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ABSTRACT Potential risk of X-ray radiation from computed tomography (CT) has been a concern of
the public. However, simply decreasing the dose will degrade quality of the CT images and compromise
diagnostic performance. In this paper, we propose a noise learning generative adversarial network coupling
with least squares, structural similarity and L1 losses for low-dose CT denoising. In our method, noise
distributed in the input low-dose CT image is learned by the generator network and then subtracted from the
input to generate the final denoised version. The denoised CT images are penalized by the least squares loss
function, and they are pulled toward boundary of the decision even though they are classified as normal-dose
CT. Least squares stabilize the training process without regularization. Structural similarity and L1 losses
are utilized to keep textural details and sharpness of the denoised CT images respectively. Experiments and
results show that our method can effectively suppress noise and remove artifacts compared with the state-of-
the-art methods. The texture statistical properties, which include mean, standard deviation, uniformity, and
entropy, further confirm that the generated noise-reduced CT image is as close as to that of the normal-dose
counterpart.

INDEX TERMS Deep learning, generative adversarial network, least squares, low-dose CT, denoising.

I. INTRODUCTION
For recent decades, X-ray computed tomography (CT) is one
of the most practical imaging modalities, which is exten-
sively utilized in medical imaging, industrial evaluation, and
other applications [1], [2]. Numerous patients receive huge
benefits from CT scans. With the widespread use of med-
ical CT, the potential risk of ionizing X-ray radiation to
patients has been raised concerns of the public [3], [4]. Under
the well-known guideline of ALARA (as low as reasonably
achievable), the minimization of X-ray dose has become an
important research topic [4]. The most popular way to cut
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down radiation dose is to reduce the X-ray flux by shortening
the exposure time and decreasing the operating current of
an X-ray tube. Frequently, the lower the X-ray, the noisier
a CT image, which results in the degradation of the signal-
to-noise ratio and compromise of diagnostic performance
[5]. To tackle this inherent problem, many algorithms have
been developed to improve low-dose CT images [6]. Usu-
ally, these algorithms are classified into three categories:
(a) sinogram filtration, (b) iterative reconstruction, and (c)
post-processing.

Raw data or its log-transformation can be processed by
sinogram filtering before CT image reconstruction, for exam-
ple, filtered back-projection (FBP) [7]. It is convenient that
the characteristics of noise in the sinogram domain are
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well-known. This classic type of methods contains bilateral
filtering [8], filtering for adaptive structure [9], and penalty of
weighted least squares (PWLS) [10]. However, the methods
based on sinogram filtering suffer from the drawbacks of
spatial resolution loss or edge blurring.

The methods of iterative reconstruction iteratively opti-
mize an objective function, enforce the statistical properties
of projection data, the prior information of real images, and
the parameters of the imaging system. The issues of low-dose,
limited angle, few view, and interior CT can be addressed by
compressive sensing [11]. Iterative reconstruction methods
include dictionary learning [12], nonlocal means [13], [14],
low rank [15], total variance [16] and variances [17], [18], and
so on. This type of methods considers the physics in the iter-
ative model, and some of these methods were implemented
on modern CT scanners. These methods are vender-specific
since the geometric parameters and correction steps of CT
scanners are not publicly accessible. Moreover, the computa-
tional cost of iterative approaches is intensive. While the iter-
ative methods are computationally demanding, the resultant
image quality is clearly.

Post-processing methods directly perform on recon-
structed low-dose CT image. These methods require no
knowledge on raw data and are practically convenient. Hence,
intensive efforts have made in the image domain for reducing
low-dose noise and artifacts. For example, adaptive nonlocal
mean (NLM) [19] was utilized for CT image noise reduction.
Block matching (BM3D) [20], [21], was adopted for several
CT tasks. With post-reconstruction processing, the image
quality can be significantly improved, but over smoothing and
residual problem remaining in the processed images, because
of the non-uniform noise in CT images.

