF THE UNITED STATES
With the evolution of the energy industry, utility companies-
for the very first time in the United States- adopted the joint
operations in order to share the peak coverage and backup
power in the 1920s after a more-than-fifty-years-adherence
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FIGURE 3. United States synchronous grid of 186, 411 miles.

to the conception electric energy needs to be produced near
the device or service requiring that particular energy. Then,
in this regard, the Public Utility Holding Company Act was
passed in 1934, realizing the electric grid of the United States
with outlined restrictions and regulatory oversight of opera-
tions. Later on, to date, the Energy Policy Act of 1992 and
the Energy Policy Act of 2005 are considered as the step-
ping stone of the modern electric grid of the United States
[49]–[51]. The first one granted the electric genera-
tion companies open access to the transmission line
network and initiated competition in power genera-
tion as opposed to vertical monopolies, where gener-
ation, transmission, and distribution were administered
by a single authority [52]. The later one promoted the
alternative energy production and greenhouse emission
free cutting-edge technologies with incentives and loan
guarantees [53], [54].

United States interconnects are synchronized at 60 Hz,
unlike those of Asia and Europe operate at 50 Hz. The inter-
connects in the United States are tied to each other either
via DC ties (HVDC power transmission lines) or with VFTs
(variable frequency transformer), allowing a controlled flow
of energy, and at the same time, isolating the each side’s
independent AC frequencies functionally. The advantages of
having synchronous zones consolidated by the utility grid
include pooling of generation, pooling of load, common pro-
visioning of reserves, opening of the markets, and collective
assistance in the event of interruptions [55]. On the contrary,
the possibility of repercussions (like a chain reaction) across
the entire grid, if any problem happens in one part, is a certain
threat in the case of synchronous grid [56]. The United States

synchronous grid is presented in Figure 3, consisting of about
186,411 mi operated by more than 500 companies [56].

The United States utility electric grid is expected to con-
front certain challenges in the years to come posed by the
modern power generation and distribution systems. Refer-
ence [57] identified the challenges and the reasons behind it,
and contemplated the possible solutions of them in a com-
prehensive fashion. In a nutshell, the challenges- categorized
there based on the severity and impact- are cyber threats and
attacks in utility, challenges in transmission system, from
aging infrastructure, regulatory challenges, challenges in
workforce, challenges from distributed generation and mixed
sources of generation, challenges from the intermittent nature
of renewable energy sources, challenges from microgrid
and smart grid, challenges from communication, challenges
from energy storage systems and evolving technologies,
and challenges from system complexity and cost issues.
Here, their feasible solutions- with detailed explanation and
depiction- include cyber security measures, upgrading the
system infrastructure, new business strategies, compensating
for the intermittency of renewables (concentrated on the law
of large number, power of prediction, incentivizing energy
production at the right time and place), and the proper use
of energy storages. Later, they presented the severity and
frequency analysis for each of the challenges in the United
States context.

Super Grid, commonly known as Mega Grid, aims to con-
siderably advance the transmission capacity with a particular
policy that include effectively enabling the renewable energy
industry to sell electricity to distant markets, increasing
intermittent energy source usage by distributing them across
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FIGURE 4. Geographical distribution of Federal MG assessment and demonstration projects in the United States.

the extensive geological region, and trimming the congestion
that averts the electricity markets from succeeding. Then,
to promote the concept of integrating localized generation
into the centralized generation-based distribution, microgrid
technology has been introduced. In 2010, Office of Electricity
Delivery and Energy Reliability of the US Department of
Energy (DOE)– incorporating the final amendment made
in 2017– proposed the definition of Microgrid (MG) as it
is a group of interconnected loads and distributed energy
resources within clearly defined electrical boundaries that
acts as a single controllable entity with respect to the grid,
can connect and disconnect from the grid to enable it to
operate in both grid-connected or island-mode, considering
that a remote MG is a variation of an MG that operates
in islanded condition [58]. DOE started their major MG
program in 2008, initiating with nine RDSIs (Renewable and
Distributed Systems Integration) depicted as green points
in Figure 4. These projects– with $100M budget equally
financed by the DOE and co-funders– aimed to achieve a
minimum 15 peak load reductions. The red points illustrate
the projects under SPIDERS program (Smart Power Infras-
tructure Demonstration for Energy Reliability and Security)
launched in 2010. The SPIDER program was introduced to
meet the fact that almost all the military bases are located in
the resource-limited setups inadequately served by the utility
grid where highly reliable power is often required. The first
three among this effort are Hickam Air Force Base and Camp
Smith in Hawaii, and Fort Carson in Colorado. Though the
federal programs are the cardinal efforts to the United States
MG research in the early stage, private sector activities in the

recent years are noteworthy. The large commercial organi-
zations, such as educational campus, medical institutes, and
industrial sites, focused on building self-generation projects.
In a dramatic fashion, these efforts made 2011-2012 a pivotal
year in MG development for the United States. DOE defined
the next-generation MG system with certain specific goals
expected to achieve by 2020. The goals are to establish MG
systems of a capacity<10 MW in commercial-scale capable
of curtailing outage time of required loads by more than 98%
at a cost comparable to the nonintegrated-baseline solutions,
while offering more than 20% improvement both in emission
reduction and energy efficiency. Research shows control
and protection are the significant challenges to meet this
goal [58].

According to North Carolina Clean Energy Technology
Center, in 2017, 37 states– well-reflected by 82 relevant
bills introduced in the different regions of the United States–
endeavored to modernize electric grid to make it more
interactive and resilient. These endeavors include deploying
advanced metering infrastructure, smart grid, and offering
time-varying rates for the residential consumers. Recently,
in August 2018, a policy paper has been published with
five major recommendations to modernize the United States
electric power grid. It points out making the federal permit
process more efficient and effective for advanced energy
projects, inspiring grid planners look at the alternatives to
making investment in transmission, promoting energy effi-
ciency and allowing energy storage to compete with the
additional generation, allowing big consumers to adopt their
own source for electricity, and letting both the consumers and
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FIGURE 5. Distribution of generation from different sources in the United
States in 2017.

FIGURE 6. Annual share trend in United States for electricity generation
by source from 1950 to date.

utilities to take advantage leveraging the cloud computing
facilities [59], [60].

21st Century’s electrical grid in the United States is blessed
with smart grid technology that leverages the power of
two-way communication and distributed-intelligent devices,
assuring improved delivery network. With the objective to
enable utilities predict their demand efficiently and involve
customers in smart-time-of-use-tariff, smart grid develop-
ment was facilitated in the United States by Energy Policy
Act of 2005 and Energy Independence and Security Act
of 2007. A recent surge has been observed in the literature
regarding different systems and aspects of smart grid. We can
categorize these research into three clusters: infrastructure
system research, research on the management system, and
research on the protection system. The infrastructure system
research are aiming to meet advanced electricity generation,
uninterrupted delivery, and intelligent consumption; smart
information metering, monitoring, and management; and last
but not the least, advanced interactive communication tech-
nology. Research on the management system- leveraging
advanced machine learning, optimization, game-theoretical
approaches- include improving energy efficiency, demand
profile, cost, utility, and carbon emission. Most of the
research on protection systems focus on grid reliability, fail-
ure, and privacy protection, security services [61], [62].

In 2017, Utility-scale facilities generated about 4.03 tril-
lion KWh of electricity in the United States. Among them,
majority (about 67%) of this generation was from fossil fuel,
19% was from nuclear energy, and roughly 14% was from

renewable energy sources. Apart from that, United States
Energy Information Administration reckoned an additional
generation of 24 billion kWh from the small-scale solar pho-
tovoltaic systems, such as small-scale solar photovoltaic sys-
tems that are installed on building rooftops, in 2017 calendar
year [63]. Figure 5 illustrates the distribution of generation
from different sources. Then, Figure 6 shows the annual share
trend in United States for electricity generation by source
from 1950 to date and Figure 7 depicts the evolution of the
generation mix contributing to the United States electric-
ity generation over the time. The generation mix is highly
affected by the resource availability of the particular state.
The following figure (Figure 8) illustrates the net generation
distribution of electricity by type and states [63].

This varying-nature of resources with time and region,
along with other commercial factors, have a predominant
influence on the tariff. In 2006-2007, average electricity
tariff in the united states- though it varies state to state-
was higher than Canada, Australia, France, and Sweden,
but relatively lower than that of the United Kingdom, Ger-
many, and Italy among the developed countries, and the aver-
age residential bill was noted $100 per month. A statistics
of 2008 shows the United States average electricity tariff
was 9.82 Cents/kWh, varying from 6.7 Cents/kWh (in West
Virginia) to 24.1 Cents/kWh (in Hawaii). Compared to that,
data of October 2018 reveals that the average electricity
tariff is 12.87 Cents/kWh, varying from 9.11 Cents/kWh (in
Louisiana) to 32.46 Cents/kWh (in Hawaii). It demonstrates
a 0.5% rise in price compared to 2017 [64].

United States grid is organized administratively in the fol-
lowing order: Reliability organizations; Balancing authorities
that include independent system operators, regional transmis-
sion organizations, and vertically integrated utilities; Genera-
tors comprised of utilities and independent power providers;
and Load Serving Entities [65]. NERC (North American
Electricity Reliability Corporation) is the not-for-profit orga-
nization to assure reliability of the north american bulk power
system. They are in charge of monitoring and enforcing
compliance with standards, besides being the authority of the
data source for system reliability and system failure. Since
the United States power system is interconnected physically,
any problem occured in one area may influence other inter-
connected systems, and NERC is centrally responsible to
take care of it and assure reliability. Besides, NERC’s major
responsibilities include working with all the stakeholders to
develop well-defined standards for power system operation,
monitoring; and enforcing compliance with those standards,
assessing resource adequacy, and providing educational and
training resources as a part of accreditation program to ensure
power system operators remained qualified and proficient
in operation. NERC oversees eight regional reliability enti-
ties. The sub-parts of NERC are WECC (Western Electricity
Coordinating Council), MRO (Midwest Reliability Organiza-
tion), NPCC (Northeast Power Coordinating Council), SPP
(Southwest Power Pool), RFC (Reliability First Corpora-
tion), SERC (SERC Reliability Corporation), FRCC (Florida
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FIGURE 7. Evolution of the generation mix contributing to the United States electricity generation over the time.