Recently, deep learning techniques have been actively
developed, and applied to various applications [22], [23].
In particular, deep learning also provides new thinking
and tremendous potential in the field of medical imag-
ing [24]–[26]. The problem of noise reduction for low-dose
CT can be handled by deep learning [27]. Simply, a three-
layer of convolutional neural networks (CNN) presented not
long ago for low-dose CT noise reduction with a promising
performance [6], [25]. Specifically, a convolutional auto-
encoder-decoder with residual learning (RED-CNN) [28]
was successfully developed for estimating a normal-dose CT
image from a low-dose version. A deep CNN with a direc-
tional wavelet transform combined shortcut connections for
low-dose CT [29].

Although these novel network architectures achieve signif-
icant performance gains, the resultant image still suffer from
blurry appearance and missing textural details. It is noted that
the network structures described above only target minimiz-
ing the mean square error between the restored CT image
and the corresponding normal-dose CT [30]. To deal with
this limitation, the generative adversarial network (GAN)
[31], [32] was introduced for low-dose CT. For handling the
difficulty in training GAN, Wasserstein distance was intro-
duced to measure the discrepancy between distributions of

generated and real images, yielding the Wasserstien distance
based GAN (WGAN) [33]. Furthermore, gradient penalty
was employed as a regularization mean to accelerate the
training process (WGAN-GP) [34]. Importantly, WGAN-
VGG [35] was a method with a perceptual loss for low-
dose CT, which achieved promising denoised CT images
[36], and the perceptual loss was implemented by VGG [37]
that pre-trained on natural images. Also, SMGAN [38] based
on WGAN-GP combined multiscale structural loss [39] and
L1 loss into the objective function, and took advantage of the
information between adjacent inter-slices, produced results
compared favorably with that of WGAN-VGG [35].

Although WGAN-GP [34] overcame the mode collapse
and training convergence issues, the use of gradient penalty
weakened the representation capacity of GAN [40].

To deal with the problem and enlightened by the results
[38], [40], here we propose a residual-CNN-block generator
and discriminator for noise learning with the least squares
[41]. The structural similarity (SSIM) [36] and L1 losses
integrated into the overall objective function. The noise in
the input low-dose CT image is learned by the residual-CNN-
block generator, and then subtracted from the input to obtain
a clean CT image. With this GAN, the problem of gradient
vanishing is solved without gradient penalty regularization,
and the resultant CT images are practically satisfactory, since
those reconstructed low-dose CT images far from the distri-
bution of real normal-dose CTwould be effectively penalized.

Specifically, low-dose CT noise reduction is treated as
a conversion of low-dose CT image into normal-dose CT
image. Our dedicated GAN performs the estimation of the
distance of distribution between low-dose CT and normal-
dose CT. In this process, the SSIM loss keeps structural and
textural details after noise suppression, and L1 loss preserves
the sharpness of the denoised image. In the rest of this paper,
the proposed method is described in Section II. The exper-
iments and the results are presented in Section III. Finally,
discussions and the conclusion are in Section IV.

II. METHODS
A. MODELING FOR NOISE REDUCTION
Noise reduction via post-processing is straightly imple-
mented in the image domain. However, low-dose CT noise
reduction differs from natural images, since the statistical
property of low-dose CT images is difficult to be modeled in
the image domain [41]. In general, noise reduction in natural
image is noise-type-dependent, yet the data distribution of
low-dose CT is considered as the mixture of quantum Poisson
and electronic Gaussian noises which vary significantly in the
whole CT image. This makes it suboptimal to use traditional
denoising methods for low-dose CT. However, the uncertain
noise model can be tackled using deep learning techniques,
because of its strong ability of high-level features capturing.

Noise reduction for low-dose CT images can be modeled
as follows. Assume that x ∈ Rm×n denotes a low-dose CT
image and y ∈ Rm×n denotes the corresponding normal-dose
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one, we can formulate their relationship as

x = σ (y) (1)

where σ : Rm×n
→ Rm×n describes the contaminating

process of normal-dose CT by quantum noise.m and n denote
the width and height of a CT image respectively. The task for
low-dose CT image denoising is to find a function f :

argmin
f
||f (x)− y||22 (2)

where f denotes an approximation function of σ−1. In addi-
tion to the least square norm, the optimization problem can
also be formulated under different objective functions. Then,
we can invert the process using a deep learning method.