FIGURE 8. Net generation distribution of electricity by type and states in
the United States.

Reliability Coordinating Council), TRE (Texas Reliability
Entity). Traditional wholesale electricity market, which are
vertically integrated so that they own and are responsible
for the generation, transmission and distribution systems to
serve the electricity consumers, exists in the south east, south
west, and north west. In other part of the United States,
the power systems are managed by Independent System
Operators (ISO) and Regional Transmission Organizations

(RTO), facilitating open access to transmission. In partic-
ular, ISO operates the transmission system independently,
and foster competition for electricity generation among the
wholesale market participants [66], [67]. The extent of ISOs
are visualized by Figure 9.

Each of the ISOs and RTOs have energy and ancillary ser-
vices markets in which buyers and sellers can bid for or offer
generation. These ancillary services include reserves, fre-
quency regulation (grid needs to be operated at 60Hz in
the United States), and demand response. Though the vital
sections of the United States operate under more traditional
market structures, two-thirds of the nation’s electricity load
is served in RTO regions [66]–[68].

III. LOAD FORECASTING
A. WEATHER AND CLIMATE OF THE UNITED STATES
Weather and climate have an impact on both sides of the elec-
tricity industry- it drives the energy consumption demand,
affects most of the noncombustible generation, and has an
effect on electricity transmission and distribution. Before the
expository narratives on the impacts, challenges, and state-
of-the-art solutions, we need a proper understanding of three
factors and its interpretation: weather, climate, and extreme
weather. Here, temperature change, precipitation, humidity,
and wind speed are interpreted and interchangeably used as
the weather. Climate refers to the average seasonal condi-
tions for a particular geographical area. In our study, extreme
weather will include droughts, floods, hurricanes, heat waves,
and cold snaps; statistically rare weather events that have
cataclysmic impacts. The weather elements that directly
affect the demand are as follows: temperature, wind speed,
cloud, visibility, and precipitation. For example, the temper-
ature, being allied to wind speed, regulate heating or cool-
ing demand. Besides, cloud, visibility, and precipitation are
considered to estimate the level of daylight illumination,
therefore affecting the lighting demand. Research shows that
each of the attributes of these meteorological elements has
weighted sensitivity to demand and the sensitivity weight
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FIGURE 9. Extent of ISOs in the United States.

FIGURE 10. Electricity consumption in US homes during 2018 (kWh/year).

varies with the geographical location of the representative
region. To compare the impact of weather elements, the mete-
orological elements are scaled down to three specific factors:
effective temperature, cooling power of the wind, and rate of
precipitation [69]–[71].

Figure 10 shows why the demand side of the energy sys-
tem is related to the weather and climate which is well-
reflected by the electricity consumption in US homes during
2018 (kWh/year). As has been observed from this figure,
the cardinal electricity consumption in US homes is for space
heating inwintertime and air conditioning in the summertime.
Furthermore, the average length of wintertime in the US
even intensifies the case. Besides, lighting and space heating
engender a considerable amount of electricity consumption.
Though lighting over the year is correlated with the weather
and can be influenced by other factors, space heating in the
wintertime and air conditioning in the summertime primarily
depend on weather and climate. The relationship of Demand

and Temperature is parabolically nonlinear, and the rationale
behind that is when the temperature is low, it requires heating
demand, and with the temperature rise the heating demand
decreases, and there is a sweet temperature zone, in between
65F to 70F, when we do not need any heating and cooling.
Again, after that point, we need cooling demand, and it
increases with the rise of the temperature. Such parabolic
nonlinearity encouraged us to study the impact of weather
parameters on electricity demand separately: heating and
cooling demand; in particular, using the concept of heating
degree days and cooling degree days.

A degree day compares the ambient temperature to a stan-
dard temperature of 65F. The more severe the temperature,
the higher the number of degree days. A higher number
of degree days will require more energy for space heat-
ing or cooling. Figure 11 classifies the United States based
on heating degree days [72], [73]. Here, the darker the red,
the more the heating is required in the winter time. As has
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FIGURE 11. Region classification of the United States based on heating degree days.

FIGURE 12. Region classification of the United States based on cooling degree days.

been observed from the Figure 11, the west north central
region of the United States, which includes North Dakota,
South Dakota, Minnesota, Nebraska, Kansas, Iowa, and Mis-
souri, requires most of the heating degree day demand.
Figure 12 depicts the cooling degree day demand distribu-
tion over the United States [72]. Here, the darker the blue,
the more the cooling is required in the summertime. It is
evident from the figure that west south central region, which
includes Oklahoma, Arkansas, Texas, and Louisiana, requires
most of the cooling degree day demand in the summertime,
and conversely, east north central and west north central

region exhibit the lowest cooling degree day requirement in
summer.

There has been experiencing a continual net temperature
increase in the United States over the years, so the electricity
demand has been. The annual average temperature over the
contiguous US (48 states excluding Alaska and Hawaii) has
increased by 1.2F for the period 1986–2016 comparative to
1901–1960 and by 1.8F based on linear regression for the
period 1895–2016. Both surface and satellite data consis-
tently support the fact of rapid warming since 1979. Further-
more, Paleo-temperature evidence reveals that recent decades
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FIGURE 13. Temperature anomaly from 1901 to 2015 in the contiguous 48 states.

FIGURE 14. Anomaly between a normal atmospheric condition and
forecasted catastrophic condition in the dynamics of hydropower-based
system.

are the warmest of the preceding 1,500 years. As a result,
the number of high-temperature records placed in the previ-
ous two decades considerably outstrips the number of low-
temperature records. However, theDust Bowl era of the 1930s
remains the peak period for the extreme heat. Moreover,
the annual average temperature over the contiguous US is
projected to ascend about 2.5F for the period 2021–2050 cor-
responding to 1976–2005 in all RCP scenarios. In particular,
much higher rises are expected by late century (2071–2100):
2.8–7.3F in a better case and 5.8–11.9F in the exacerbated
scenario [74]. Figure 13 illustrates the temperature anomaly
from 1901 to 2015.

Since population distribution is not uniform over the
entire United States and population density has a strong
impact on energy consumption, the US EIA (Energy Informa-
tion Administration) use population-weighted degree days to
model and project energy consumption. Mathematical mod-
elings are involved in incorporating the impact of weather
and climate on national electricity consumption. Reference
[75] contributed to model the effect of summer temperature
on electricity demand and consumption. This model includes
three aspects: estimate the impacts of unusual weather (such
as heat wave), consider the effects of governmental policies,
assess the impacts of projected climate change on energy
demand and supply. This model can be described as (1):

E = a0 + a1CDD+ a2CDD(−1)+a3Y1+a4Y2−a5H (1)

Here, E, CDD, CDD(−1), H, Y1, and Y2 stand for weekly
national electric output in billions of kWh, weekly national
cooling degree day total, previous week’s national cooling
degree day total, holiday factor, penultimate year growth
factor, and last year growth factor. This is one of the earliest
mathematical modeling that considers weather and climate
change into account shows R2 of 0.96 and RMSE of 0.544.
The recent models investigate the additional explanatory con-
tent of the weather and climate [75], [76]. Reference [77]
incorporates residual temperature, alongwith specific humid-
ity, in forecasting weather-dependent warm-season electricity
demand. Apart from that, A hierarchical Bayesian regression
model is presented in [77], [78] to predict summer residential
electricity demand across the United States.

The change of weather and climate directly impacts the
variable renewable energy productions (hydropower, wind,
and solar-based generation) besides that of conventional
fossil fuel. A study shows that the north-west region of the
United States confronts most of this challenge since Wash-
ington, Oregon, and Idaho essentially depends on renew-
able energy sources, particularly on hydropower. Though
the blessings of immense hydropower resources assure
extremely low carbon generation in these states, they expe-
rience a significant cut in their generation during drought
time. Federal Columbia River Power System operated by
Bonneville Power Administration, which extends through
Canada, Montana, Idaho, Washington, and Oregon, is an
excellent example to study the impact of weather and cli-
mate in a hydropower-based generation. Collectively, it is
about 23GW of hydropower capacity and meets 60% of the
regional demand. Unlike the hydropower systems in the east
coast, this system is snowmelt-dominated where most of the
precipitation occurs as snow is stored throughout the winter
time. Then, in the summertime, when the snow starts melting
as water, and coincidently the demand of the electricity gener-
ation gets high, it helps in gearing up the generation. In recent
years, the dynamics of this hydropower-based system, such
as the amount of precipitation, the amount of melted water,
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FIGURE 15. Patterns of seasonal wind variability in different regions of the United States.

and the timing of water melting, has been affected by
climate change.

Figure 14 shows the anomaly between a normal atmo-
spheric condition and the forecasted catastrophic condition
(due to climate change) in the dynamics of this hydropower-
based system. As has been seen for the normal condi-
tion, a snowmelt-dominated system naturally boosts up the
resource flow to generate electricity when the demand is
maximum [79]–[82]. Here, we observe when the electricity
demand is relatively low in the wintertime, the flow is low
as the snow precipitation is getting stored in the mountains
and not contributing in the streams. Then, in the early sum-
mer, when the snow is melting down, we experience a sharp
increase in the flow. In the middle of the summer, when the
electricity demand is maximum, the melt rate is maximum,
we experience the peak flow. Then, again with the decrease in
the melting rate, the flow gradually decreases in the fall, coin-
cidentally with the drop in the demand. In the catastrophic
condition, we expect to experience higher temperature, which
will result in less snow storage and more melting water in
the flow during wintertime. Consequently, wewill experience
higher stream-flow in the winter, resulting in more generation
in the time when the demand is not high. Whereas in the
early summer, it will undergo a less sharp increase in the
flow, and the peak flow in the middle summer is significantly
dropped down, and eventually, we will not get the necessary
flow for power generation when the demand is maximum.
In short, climate change will result in less precipitation falls
as snow, more falls as rain (no winter storage) because higher
temperatures initiate spring snowmelt earlier [83].

The weather and climate engender variability in wind
energy. Research shows regional climate is crucial in terms
of resource development because, in the United States, there

are some parts of the country which are significantly more
wind-rich than the others. A considerable change has been
observed in year-to-year wind power generation due to the
climate and weather variability, resulting in difficulty to plan
around. The historical wind speed distribution for a particular
region can help to plan the energy generation mix of that
specific region; however, inadequate historical wind data to
figure out the distribution and the prospective computational
complexity are the major challenges. Figure 15 depicts the
pattern of seasonal wind variability in different regions of
the United States. Here, the dotted straight line illustrates the
yearly median of the wind-energy generation capacity factor
for each of the geographical regions. It is evident that the
upper plains (dark blue) and the lower plains (brown) have the
high average capacity factor; hence they can be considered
the perfect area for the wind energy generation. Besides, this
figure implies how the geographic wind-generation capacity
factor pattern overlaps with the electricity demand patterns.
On top of that, like the localized heating and cooling require-
ment, the wind flow and volume follows a diurnal pattern for
a particular geographical locality [84].

Most of the assessment and planning regarding solar
energy systems assume that the amount of solar radiation on
the Earth’s surface is more-or-less constant over the years.
However, due to change in climate, along with air pollu-
tion as a factor, solar resources will inexorably experience
substantial decadal changes. Several research confirms long-
term changes in dimming and brightening quantity. The
prospective aberrant changes in the surface solar radiation
projected by the available climate models may unfavorably
affect solar power production, including both PV and CSP
(Concentrated Solar Power). Apart from the renewables,
conventional fossil fuels- besides experiencing the inevitable
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FIGURE 16. Impact of Hurricanes on oil and natural gas production in the
United States.

TABLE 1. Statistically Significant Blackouts’ Cause Categories in the
United States.

impact of weather and climate change- exhibit strong sea-
sonality in availability and cost, resulting in relatively less
expensive in the winter time and more expensive in the
summertime [85].

Extreme weather condition has a severely adverse effect
on fossil fuel production. Figure 16 illustrates the impact
of extreme weather condition, in particular, Hurricanes on
oil and natural gas production. It shows how the production
in those regions experienced a sharp decline just after the
incidents. It is indeed notable how Hurricane Frances made
a significant loss in oil refinery, and Hurricane Katrina came
with an unprecedented loss in the natural gas refinery. The
loss due to the strike of Hurricane Dennis in the natural gas
refinery is also striking. Table 1 summarizes the crucial events
that caused power outages in the United States from 1984 to
2006 [85]. We observe significant research in effort to reduce
storm-related outages in the literature. These mostly sug-
gest tree-trimming schedules, undergrounding distribution
and transmission, implementing smart grid improvements,
distributed generation, reliability-centered maintenance reg-
ulations, and mutual assistance agreements to mitigate the
impact of extreme weather condition.

TABLE 2. Impact of Weather Elements in Electricity Demand and
Generation.

FIGURE 17. Variation in wind energy generation output for 200 and
15 wind turbines placed in dispersed positions.

Table 2 summarizes the impact of weather elements in elec-
tricity demand and generation. Here, the number of asterisks
indicates the degree of impact in the corresponding domain
of concern: three asterisks symbolize profound impact, two
asterisks express moderate impact, and a single asterisk
implies it somehow has an impact.

One interesting challenge in power system planning, par-
ticularly in a step towards replacing baseload (coal gen-
eration) with the variable renewable energy like wind and
solar, is how to combine different variable renewable energy
sources in such ways so that it is possible to complement
each other and reduce the inherent uncertainty comes from
the renewable energy sources. Specifically, how can we place
renewable energy projects to take advantage of less covari-
ance when they are producing energy? The implementation
of statistical law of large number can be helpful. Figure 17
depicts the scenario of wind energy generation output normal-
ized to mean for 200 and 15 wind turbines placed in dispersed
positions [85].

As can be seen, the bottom one shows more zigzag (which
means more variability and uncertainty) along with the lesser
mean value (though the mean value is self-evident) compared
to the top one. This analysis provides an insight that the
curve can even be smoother with high output mean value if
we place 500 wind turbine in different places. The insight
from the law of large number also applies for the solar
power generation aggregation, implying themore it integrates
with the solar plants located in different places, the more
predictable the generation curve becomes. One immediate
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TABLE 3. Applications of Different Load Forecasting in Energy Workflow.

question, in this regard, can be how far apart solar plants
need to be placed to gain the advantage in predictability from
the law of large numbers because only building a number of
wind turbines or solar panels (right next to each other) cannot
guarantee optimal generation. Research shows we experience
more covariance with the lesser distance between each plant-
site. And after a certain range, we experience more-or-less
constant covariance. This insight can be helpful in deciding
the minimal distance to get the optimal output.

B. LOAD FORECASTING TECHNIQUES
Load forecasting is a technique used by the electricity pro-
viding companies to predict the required energy to attain a
dynamic demand-supply equilibrium. The predictive accu-
racy of load forecasting is of profound importance for the
operational, as well as managerial loading, of a utility orga-
nization. Load forecasting, precisely peak load forecasting,
is an integral and indispensable process in strategic planning
and efficient operation of electric utilities. Primarily, relia-
bility and low cost are the two significant motivation behind
load forecasting since electric utility is expected to oper-
ate without having a failure in continually balancing supply
and demand, and within as low as possible cost. In recent
years, to mitigate the environmental challenges and promote
renewable resources in the generation infrastructure, lowest
possible emission is considered as one of the crucial fac-
tors in predicting both the load magnitude and geographical
location of the load in a certain planning horizon. Assuring
reliability is a multi-scale challenge that involves balancing
between supply and demand on a second-to-second, minute-
to-minute, hour-to-hour, daily, seasonal, and all the way up
to years and decade. Frequency regulation is one of the
most obvious reliability issues that require active dynamic
management. It is known that different power systems may
have different frequencies, and in the United States, all the
power systems operate at 60 Hz, unlike in Europe and Asia
at 50 Hz. If we do not stably balance between demand and
supply, the frequency will increase or decrease: If the demand
is greater than the supply, the frequency increases, and if the

supply is greater than the demand, the frequency decreases.
If it deviates considerably away from 60 Hz, we may have
a grid-scale failure. Hence, to assure reliability, it requires
to continually adjust the availability of supply to match it to
demand within a certain range and keep frequency close to
60 Hz [86], [87].

From the aspect of the duration of the planning horizon,
load forecasting can broadly be classified into five categories:
VSTLF(very short-term load forecasting that ranges from
few minutes to an hour ahead), STLF (short-term load fore-
casting that concentrates on hourly forecasts for one day to
one week ahead), MTLF (medium-term load forecasting that
ranges from few months to one year), LTLF (long-term load
forecasting that includes from one year to five years), and
VLTLF (very long-term load forecasting that includes ten
years ahead) [88]. In short, VSTLF and STLF are mostly
required for balancing operation of the grid system. Besides,
they help in trading strategies for the day-ahead electricity
market. MLTF is essential for planning major tests, commis-
sioning different events, determining outage time for plants
and key parts of equipments, besides the trading strategy.
On the other hand, LTLF and LTLF are crucial for resource
planning for the power system, and the subsequent price
evaluation of the energy contracts. Table 3 points out the
possible applications of different forecasting based on time
horizon.

Long term load forecasting conveys design implication in
system planning. One of the critical elements of system plan-
ning in most power systems is the diversity of the resources.
It requires different levels of flexibility with different types
of generations so that it can meet the electricity demands that
continually changes on an hour to hour, week-to-week, and
seasonal basis that entails some resources which are flexible.
It won’t be wise to have all the resources flexible since they
are considerably costly compared to the other options. That’s
why we need an optimal balance between the resources that
are inexpensive but not flexible (such as coal and nuclear),
and flexible but more expensive (such as natural gas and oil).
Another key element in system planning is redundancy. It is
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FIGURE 18. Trade-off in flexibility of resources, though we need flexibility
in resources to address variability in demand, flexible resources are
costly.

a very pronounced trade-off in the infrastructural planning
and engineering that increase in redundancy comes with an
increase in reliability, but also increases the cost. Therefore,
it is an optimization challenge to investigate up to how much
redundancy it is worth investing to secure a balance between
the cost and reliability. Figure 18 explains the scenario of
flexible and not flexible resources where the horizontal-axis
represents cumulative quantity supplied in MWh, and the
vertical-axis means the marginal cost in $/MWh. As has been
seen, oil, in general, is costly and suggested not to use until it
is of absolute necessity [89], [90].

Thermal power plants can typically be categorized into
three levels: baseload, shoulder load, and peaking. Shoulder
power plants lie in an intermediate category that can ramp
up a bit but not enough to consider it a peaking power
plant. Thermal power plants can be classified in another way:
by its fuel type such as coal, natural gas, nuclear, and oil.
Fuel type is pertinent to the capacity of the plant. Capac-
ity factor, the fraction of installed capacity and of getting
used throughout the year, is another parameter to distin-
guish thermal power plants. Capacity factor ranges between
one and zero, and the higher value indicates more usage
throughout the year. The value close to one implies that
they are online almost every hour of every day throughout
the year except some days when the plants are shut off for
maintenance purpose. On the flip side, the peaking power
plants, such as oil and natural gas power plants, shows
capacity factors close to zero, indicating seldom usage in
generation-flow [91].

Addressing the reliability and redundancy trade-off men-
tioned before, system planners optimize it by building enough
plants to cover future peak demand plus a 15% reserve mar-
gin. Reservemargin is the ratio between the difference of total
available capacity and peak annual load to the peak annual

load as shown in (2).

ReserveMargin =
AvailableCapacity− PeakAnnualLoad

PeakAnnualLoad
(2)

The load forecasting techniques can broadly be clustered
into nine categories as far as the mathematical approaches
are concerned: Multiple Regression; Exponential Smoothing;
Iteratively reweighted least-squares; adaptive load forecast-
ing; stochastic time series such as Auto-Regressive (AR)
model, Auto-Regressive Moving Average (ARMA) model,
and Auto-Regressive Integrated Moving Average (ARIMA)
model; Auto-Regressive Moving Average with eXogenous
terms (ARMAX) models based on genetic algorithms; fuzzy
logic; neural networks; and knowledge-based expert systems.

Multiple regression analysis, leveraging the weighted
least-squares estimation for each of the factor variables based
on the statistical relationship between total load and factors’
influence, is themost common technique for load forecasting.
References [92]–[94] suggested the fundamental model for
the multiple regression analysis as shown in (3).