B. LEAST SQUARES GAN
In recent years, generative adversarial networks (GANs)
have produced impressive results via unsupervised and semi-
supervised learning. A GAN includes a pair of neural net-
works: a generator G and a discriminator D. The generator
G takes a noisy z as the input and generates a fake sample,
i.e., G(z). The discriminator D takes a real sample x or a
fake sample G(z) as the input, and makes the best effort to
distinguish between real or fake samples. The generator and
discriminator are in a game relationship. In the game, the
generator is trained to generate the samples as realistic as
possible, while the discriminator is trained to become as smart
as possible for making a distinction between real or fake
samples. The pair of networks are often trained alternatively,
so that the competition encourages the generated samples to
be hardly distinguished from real ones. Mathematically, G
and D form a two-role minimax game with a value function
V(G,D):

min
G

max
D

V (D,G) = Exvpdata(x)
[
log (D (x))

]
+Ezvpz(z)[(1− log(D(G (z)))] (3)

where E(·) is the operator for expectation, pdata and pz denote
real and noise distributions respectively. Sampled noise is
transformed by the generator G to mimic a real sample,
its corresponding distribution is represented by pG. For the
parameters of G being fixed, the D can be trained to be an
optimizer. In the regular GAN, z sampled from the predefined
noise distribution is taken as the input of the G. For low-dose
CT image noise reduction, G takes low-dose CT image as
the input and output a denoised version. The minimization
of the Jensen-Shannon (JS) divergence between pdata and pG
is equivalent to the minimization of G, which will easily give
rise to a vanishing gradient with respect to the parameters of
G, leading to mode collapse.

There are several problems in regular GAN, such as con-
vergence, mode collapse, and poor of the generated image.
Hence, we used the least squares GAN (LSGAN), which
solves the vanishing gradient issue when fake samples are
still far from real ones but on the correct side of the decision
boundary. In LSGAN, D utilizes the a-b coding, where a, b

denote real and fake data respectively. The objective function
for LSGAN can be described as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x)
[
(D(x)− b]2

]
+Ez∼pz(z)[(D (G (z))− a)

2] (4)

where a and b are included in the objective function to avoid
gradient vanishing. A fake sample is far away from the real
distribution but discriminated as real will be penalized. If the
distribution of fake samples matches the real counterpart,
the gradient becomes zero.

LSGAN offers two benefits. First, fake samples in the
correct side of the decision boundary, but which a long way
from will be penalized. The penalization will make generated
samples move toward the correct decision boundary as closer
as possible, reducing the distance between the generated and
real data. Second, the mechanism of penalization results in
increased gradients in the training process. This makes the
LSGAN obtain a higher stability.

C. OBJECTIVE FUNCTION
1) ADVERSARIAL LOSS
Compared with the regular GAN, LSGAN adopts the least
squares loss tominimize the divergence of Pearson χ2 instead
of the Jensen-Shannon (JS) to approximate the distribu-
tion between generated samples and real ones. In our task,
the least square loss forces the distribution of denoised CT
images to that of normal-dose CT images. To make the
generator produce denoised CT images as realistic as possi-
ble, we use the objective functions of D and G respectively
described as follows:

min
D
VLSGAN (D) =

1
2
E
x∼pdata(x)

[
(
D (x)− 1]2

]
+
1
2
Ez∼pz(z)[(D (G (z)))

2] (5)

min
G
VLSGAN (D) =

1
2
E
z∼p(z)

[
(
D (G(z))− 1]2

]
(6)

where x and z denote a normal-dose CT image and its low-
dose version respectively.

2) SIMILARITY LOSS FUNCTION
Feature correlations are strong in medical CT images with
difference dose levels. The structural similarity index (SSIM)
includes three human visual components, which are lumi-
nance, contrast, and structure. SSIM performs better than
mean squared errors (MSE) and peak signal-to-noise ratio
(PSNR) in visual tasks including diagnostic ones. For mea-
suring the similarity between denoised CT image and normal-
dose version, the classic SSIM can be used, which is defined
as follows:

SSIM (x, y) =
2µxµy + C1

µ2
x + µ

2
y + C1

∗
σxz + C2

σ 2
x + σ

2
y + C2

(7)

where µx , µy, σx , σy, and σxy denote the means, standard
deviations and the cross-correlation of two images under
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comparison respectively, and C1 and C2 are the constants
to eliminate numerical singularity. When x and y are more
similar, the value of SSIM is closer to one. Thus, the loss
function for SSIM can be set to the following:

LossSSIM= 1− SSIM (x, y) (8)

It is worth noting that the SSIM loss can be back-propagated
to update the parameters of the neural networks, given its
property of differentiability.