Yt = vtat + et (3)

Here, t is sampling time, Yt is measured total load, vt is vec-
tor of adapted variables, at is transposed vector of regression
coefficients, and et is model error at t. In multiple regression,
vt can be expanded based on the different insights regarding
historical metered load, expected distributed generation, cal-
endar effects (day of the workdays, weekends, month of the
year, etc), weather data (degree days, wind speed, humidity,
light intensity, etc), and economic and demographic drivers.
On top of that, though linear dependency demonstrates best
results in most of the cases, multiple regression offers select
the polynomial degree of influence ranged from 1 to 5.

Then, exponential smoothing, one of the classical tech-
niques used in load forecasting, with a fitting function is used
for load forecasting as presented in (4) [93], [94].

y(t) = β(t)T f (t)+ et (4)

Here, f (t) is fitting function vector of a process, β(t) is
coefficient vector, and et is white noise. Exponential smooth-
ing can be augmented with power spectrum analysis, as well
as adaptive autoregressive modeling, to address the chal-
lenges induced by a unique pattern of energy and demand in
fast-growing regions.

Iterative reweighted least-squares– through an operator
that controls each variable at a time– is used to identify the
order, including parameters as well, of the model. It initi-
ates with an optimal starting point determined by the oper-
ator, and then, uses the autocorrelation, as well as partial
autocorrelation, of the resulting differenced preceding load
data to identify a suboptimal model for the load dynamics.
In the case of iterative reweighted least-squares techniques,
the weighting function, along with the tuning constants and
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the weighted sum of the squared residuals, form a three-
way decision variable to determine an optimal model and the
subsequent parameter estimates [93], [94].

Adaptive load forecasting is one of the commonly used
techniques in recent days. In this technique, to keep track of
the continually changing load conditions, the model param-
eters are automatically corrected. Here, regression analy-
sis is implemented based on the Kalman filter theory that
incorporates the current prediction error and present weather
data acquisition programs to estimate the next state vector.
To determine the state vector, it not only analyses the most
recent measured load and weather data, but also takes the
historical data into account, and the mode of operation is
facilitated switching in multiple and adaptive regression anal-
ysis [93], [94].

Though time series modeling is not a suitable forecasting
approach for long term load forecasting because of the fre-
quent unique change in demand pattern in the developed and
fast-developing regions, it is one of the most popular methods
in short term load forecasting. In simple, time series modeling
is initially generated based on the previous data, and then,
the future load is predicted based on the model.

The autoregressive model can be adapted to model load
profile as follows if the load is considered as the linear
combination of previous loads as presented in (5).

L̂k = −
m∑
i=1

αikLk−1 + wk (5)

Here, m is the order of the model, wk is random load dis-
turbance, aik are coefficients tuned from least mean squares
algorithm. L̂k represents predicted load at time k .

In addition, the ARMA (Auto-Regressive Moving-
Average) model considers the current value of the time series
linearly regarding values from previous periods and previous
white noise values. A p and q ordered ARMA model can be
represented as (6).

y(t) = φ1y(t − 1)+ . . .+ φpy(t − p)+ a(t)

− θ1a(t − 1)− . . .− θqa(t − q) (6)

In addition, the ARMA model considers the current value
of the time series linearly regarding values from previ-
ous periods and previous white noise values. A maximum-
likelihood approach or a recursive scheme is generally used
for parameter identification in ARMA model.

If the process is not stationary, it requires to transform
the series to a stationary form first by a differencing opera-
tor. An ARIMA (autoregressive integrated moving average)
model of order p, q, d can be presented in (7) where the
series of p and q ordered autoregressive and moving average
component is required to be differenced d times.

φ(B)Ody(t) = θ (B)a(t) (7)

ARIMA model, using the trend component, is deployed to
forecast the growth of the system load.

FIGURE 19. Yearly US per capita consumption in kWh by renewable
sources from 1999-2016 with trendlines and five year-forecast.

Apart from the time-series-based short-term forecasting,
ARMAX, leveraging genetic algorithm, is a popular tech-
nique for the long term load demand forecast. Through sim-
ulating the natural evolutionary process, it allows the ability
to converge towards the global extremum of a complex error
surface [93], [94].

Apart from that, leveraging the idea that the fuzzy logic
system with a centroid defuzzification can successfully iden-
tify and sufficiently approximate an unknown dynamic sys-
tem on the compact set to arbitrary accuracy, fuzzy logic can
be implemented in the case of load forecasting. The fuzzy
logic-based forecasting method follows two stages: Training,
and then, On-line Forecasting. In its training stage, a 2m-input
and 2n-output fuzzy-logic based forecaster are trained using
the metered historical load data to generate patterns database
and fuzzy rule base patterns database and a fuzzy rule base
from first-order and second-order differences of the data.
After the training stage, it will be connected with a controller
to forecast the load change online. An output pattern is
generated through a centroid defuzzifier if it attains a most
probably matching pattern with the highest possibility [94].

Neural networks, such as multilayer perceptron network
and self-organizing network, have a strong potential to over-
come the sole reliance on a functional form of the predictive
model. It makes the neural network-based forecasting a very
active area of research. It facilitates improving the accuracy
of load forecasting by neural networks integrated with sev-
eral other techniques such as stochastic time series methods,
weighted least squares procedure, a combination of fuzzy
logic and expert systems, etc. Table 4 grouped the commonly
used load forecasting techniques based on the duration of the
planning horizon [93].

Different forecasting horizons, such as STLF, MTLF, and
LTLF, have different challenges in forecasting. The peril of
long term load forecasting is profound since uncertainty is
rampant regarding climate, technology, population growth,
and economic conditions. Overestimating demand might
seem like the prudent modeling choice from the reliability
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TABLE 4. Available forecasting methods grouped by forecasting horizon.

aspect, but it can be costly, and hence unwise. In addition,
it has been observed the usage behavior differs between
the consumers using different types of meters, in particular
between the consumers using smart and traditional meters
along with different tariffs. The utility must take this into
account and develop separate forecasting model for each
of the metering systems and then plug-in them up for the
final forecast value. Otherwise, they may come up with an
inaccurate forecasting. In the case of STLF and MTLF, it is
sometimes overly complicated to precisely fit various com-
plex factors affecting demands for electricity into the fore-
casting models. In addition, it may not be easy to obtain an
accurate demand forecast based on parameters such as change
in temperature, humidity, and other factors that influence
consumption. The utility may suffer losses if they do not
understand and decide on an acceptable margin of error in
load forecasting [95], [96].

IV. PENETRATION OF RENEWABLE ENERGY
A. VARIABILITY OF RENEWABLES
Electricity demand frequently fluctuates throughout the day,
week, and year. Albeit having noise and uncertainty, how
we are going to use electricity uniquely shows a tremendous
amount of predictability. This predictability lets the genera-
tion planning and integration in a prudent manner, such as
meeting the baseload with not-flexible and not-able-to-ramp-
up resources, intermediate and peak load with must-take (like
renewables), flexible and able-to-ramp-up resources. With
the recent surge of the renewable energy-based generation
in generation mix of the United States, variability in the
renewable resources, particularly solar and wind, has been
developing into a critical challenge in generation planning
and integration. In this section, the discussion will be limited
to the variability of solar and wind for two reasons [97]. First,
apart from the fact that wind and solar are emission-free,
compared to rest of other types of resources wind and solar
are not dispatchable and controllable. So, we cannot consider
them as baseload: turn them on and leave them on, and they
cannot provide a steady amount of electricity. We cannot
consider them as peaking resources: leaving them off most of
the time and only turn them on when the electricity demand is
highest. We consider them as must-take resources: when they

are available, we will use them, when they are not, we won’t
use them. So, from the grid operators’ point of view, wind
and solar are considered for demand reduction since they
have negligible operational costs, their capital cost is all about
building those projects. Second, as has been noticed from
the yearly US per capita consumption in kWh by renewable
sources from 1999-2016with trendlines and forecast depicted
in Figure 19, only solar and wind exhibit incrementing trends
with an exciting prospect to be the renewables of choice in
generation planning [98].

When we model the solar PV production, we take the
following variables into the account: size of the panel array,
solar insolation (determined by hour of day, day of year,
latitude, aspect, and tilt), efficiency (conversion of solar
energy to electricity), and performance losses (temperature
and inverter). Among these variables, solar insolation is not
dispatchable, and hence a key driver in solar PV production.
It has an immediate impact on the amount of generation
from a particular project and distinctively varies throughout
the United States. For example, the further south and south-
east we go, the higher the availability of solar insolation is
reported. Therefore, it is intuitive if we assume the solar
installation cost in Wisconsin or New York is as same as
that of Arizona and Florida, we would prefer to install the
solar panels in the region from where we can get the most
energy out. However, it is not the only parameter to analyze its
financial viability and economic competitiveness [99], [100].

On a different perspective from the solar insolation, solar
irradiation, in particular, is very predictable, at least theo-
retically. We– more or less– can perfectly model the solar
irradiation as it changes throughout the day. However, cloud
dynamics regards as the most stochastic element of solar
power production, and in several instances, adds a tremen-
dous amount of uncertainty in the case of incorporating large
amounts of solar into power systems. Figure 20 portrays the
impact of sky condition, in particular, cloud, on the solar
generation. It is evident how the heavy dark clouds add noise
in the electricity generation streams. Consideration of the
cloud factor in generation makes the forecasting a way more
stochastic and uncertain process, and in practice, exhibits a
significant difference between the day-ahead-forecast, hour-
ahead-forecast, and the actual generation. Even more, it is
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FIGURE 20. The effect of sky conditions on solar panel power output.

FIGURE 21. The wind velocity distribution over the United States.

critical to predicting solar power even just an hour before
its generation because of the cloud factor albeit efficient
prediction of solar irradiation [101].

Now, delving into the wind-based power, power genera-
tion depends on three cardinal variables: the amount of air
(volume), the speed of air (velocity), and the mass of air
(density) flowing through the area of interest (flux). The
generated power from the wind turbine follows the equation
as presented in (8):

P =
1
2
∗ ρ ∗ A ∗ v3 (8)

From this equation, it is apparent that power produc-
tion from the wind turbine is very sensitive to the wind
speed or the velocity (v), and algorithmically, if the wind
velocity increases by a small amount, power generation
goes up by the function of this cubic relationship. However,
according to the Betz limit, the power coefficient is the

quotient of the power extracted by the turbine to the total
energy contained in the wind resource [102]. This coefficient
helps us to estimate the generated wind power in the real
case scenario. Betz limit is of the maximal possible Cp =
16/27 which indicates 59% of efficiency for the conventional
wind turbine in extracting power from the wind. Since it is
identified from the equation that wind velocity is the most
impactful parameter in wind power generation dynamics,
Figure 21 delineates the wind velocity distribution over the
United States.

Figure 21 implies where installing wind turbines is more
advantageous. Since, like other renewable energy resources,
wind energy-based power generation only requires the capital
cost for installation- requiring no cost for fuel- and we can
presume the installation cost of wind turbine is–more or less–
same across the entire United States, we can infer from
this figure that US midwest, west-offshore, and east-offshore
are the most convenient places to install the wind power
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FIGURE 22. Year to year changes in wind power production.

generators [103], [104]. However, there are some additional
confounding variables. First, financial viability of the project
can be crucial since there is a notable population dearth in
the US midwest region and it necessitates significant added
cost for high voltage transmission to deliver the wind power
to load centers or to the communities of high electricity
consumption. Second, as can be seen from the year-to-year
changes in wind power production for a single wind project
depicted in Figure 22, the more uncertain variability and less
predictable generation compared to solar energy are imper-
ative in this dynamics. Though the generation variability in
the case of a single plant is considerable, this evidence is
not sufficient to have a conclusive idea regarding the impact
of unpredictable variability and integrating the portfolio of
several wind plants may come up with a different insight.
On top of that, it may seem more uncertain in a smaller
time scale, and considering a larger time scale may address
a different view on this point.

Third, the variation in wind power generation on an hourly
basis makes it confounding to incorporating into electric
power systems. In particular, with the rising share of wind
energy in the United States’ electricity generation mix, hav-
ing the possibility that a big chunk of it goes away unexpect-
edly during the day is a significant concern, and it is intricate
for utilities since it impacts the maintenance of the power
system operations in more than one way.

Next, to understand the grid integration challenges in vari-
able renewables, Figure 23 – besides introducing the con-
cept of duck diagram– illustrates the hourly distribution of
the net demand with increasing PV penetration considering
overall demand remains unchanged [105], [106]. As can be
observed from Figure 23 and 24, with the increase of PV
penetration, the non-PV supported portion of the net demand
curve gets dropped down (consider the drastic drop down in
case of 58% penetration) from 9 am to 5 pm when the sun is
available). It- putting the net load in the context of increasing
PV penetration- implies a trend that anticipates two major
issues: over-generation risk and ramp requirement.

As can be interpreted fromFigure 23, it requires amoderate
amount of generation online to meet demand in the early

morning and the late afternoon (when the sun goes down),
and in the middle part of the day, it does not need much
because of having greater PV penetration. In many cases,
it has been observed it may be less costly to leave generation
on around 9 am compared to achieve high ramp up, and kind
of waste it throughout the day in order to have that generation
online later on the day. This problem is called overgeneration.
Since we have been experiencing greater penetration of PV
(in general, renewables) in the conventional systems, the risk
of overgeneration becomes greater, makes physical issues
of safety and reliability. Another trade-off of having greater
renewable-penetration is if significant changes in wind and
solar availability take place very quickly– without warning–
that can pose a challenge to system reliability. In the case
of operations, it can be minute-to-minute, hour-to-hour, and
day-to-day. For minute-to-minute, frequency regulation is
needed, since it requires to maintain 60 Hz of frequency
for AC system in the United States, and undersupply of
generation can cause that frequency to deviate from 60 Hz,
and if it goes too far, then it may experience a significant
instability on the grid. It has to be actively managed through
automatic generation control at generators. To address the
hour to hour variability, load following and reserves are cru-
cial. It requires certain power plants to increase or decrease
their production to follow the net electricity demand patterns.
Reserves are online sometimes, and offline sometimes, they
are not primarily producing electricity, but they can quickly
ramp up and produce electricity at the right frequency in order
to account for any unexpected change in the availability of
wind and solar. For day-to-day, unit commitment is critical to
make decision to turn a plant on and off. It is crucial as it is
exorbitantly costly to turn a plant on and off.

In the case of planning, it is about a year-to-year basis:
capacity planning based on the pick load forecasting, con-
sidering the likelihood that given uncertainty in electricity
demand because of the weather and given the uncertainty in
renewable energy production on year-to-year basis, and the
reserve margin being below a certain point of inability to
meet electricity demand. Another interesting point to discuss
is that there has been observed a steady downward trend
in wind speed globally over the last fifty years. The trade-
off in considering the historical data over the recent trend
in generation forecasting can pose a critical challenge in
planning because of the third order relation of wind speed
in wind energy generation, and eventually, end in a serious
failure [107].

B. EFFECT OF COMMODITY PRICES
Commodity prices are one of the key drivers in the dynamics
of United States Internet of Energy, and hence, is imper-
ative to be discussed explicitly in an individual section.
Previously, energy commodities were essentially concep-
tualized as including natural gas, petroleum products, and
coal. With the recent surge of renewable-based generation,
the raw materials used in the fabrication (along with cutting,
bending, and assembling) of renewable energy and storage
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FIGURE 23. Impact of increasing PV penetration and duck diagram interpretation of over-generation risk and ramp
requirement.

FIGURE 24. Duck diagram interpretation of over-generation risk and
ramp requirement.

technologies are considered as energy commodities. In this
section, we will briefly discuss the factors that influence com-
modity prices and how these propagate to electricity prices.
The direct impact of the commodity market on electricity
prices is observed in the fossil fuel power plant that ultimately
gets incorporated into the wholesale prices, and eventually,
retail prices for customers. Unlike this, renewable energy-
based generation is considered as immune to year-to-year
changes in fuel cost. The reason is though it is uncertain how
much energy we will get from the renewable energy plant,
such as solar and wind, we know exactly how much we will
cost for it. However, it is required to factor in the availability
of the renewable resource across the year, since it ends up
impacting in the levelized cost of electricity.

Nevertheless, commodity prices do matter– albeit in an
indirect fashion– for renewable energy, since the majority

cost (compared to the fixed operation and maintenance cost)
of the renewable energy is drawn from compensating the
annualized capital cost. If commodity prices fluctuate the
capital cost of renewable energy projects, this capital cost
aggregate into the cost of renewable energy over the entire
project lifetime. So, if the solar plant or wind turbine is
developed in a year when steel and copper prices are high,
the long term electricity selling price to adjust this cost will
be significantly high; and there is no chance for the com-
modity prices to go back and lower the price of electricity
from solar or wind firm. For example, Figure 25 depicts
the instances of how the copper and steel price reflects the
levelized Power Purchase Agreement (PPA) from 1990 to
2010 across the different regions in the United States. As can
be noticed from this figure, the price of copper and steel
experienced a significant increase in 2006-2008, so the dif-
ferent regions in the United States did in their levelized PPA.
Typically, these agreements are of twenty-five to thirty years
which implies the plant developed in 2006-2008 reflects into
the higher price of electricity for the next thirty years, not just
in the year it was developed.

The United States Critical Materials Institute (CMI),
an entity associated with the DOE, concentrates on technolo-
gies that make better use of materials indispensable for the
United States’ competitiveness in clean energy; and iden-
tify and eliminate the demand for materials that are crucial
to supply disruptions. They have four principal objectives.
First, diversifying supplies: if on geographical source goes
offline or out-of-function, a different source can take its place
in operation. Second, developing substitute materials that
can functionally serve the same purpose compared to the
materials currently used. Third, using the available materials
more efficiently by reducing waste and adopting recycle in
manufacturing. Finally, last but not least, forecasting which
materials might become critical in the future. Table 5 reports
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FIGURE 25. Commodity prices drive wind energy prices.

TABLE 5. Materials for clean energy technologies and components.

the CMI’s investigation on materials used in clean energy
technologies and components. It incorporates the materials
including rare earth elements, and their applications in photo-
voltaic films, wind turbines, vehicles, and lighting. Red rows
in Table 5 indicate the rare earth elements.

Besides, the CMI classified the materials used in clean
energy (mostly in photovoltaic cell and energy storage sys-
tems) into three categories based on two evaluation metrics:
supply risk and how important it is in clean energy. Both are
considered on a scale of 4, indicating low as 1 and high as
4. The materials which are of high (4) or high-medium (3) in
both metrics are identified as critical materials, the materials
which are of high-medium (3) or medium (2) in both metrics
are considered as near-critical materials, and the materials
which are of medium (2) or low (1) in bothmetrics are studied
as not critical materials. The third parameter is essentially
the time-frame of the supply availability that reflects on
the categorization, and eventually, necessitates forecasting
of resource availability. Figure 26 illustrates the criticality
matrix of materials used in clean energy for the short-term
and medium-term.

Unlike the materials used in clean energy, commodity
prices have a direct short-term influence in the case of
conventional fossil fuel-based generation. Similarly, in the
case of conventional fossil fuel-based generation, commodity
prices vary with a number of reasons such as energy crisis,
natural calamities, inexplicable tracking, global financial cri-
sis, polar vortex, and excess supply from fracking.

V. UNDERSTANDING ENERGY CONSUMPTION
DYNAMICS
A. ENERGY DISAGGREGATION
Tomeet the environmental challenges and continually deplet-
ing energy resource dilemma, energy demand reduction,
along with improving energy efficiency, is considered as the
safest andmost sustainable approach. It has been reported that
the residential sector occupies approximately 22% of total
energy in the United States which reflects in 37.8% of total
electricity consumption in the US (electricity consumption
by different sectors and household-electricity consumption
distribution of the United States depicted in Figure 27). Con-
sequently, household energy usage shares about 38% of the
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FIGURE 26. Criticality matrix of materials used in clean energy for short-term and medium-term.

total yearly carbon emissions in the US. Research shows
approximately 27% of the current households’ energy, so as
the electricity, can be saved through efficient demand-side
energy management. Household-demand-side management
majorly concentrates on six objectives, namely, peak clip-
ping, load shifting, valley filling, strategic load growth, strate-
gic conservation, and flexible load shape [108]. These require
to classify the factors that affect household energy usage
into different categories, such as demographics and socio-
economics, location, temperature, energy prices, and build-
ing characteristics, and eventually, understand the household
energy consumption behavior. Electricity consumption pat-
terns of different users in different time granularity, which
is affected by both objective and subjective factors, can be
discovered through effective analysis of electricity consump-
tion data accumulated by different data acquisition terminals,
such as smart meters. Therefore, energy disaggregation is
essentially being an integral part of the Advanced Metering
Infrastructure (AMI) in this effort [109], [110].