SSIM is employed to calculate the overall similarity
between a normal-dose CT image and the denoised version.

3) L1 LOSS FUNCTION
The L1 loss is also referred to as the least absolute error (LAE)
[43]. Similar to the L2 loss (mean-squared error, MSE) [44],
the L1 loss is a mean-based metric, but has a different effect
on noise reduction. Larger errors between a denoised image
and the ground truth are not over-penalized compared to the
MSE loss. Some drawbacks, such as blurring and unnatural
associated with the MSE loss can be alleviated by the L1 loss.
In our low-dose CT image denoising task, the L1 loss

function is described as follows:

LossL1 =
1
mnb
|x − y| (9)

where x and y stand for a denoised CT image and the ground
truth (normal-dose) respectively. m, n, b denote the width,
height of the CT image, and the batch-size respectively.

4) OVERALL LOSS FUNCTION
Although minimizing the least squares loss can approxi-
mate the distribution of low-dose CT image to the normal-
dose counterpart, yielding decent denoised image, it could
not match well the corresponding normal-dose CT image in
details. Often times, the L2 (MSE) loss is utilized in CNN-
based methods, which attempts to minimize the error of per
pixel between the predicted image and the target one. How-
ever, the L2 loss yields over-smoothened and blurry images,
which results in distortion or loss of structural details. For
restoration of high quality denoised CT images from low-
dose CT, we combined different loss terms into a hybrid
objective function for our task. The L1 loss helps further
improve signal-noise-ratio (SNR).

For insuring the quality of restored CT image and keeping
texture and structural details, our overall objective func-
tion incorporated the least squares loss, L1 loss, and struc-
tural loss. In summary, the overall objective function of our
adapted LSGAN is formulated as follows:

Loss= αLossLSGAN + βLossSSIM + γLossL1 (10)

where α, β and γ are coefficients of the three loss terms.
In the training stage, the total loss between denoised CT
image and normal-dose one was calculated, which was then
back-propagated for the neural network optimization. There
are three hyper-parameters in the total loss function. To select
the optimal parameters, first, we fixed β and γ , and select the

FIGURE 1. Architecture of the generator. It learns the noise, and then the
original low-dose CT minus the noise is the denoised version.

optimal α. Then, we fixed α and γ , and determine the optimal
β. Finally, we obtain the best value of γ based on the optimal
α and β.

D. NETWORK ARCHITECTURE
1) GENERATOR NETWORK
The target of low-dose CT denoising is to generate a denoised
CT image with improved quality, textural and structural
details. The success of this denoising task depends on a proper
network structure to produce the best denoised results.

Our deep generator G differs from traditional noise reduc-
tion models. The generatorG is intended for residual learning
[45] to obtain a mapping to a residual noise N (x) = v, where
v stands for noise. Then, the denoised CT image is produced
by y′ = x − v. Our generator G was designed to learn the
residual noise from the input low-dose CT image. A denoised
CT image can be obtained by subtracting the learned noise
from the input low-dose CT image. Fig. 1 illustrates the
architecture of the generator G.

The generator G consists of two convolutional layers in
the front and the rear respectively, and five residual con-
volutional blocks in the middle. The activation function for
each convolutional layer is leaky rectified linear unit (Leaky
ReLU) [46]. In the front, the first convolutional layer adopts
32 kernels of 7 × 7, and the second convolutional layer
adopts 96 kernels of 5× 5. In the rear, the first convolutional
layer employs 96 kernels, and the second convolutional layer
uses one kernel, all the kernels are of 3 × 3. In the middle,
the first and second convolutional layers of each residual
convolutional block all contains 96 kernels per layer, with the
sizes of these kernels being set to 3× 3 and 5× 5 respectively.