The benefits of energy disaggregation are manifold.
It ranges from raising awareness regarding energy usage to
empower consumers across different dimensions in making
better decisions, offering sophisticated options for automated
commissioning, diagnosis, and fault detection of residen-
tial buildings to providing simplified and improved load
studies leading to the identification of specific end-use
equipment and facilities. Thus, it encourages considerably
more efficient, relatively cost-effective, and comprehensive
quality assurance programs in order to achieve substan-
tial savings from energy efficiency measures and demand
response [108], [111].

In simple, energy disaggregation can be defined as an
approach that allows taking a whole building (aggregated)
energy signal into consideration, and then classifies it into

appliance-specific data, such as a plug or end-usage data,
by a set of IOT-based computational techniques. It is an effort
motivated to delve into understanding energy usage behavior
and modeling. In general, energy modeling involves itera-
tive approaches for finding variables and parameters using
more nuanced information and features as depicted in Fig-
ure 28 which eventually minimize the model error. It neces-
sarily starts out with an extensive set of training data. Then,
the training data set is employed to come up with models for
energy consumption for individual activity based on a number
of features across different dimensions. After that, it gradu-
ally eliminates any kind of statistically insignificant variable.
After a certain iteration, a model is finalized which is as accu-
rate and, at the same time, as parsimonious as possible [112].

Different energy models of different dimensions unpack
different energy usage behaviors. Among them, behavior
that incorporates different time granularity and sectors are
regarded as crucial for knowledge extraction for resource
planners. For example, the consumption patterns of different
sectors, such as industrial, residential, and commercial, are
illustrated in Figure 29 for both monthly and sub-daily basis.
It is evident from Figure 29 that the consumption patterns of
the various sectors are strikingly different, and the residential
electricity consumption is the critical driver, as well as the
most reactive sector with changes of weather and climate,
in total demand [113].

From this stage, it requires special techniques to acquire
insights on the household level, helping individual consumers
make a smart decision about their electricity consumptions
based on multiple parameters, such as price and availability
of renewable energies, and therefore AMI is deployed into
operation. It collects information about electricity consump-
tion at the household level on a minute-to-minute basis, and
then, transmits this information back to the central console
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FIGURE 27. Electricity consumption by different sectors and household electricity consumption distribution in the United States.

FIGURE 28. Iterative process for developing models to understand energy
usage behavior.

system, facilitating two-way communication and almost real-
time sampling. However, the information that comes from
the advanced meter is not apparently comprehensive and it
requires advanced analytics to leverage the advantages of this
information. Figure 30 explains what we receive from the
advanced meter (total power) and what we desire to know for
the smart decision (disaggregated power) [114].

The initial approach to obtaining disaggregated power
was sub-metering, installing the separate individual smart
plug in each major appliance in residents. It worked and
met the fundamental objectives that we want, however,
the cost for integrating a number of smart plugs in each
house and implementing it in residential level in the entire
United States challenges the overall purpose of efficiency
and cost-effectiveness. Table 6 compares the hardware-

based and software-based disaggregation techniques from
the consumer-level costs, installation effort, and adoption
aspects. Table 6 lets us conclude that the smart meter can
be the most efficient and cost-effective option if advanced
analytics can be incorporated to obtain appliance-level infor-
mation [114], [115].

NILM (Non-Intrusive Load Monitoring) or NIALM (Non-
IntrusiveAppliance LoadMonitoring) is an analytic approach
employed to disaggregate the building loads primarily based
on a single metering point. This advanced load monitoring
and disaggregation technique have the potential to come
up with an alternative solution to high-priced sub-metering
and facilitate innovative approaches for energy conservation,
energy efficiency, and demand response. From the functional
point of view, NILM can be explained as a three sequential
operation, namely, signal acquisition, feature extraction, and
finally appliance classification. The state-of-the-art NILM
and NIALM techniques for energy disaggregation are briefly
discussed below. Reference [111] proposed a cluster splitting
approach to disaggregate the overlapping home appliances’
consumptions. It addresses the challenges in disaggregating
energy consumption by each of the appliances when several
home-appliances have power consumption-levels that over-
lap (loosely or tightly) with each other. This approach initi-
ates with analyzing the cohesion between devices’ clusters
to determine whether a cluster is required to be split into
two or multiple clusters. This proposed technique– using
REDD public data sets– was tested on overlapping devices’
clusters of six residences, and it was evident from results that
the degree of overlapping in devices’ clusters and the sizes of
individual clusters are crucial in its performance.

After that, for energy disaggregation, committee deci-
sion mechanisms (CDMs) have been introduced by [112] to
disaggregate load at the metering level. Their investigation
shows load signatures inherently embedded in the patterns
of typical electricity consumptions are able to provide crit-

69024 VOLUME 8, 2020



N. Sakib et al.: Qualitative Study on the United States IoE

FIGURE 29. Energy consumption patterns of different sectors for both monthly and sub-daily basis.

FIGURE 30. Almost real-time household level total power provided by the advanced meter
and the desired disaggregated power.

TABLE 6. Comparison between Hardware-based and Software-based Disaggregation Techniques.

ical information about the characteristics of the appliances
as well as their usage patterns. Multiple evidence bolstered
that all CDMs- through Monte Carlo simulations- outper-
form any single-feature and single-algorithm-based energy
disaggregation methods, and are considerably less sensitive
to any load dynamics and noise. They reported some case
studies using this technology in appliance usage tracking
and energy consumption estimation. In [116], Misbah et al.
proposed sparse optimization for end-use disaggregation,
a novel nonintrusive appliance load monitoring (NIALM)
algorithm, that can characterize the appliance power con-

sumption profiles accurately over time. The primary assump-
tion of this algorithm is that power consumption profiles of
the unknown appliances are piecewise constant over time,
and it leverages the knowledge on the time-of-day prob-
ability in which a particular device might be used. Here,
it formulates the energy disaggregation problem as a least-
square-error minimization problem, including an additional
penalty term to enforce the disaggregate signals to be piece-
wise constant over time. Testing this algorithm on the house-
hold electricity data is reported in [116] with satisfactory
accuracy.
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Next, in [117], the authors proposed a dictionary learning-
based approach in addressing energy disaggregation prob-
lem. This technique is usually a synthesis formulation,
involving in learning a dictionary for each device and then
applying the learned dictionaries as evidence for the blind-
source separation during energy disaggregation. It facili-
tates disaggregation as drastically reduces the sensing cost.
In [118], Singh et al. presented a distributed and scal-
able method for semi-intrusive large-scale appliance load
monitoring. They–with sufficient conditions considered for
unambiguous state recovery– incorporate an SSER model
(sparse switching event recovering) for retrieving appliances’
states from the aggregated load data stream. This approach
demonstrates satisfactory results in improving the accuracy
of load disaggregation for large-scale appliances with a
small number of meters. Then, in [119], Xia et al. pro-
posed a deep dilated convolution residual network- based
non-intrusive sequence to sequence energy disaggregation
approach in an effort to reduce the network optimization
intricacy and explain the vanishing gradient problem. They,
initially, normalized the primary data, and then, applied
the sliding window to formulate the input for the residual
network. Here, they met the challenges of learning long
time series data by increasing receptive fields and cap-
turing further data through the dilated convolution. Sev-
eral case studies bolstered the improved efficacy of this
proposed deep dilated convolution residual network- based
sequence to sequence disaggregation method in energy
disaggregation.

On a different note, [120] presented a GSP-based approach
(graph signal processing) to disaggregate the entire energy
consumption down to individual appliances’ level. The
authors addressed the complexity of general graph-based
methods associated with large training overhead employ-
ing event-based graph approach. This paper showed two
approaches leveraging the piecewise smoothness of the power
load signal. The first one searches for a smooth graph signal
under known label constraints following the principle of total
graph variation minimization under some known label con-
straints. The second one initiates with the total graph vari-
ation minimizer and delves into further refinement through
simulated annealing. The paper reported a competitive per-
formance using the proposed approach compared to the
decision tree and hidden Markov model-based approaches.
After that, considering the fact that the aggregated or smart
meter signal can be expressed as a linear combination of
the basis vectors in a framework for matrix factorization,
Alireza et al. presented a technique to disaggregate energy
data using non-negative matrix factorization with sum-to-
k constraint [121]. This technique– through imposing non-
negative constraint as well as sum-to-k constraint– can extract
perceptuallymeaningful sources efficiently from the complex
mixtures. They compared its performance with the state-of-
the-art decomposition-based disaggregation algorithms and
reported superior results. In general, all the state-of-the-art
nonintrusive energy disaggregation techniques can be broadly

FIGURE 31. Capacity expansion over time.

classified into two categories: optimization-based approaches
and machine learning-based approaches.

B. GENERATION EXPANSION AND DECISION ANALYSIS
Capacity expansion, in broad generation expansion, is an
indispensable part of the infrastructural planning of the power
industry, and subsequently, the internet of energy; and hence
to be highlighted in this sub-section. In simple, capacity
expansion is the process adopted by the utilities to increase
their capacity of the generating-resources gradually to meet
either of the following objectives: primarily, meeting electric-
ity demand growth, then, making replacement of the existing
generation that comes offline or retires because of aging
infrastructure, and confronting relatively more stringent cir-
cumstances or regulations. In other words, mostly from the
aspect of the electric power industry, it is the process of
adding additional facilities of a similar type over time in order
to meet the rising demand. Capacity expansion is a multi-
faceted decision that concerns the timing, scale, and location
of the major projects in the face of uncertain- often with the
considerable unpredictability- demand forecasts, costs, and
completion times [122]–[124]. The simple pictorial depiction
of capacity expansion is shown in Figure 31.
In literature, it has been documented that the highly unpre-

dictable uncertainty often resulted in surprise or shock to the
system planners either as a critical shortage or provision of
gross amounts of unwanted capacity. Both of them are highly
undesirable. Figure 32 illustrates the impact of the critical
shortage (building not enough capacity) challenges in the case
of the Pacific Northwest of the United States. It shows the
causal relation of unpredictable growth of electricity demand,
having not enough capacity, and market deregulation to
market manipulation; and shows how market manipulation
and hot summer and drought can lead to increase in natural
gas prices [125].

A popular example of the impact of building too much
capacity is what happened in 1970 in the United States. Since
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FIGURE 32. Impact of the critical shortage challenges in the case of the
Pacific Northwest of the United States.

the end of the World War-II till 1970, there observed an
unprecedented industrial growth, and hence an exponential
increase in electricity demand. This phenomenon inspired
the utilities overbuilt the nuclear power capacity to meet
the exponentially growing demand. After 1970, a change
was observed in the pattern of demand growth; it started
showing an almost linear behavior in contrast to the previous
exponential behavior. When demand started increasing in
a considerably slower fashion, the annualized capital costs
associated with these plants had to be spread over fewer
individual units of electricity, and eventually, retail prices
increased. Figure 33 is the illustration of the impact of over-
estimating electricity demand resulted in a higher price. This
overinvestment-underinvestment dilemma posits that If it is
an overinvest, then it just sets to have higher electricity prices,
if it is an underinvest, it sets up for the actual physical failure
of the grid [125].

Apart from the demand, there is another source of uncer-
tainty in analyzing capacity expansion: Market, or in par-
ticular, fuel prices. Fluctuations in fuel prices can have a
tremendous impact on which technologies are more prefer-
able. Sometimes, the change in fuel prices may experience
a behavior which is not predictable, or even statistically
not well-characterized, before making decisions regarding
capacity expansion. The other considerable sources of uncer-
tainties are technologies, regulations, construction time, and
retirement. The technological and industrial innovations are
correlated to the price projections about future capacity costs.
In particular, renewable energy technologies can be a crucial
driver in predicting future capacity cost; and its predictability
in generation mix over decades can change the capacity cost
dynamics dramatically. After that, the uncertainties come
with regulations are beyond the scope of describing it in
a statistical manner. For instance, it is near to impossible

FIGURE 33. Impact of overestimating electricity demand resulted in a
higher price.

describing the likelihood of the United States enacting a
carbon tax or some other legislation that eventually makes
the fossil fuel power plants more expensive. Construction
time is also a crucial factor since the decision regarding plant
construction needs to be made many years before they are
actually built. Retirement, though studied as a factor of uncer-
tainties, can– more or less– be planned. These retirements of
existing capacity ultimately add to the need for new capacity.
Besides, in the case of capacity expansion, it is incumbent
to consider the scenarios, such as if the growth in electricity
demand is considerably lower than expected, if the future
electricity demand is related to the cost of solar and batteries,
if the technological innovation happens faster than that was
expected, and most importantly, if the US transportation is
shifted to be electrified [126]–[128]. Addressing these all
sorts of possibilities is a pressing concern of infrastructural
planning for the power industry, and with the time being,
the electric power industry is continually being linked to irre-
ducible and unquantifiable uncertainty. Ensemble prediction
[128], [129] followed by the decision analysis is the most fre-
quently used academic approach to address these challenges
[129], [130]. Decision Analysis is a formal structure for
decision making under uncertainty that includes numerous
methods for adequately identifying, clearly representing, and
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precisely assessing the essential aspects of a decision, and
for suggesting a course of action by applying the maximum
expected value axiom [130], [131]. A decision tree is a
commonly used tool in the decision analysis that involves
decision nodes, chance nodes, and end nodes to interpret
the flow of time, decisions, uncertainty, and consequences to
come up with the evaluation measures realizing how well the
objectives are achieved in the final outcome [131].

VI. INTERNET-OF-ENERGY
In the last section, we intend to capture the most crucial
areas centered around the concept of Internet-of-Energy. In a
nutshell, we discuss the Grid Overview of the United States;
Weather and Climate and its impact on the entire energy
generation and consumption dynamics; Peak Load Forecast-
ing and its techniques and burgeoning challenges; Variable
Renewable Energy, its reliability challenges and how we can
take advantage of this variability; Commodity Prices and
its criticality; Energy Disaggregation and its impact on con-
sumption awareness; andGeneration Expansion andDecision
Analysis and trade-offs.

Internet-of-Energy, as well as IoT, preserves the essence
of sustainability– coordinated development of life and its
habitat, society, culture, work, and material production envi-
ronment, well-reflected by the social-economic-natural com-
plex ecosystem theory. Though the conceptualization of the
Internet of Energy is centered around the motivation of assur-
ing electric mobility and full deployment of the must-take-
resources, such as renewable sources, Internet of Energy
can answer numerous energy and reliability challenges, and
provide solutions and theoretical underpinnings leveraging
the recent advancements in microsystems, nanoelectron-
ics, embedded systems, control, communications, algorithms
and analytics, software, and the internet technology. In the
Internet-of-Energy, the area for IoT realization can be man-
ifold. From the aspect of energy delivery and peak demand,
IoT realization is incumbent for online generation monitor-
ing, smart meter reading, and advanced control system for
transmission and distribution. From commercial, industrial,
and residential point-of-view, demand response modeling,
electric vehicle charging, and home energy management are
crucial for IoT effectuation. Besides that, utilities or con-
sumers are one of the key sectors to be realized using IoT.
Microgeneration and asset management are crucial in this
regard. Figure 34 captures the essential layers of IoT deploy-
ment with the smart grid in the realization of the internet-of-
energy. There may have multiple avenues in IoT deployment
yet to be explored to enact smooth and effective communi-
cation between the smart meters attached at the consumers’
place and the sensors [37], [48], [132], [133].

There are four key functionalities of IoE: Motivating con-
sumers, self-healing, improve power quality and resist attack.
IoE offers interactive options in transferring consumption
and reliability information between the user and utility, and
thereby, motivates users to plan their cost and select suitable
tariff, creates awareness regarding demand response features

and their impact on reliability and cost, and eventually, lets
the consumers control their power usage more effectually.
With the capacity to analyze on the fly, IoE can identify and
react to the major faults swiftly and in a more intelligent way.
In particular, smart metering approaches with wireless con-
nectivity facilitate identifying black-outs immediately and in
a nonintrusive manner. Next, IoE promotes improving power
quality. The major consumer demands in all the commercial,
industrial, and residential sectors are of constant voltage,
and abrupt fluctuations in the voltage may be detrimental to
electric appliances. IoE has tremendous potential to maintain
constant voltage, thereby reducing commercial productivity
loss. Apart from that, IoE adopted numerous privacy preser-
vationmethods for smart grids to protect itself from cyber and
physical attacks [47], [134], [135].

The technology synthesis allows perceptive technology,
advanced analytics and machine learning, advanced net-
work technology, artificial intelligence and automatics to be
employed together into machine-to-machine and human-to-
machine interactive systems to realize the functional inter-
connection of humans and objects. It motivates the internet-
of-energy to leverage the elements and functionalities of IoT,
such as flexible structure, autonomous process, multi-role
participants, scalability, event sharing, interconnectivity, and
semantic sharing. Besides that, third parties are welcome to
develop complex and compound applications with the provi-
sion of APIs. Figure 35 illustrates the concepts of the internet-
of-energy integration– a framework realized by the approach
of IoT paradigm with the smartgrid [47], [133], [136].

A. IoE ARCHITECTURE AND IoT INTEGRATION
Internet-of-Energy architecture is dynamic and progressive,
as such with respect to time factor, the system elements can
be reconfigured. However, the myriad number of devices,
functionalities, and technologies in IoT, and consequently,
in the internet-of-energy, makes interoperability a crucial
issue. Thereby, data deluge (by smart metering), extensibility,
and scalability should be taken into consideration, resulting
in enormous computational tasks. Parallel computing may
obtain a significant speedup and get the analyses and results
faster. However, extrapolating the performance from the
small size of the problem on small systems to the larger size
of the problem on larger configurations is a primary concern.
For a given problem size, computational overhead increases
with the increase of the number of processing elements.
Hence, the overall efficiency of the parallel program goes
down in a meaningful manner. Besides that, according to
Amdahl’s law, speedup tends to saturate with the increase
in the number of processing elements. On the other hand,
since the total overhead function is necessarily a function
of both of the number of processing elements and the size
of the problem, in many cases, we observe the overhead
grows sublinearly with the increase of the problem size. If we
keep the number of processing elements constant for such
cases, the efficiency will increase with the increase of the
problem size. Leveraging this insight, we can simultaneously
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FIGURE 34. Essential layers of IoT deployment with the smart grid in the realization of the
internet-of-energy.

increase the number of processing elements and the problem
size at a particular rate to keep the efficiency of the system
constant. Such a system is called the scalable parallel system,
and assuring scalability of a system is a critical challenge in
large scale IoE deployment. Another major concern, which
may lead to severe repercussions, in this technology is
privacy and security. The security and privacy threats are
even more serious in the case of smart meters in residential
buildings. The privacy concern with residential users are
easily susceptible to the hackers, and sometimes, to other
consumers intending their per day energy consumption reduc-
tion. These challenges and concerns come up with future
research opportunities regarding suitable remedial measures,
such as encryption methods, authentication schemes, public
key infrastructure, and standardized application program
interfaces [47], [132], [137].

The principal features of internet-of-energy is aquainted
as follows in the lens of advantages and disadvantages.
To begin with, automation realizes the control of numer-
ous smart devices, leading to the uniformity of tasks. This
secures a transparent process over the entire machine to
machine communication. Then, the efficiency of the system
can be perceived in two aspects: the ratio of useful out-
put energy and total input energy, and the opportunities it
creates to retarget human efforts in other fields. The internet-
of-energy facilitates more machine to machine interaction;
the more the interactions between machines, the more the
opportunities are created to target on other jobs that require
human efforts. Besides, advanced analytics help optimizing
the efficiency (the first aspect) of the energy production and

management ecosystem. It also brings cost-effectiveness as
another advantageous aspect of IoE. Again, communication
is crucial to improve the quality and time factor; internet-of-
energy facilitates a platform for daily basis communication
with the devices. Implementation of IoEmay facilitate instant
data access (with proper authentication and user verifica-
tion), which further helps the research community to conduct
exploratory research in this domain and delivers useful data-
driven insights. Figure 36 depicts the benefits of the internet-
of-energy from the functional aspect [47], [137]–[139].

One of the major disadvantages of internet-of-energy
deployment is paramount privacy and security concerns.
The more the appliances and services are dynamically con-
nected, the more the information stored are readily avail-
able, the more the risks of the data-security breach as the
information may get susceptible to hackers and unautho-
rized concerns. It brings a surge in multidisciplinary research
opportunities regardingmore robust data authentication tools,
privacy policies and standards, and firmware standards.
Again, due to the lack of sufficient international compati-
bility standards available for internet-of-energy, it is tricky
and confusing both for the manufactures and stakeholders to
interact with the services; thereby, compatibility is a signifi-
cant concern in the massive deployment. In this regard, new
standards with common protocols are being developed for
residential, commercial, and industrial sectors. Next, as far
as the complexity is concerned, an extremely large network
is connected across in the IoE; a small failure in the software
and hardware components may lead to a damage in the entire
system. On the flip side, the immediate failures at the junction
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FIGURE 35. Internet-of-Energy integration.

of nodes can be addressed through a common control center;
remedial action is next to instant [47], [140], [141].

B. BROADER IMPACT
Adopting the internet-of-energy comes up with a tremen-
dous social impact as it steps forward into the future energy
ecosystem with smart technologies and new regulatory struc-
tures and services. First, it changes the classical perception
regarding generation, transmission, and consumption to both
the consumers and utilities. From the consumers’ aspect, this
contemporary avenue is critical for ecological awareness and
convoluted for energy management, underscoring their daily

comfort behaviors as a dynamic factor in the complex system.
Furthermore, the intricacy involved in adopting and control-
ling different smart devices with numerous distinct sensors
governed by different operating systems leads to interoper-
ability concerns for the consumers, in particular, the senior
citizens and the people from a non-technical background.
As technology progresses, the internet-of-energy– to enhance
the acceptability of these new technologies– requires training
as well as mentoring opportunities for a diverse group of con-
sumers and operators. This new technology opens up scopes
for researchers around the world to study and understand
the concept properly. The results and insights generated on
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FIGURE 36. benefits of adopting internet-of-energy from the functional
aspect.

this new technology need to be widely disseminated through
publications, professional presentations, and online access to
raise awareness and motivate advancement. These collective
efforts will– soon– change the understanding of consumer
devices, from a black box to a source of multivariate infor-
mation based on the pricing scheme [47], [142], [143].

On the bright side, the recent technology transformation
makes the world propelling at a rapid and exponential change,
creating a tremendous impetus, as well as brunt, at differ-
ent avenues and courses of action, such as professional and
personal aspects. Again, embodying the consumer in the
intersection of multiple domains centered around embark-
ing fourth industrial revolution, technology innovations, and
social impact, the internet-of-energy has the potential to make
the user more empathetic about consumption, and hence
reduce the wastage. The interactive energy system– enabled
by internet-of-energy leveraging new intelligence in infor-
mation technology infrastructures– makes the user not only
aware of the consumption but also active in controlling. The
advent and evolution of the internet-of-energy have an impact
in other sectors of the economy, in particular, the development
of many fast-growing smart cities. predicts a full-fledged IoT
eon by 2030 [144], [145].

C. CHALLENGES AND FUTURE RESEARCH
OPPORTUNITIES
Before moving on to the full capability of IoE, it is incumbent
to have a proper understanding of the challenges that the com-
bination of IoT in the smart grid may bring into the dynamics.
The most cardinal challenge is the possible data leakage;
consumers’ sensitive information can be revealed from the
data obtained from the appliances scheduling. For exam-
ple, heater usage data in the wintertime or air-conditioner
usage data in the summertime implies the availability (or

absence) of the residents. This data, if leaked, can lead to
burglary or undesirable events and practices. Again, as all
the consumers’ information are readily available in the cen-
tral server of the utility provider, consumers’ privacy in the
network can be compromised by cyberattacks. Cyberattack
is another major concern. Cyberattackers can– by rifting the
IoT-enabled-smart-grid-infrastructure– manipulate the data
transferred between users and utilities and present incorrect
decisions to the sensors connected to all the smart meters.
Subsequently, the appliances operate in an incorrect way
and get damaged, thereby causing a serious financial melt-
down. Especially, these challenges involved in commercial
and industrial sectors can lead to an economic catastrophe
around the world. For instance, any industrial enterprise inte-
grated with the internet-of-energy, if subjected to cyberat-
tacks, may need to compromise their functioning, and it can
discredit the entire production. Unreliable or unpredictable
internet connectivity is another concern followed by swifter
connectivity requirements for on-the-fly energy management
analysis [47], [146], [147].

The future directions and research opportunities regarding
the IoT enabled smartgrid are multifacted. In the physical
layer of the internet-of-energy, energy acquisition and con-
sidering IoT based devices for different conditions, situations,
and environment opens up research opportunities for scholars
and new entrants in the future. In the network layer, more
research is required in data fusion technologies, deployment
techniques for new power supply products, and communi-
cation technologies. As the number of data sources grows
with the deployment of IoE, a single source may not be
effectual in providing useful insights and information. On the
flip side, it is cumbersome and expensive – from the data
collection and management point of view– to store data from
all the available sources. Advance data fusion techniques
can help integrating multiple data sources and deliver more
accurate, consistent, and useful insights. In the transport
layer of this new technology, data transfer at data centers
avoiding network congestion and data traffic can be the future
research challenge and directions. Network congestion is the
reduced quality of service in a network due to carrying more
data in its link or node than that it can typically handle,
affecting queueing delay, blocking of new connections, and
packet loss. In the application layer of the internet-of-energy,
research challenges centered around the integration of IoT
enabled devices, edge servers, and data handling issues are
required to address more efficiently and consistently in the
future. The integration of IoT enabled devices requires logical
connectors, commonly known as APIs, allowing applications
to communicate with other IoT devices. They expose data that
enables devices to transmit data to applications, functioning
as a data interface. The other avenues of the internet-of-
energy that may draw the attention of the research com-
munity in the future for further research and development
are standardization, authorization and privacy with authen-
tication, and avoiding cyberattacks with robust security
management [148].
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TABLE 7. Transferable Computational Techniques and Their Prospective Applications in IoE Conceptualization.
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D. IoE AND COMPUTATIONAL SUSTAINABILITY
The overarching goal of the computational sustainability net-
work (CompSustNet) is to promote a platform that unites and
helps more and more scholars, across the domain, use data
mining techniques to solve the most complex and pressing
problems of this time. The most compelling aspect of this vir-
tual network– besides making a platform for computational
science researchers to put their muscle towards making the
world a more sustainable and livable place– is that a new
method or solution created to solve one particular problem
can be repurposed for another distinct problem. Table 7
presents the broader computational techniques addressed in
the CompSustNet publications from 2016 to date and their
prospective application in the IoE conceptualizations [149].
We followed a multi-blind Delphi method to extract the
broader (mother) computational techniques from more than
175 papers indexed in the CompSustNet publication section.
Besides, this study relied on the comments and suggestions
by the domain experts at Oregon Renewable Energy Center
(OREC) at Oregon, United States, to summarize the prospec-
tive application in the IoE conceptualizations.

VII. TAKEAWAYS
The theoretical underpinnings covered in this paper are dis-
cussed as follows.
• It summarizes the evolution of the energy grid, grid
distributions and it is affected by the availability of the
resource.

• It outlines the United States grid from the administrative
point of view.

• It highlights the impact of weather, climate, and extreme
events from both demand and generation aspect, dis-
cussing challenges and possible solutions regarding this.

• It contextualizes the load forecasting and its necessity
in the energy workflow, classifies the time horizons
of forecasting, and clusters and discusses the existing
forecasting techniques from the computational aspect.

• It infers the burgeoning computational complexity and
the trade-off between (almost) exponential technology
trend and weather impact in developing forecasting
models and algorithms.

• It delineates the variability and unpredictability of
renewables (particularly, solar and wind) and how it
poses challenges on multiple time scales, affecting plan-
ning and operations in power systems.

• It infers growing multi-aspect reliability challenges that
come with growing renewable-penetration.

• It discusses how commodity prices end in impacting
electricity prices in the case of both conventional and
renewable energy.

• It highlights CMI, their objectives, and categorizations
of materials based on criticality for short-term and
medium-term clean energy.

• It contextualizes the energy disaggregation and advo-
cates how it can bring positive impact in energy con-
sumption dynamics in US residences.

• It discusses different state-of-the-art nonintrusive load
disaggregation techniques recently surged in the litera-
ture.

• It discusses capacity expansion, its different avenues,
such as the impact of critical shortage challenges, and
impact of overestimating electricity demand.

• It delineates the IoE architecture, broader impact, chal-
lenges, computational sustainability and IoE, future
works, and opportunities.

• It summarizes frequently used computational techniques
that can be used across the domain and help to gather
valuable insights for large scale IoE deployment and
analysis, joining into the movement for computational
sustainability.

VIII. CONCLUSION
This qualitative study has encompassed the elements of the
energy and power management ecosystem and internet-of-
energy in the United States. This study has addressed the
sustainability issues in the lens of Grid Overview of the
United States; Weather and Climate and its impact on the
entire energy generation and consumption dynamics; Peak
Load Forecasting and its techniques and burgeoning chal-
lenges; Variable Renewable Energy, its reliability challenges
and how we can take advantage of this variability; Commod-
ity Prices and its criticality; Energy Disaggregation and its
impact on consumption-awareness; and Generation Expan-
sion and Decision Analysis and unpacked useful insights on
these domains. After that, it has focused on IoE integration,
associated trade-offs, challenges, research opportunities, and
transferrable computational techniques that can be repur-
posed for problems across the domain. Proper schematics
and quantitative analysis have been presented to support this
study.
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