2) DISCRIMINATOR NETWORK
The goal of the discriminator is to classify if an input is real
or fake. Our discriminator D consists of six convolutional
layers and three fully-connected layers, which use rectified
linear unit (ReLU) [47]. In the front of the discriminator D,
there are 64 kernels in two convolutional layers. The middle
two convolutional layers have 128 kernels, and the rear two
contains 256 kernels. The unit stride is used for all kernels
being set to 3 × 3 in size. Three fully-connected layers are
utilized after the six convolutional layers, of which the first
layer has 1024 outputs, the second layer has 512 outputs, and
the last layer holds a single output. Our implementation of the
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FIGURE 2. Architecture of the discriminator. It learns to classify if the
input is a real normal-dose image or a generated one.

discriminatorD differs from the original paper [41]. To avoid
vanishing gradients and mode collapse, we utilize the least
squares loss and ReLU instead of the Sigmoid function. The
architecture of the discriminator is in Fig. 2.

Our adapted GAN with hybrid loss was trained with CT
image patches, then applied on entire low-dose CT image.
The details are described in Section III.

III. EXPERIMENTS AND RESULTS
A. DATASETS FOR EXPERIMENTS
To exhibit the capacity of our adapted GAN for low-dose
CT image denoising, a real clinical CT image dataset was
adopted in our study, which was authorized by Mayo Clinic
for ‘‘2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand
Challenge’’. The dataset contains 2, 378 normal CT images
and the corresponding simulated low dose counterparts (quar-
ter dose) from ten anonymous patients [48]. The matrix of
each CT image is 512 × 512, with the thickness of 3.0 mm.
In our experiments, we divided the dataset into two groups.
One group contains 2, 167 image pairs from nine patients as
the training set, and the other group contains 211 image pairs
from the remaining one patient as the testing set.

In the training stage, image patches were extracted. The
extracted patches of 55 × 55 were used. There were about
106 patch pairs extracted from 2, 167 image pairs as the
training samples. Our patch based training captured local
details, without a huge memory requirement. The deep learn-
ing approach needs a large number of training samples, but
collecting medical images is constrained by complex formal-
ities and extensive efforts.

B. PARAMETER SETTING
The generator and discriminator of our GAN both were opti-
mized utilizing the adaptive momentum estimation (Adam)
[49]. The size of mini-batch was 96. The original learning
rate was set to 1 × 10−5, then gradually decreased to 1 ×
10−6 in the training process. On the basis of our experimental
experience, the coefficients of overall objective function were
set as α = 0.005, β = 0.995, and γ = 0.95 respectively.
Our method were programed in Python with the platform

of Pytorch. All experiments were implemented on a personal
computer (Intel i7 9700 with 32 G random memory) and
accelerated by a NVIDIA RTX 2080 TI GPU with 11 G
memory.

Our low-dose CT denoising method was compared against
five state-of-the-art different methods, including NLM,
BM3D, RED-CNN,WGAN, and SMGAN. NLM and BM3D
are two of the most popular traditional approaches which

FIGURE 3. Results of an abdominal CT scan from the testing set using
different methods. (a) Normal dose, (b) Low dose, (c) NLM, (d) BM3D,
(e) RED-CNN, (f) WGAN-VGG, (g) SMGAN, (h) Proposed.

already utilized for low-dose CT image denoising. RED-
CNN, WGAN-VGG and SM-GAN are three representa-
tive deep learning methods for low-dose CT. RED-CNN is
an auto encoder-decoder convolutional neural network with
mean squared error. WGAN-VGG and SM-GAN are work-
ing based on a GAN, and employing Wasserstein distance
and sharing similar network architecture, but different loss
function.

C. EXPERIMENTAL RESULTS
1) VISUAL EFFECT
For evaluating our method, two typical low-dose CT images
from the testing set and their denoised results utilizing dif-
ferent methods are shown in Figs. 3 and 5 respectively. Their
regions-of-interest (ROIs) are zoomed in Figs. 4 and 6.

Since insufficient photons of incident X-ray, the degrada-
tion is severe in the low-dose CT images, which are shown
in Figs. 3(b) and 5(b). It is hard to see that the structure and
details in the two low-dose CT images. From Figures 3 and
5, it can be seen that all methods suppressed noise to some
degree. In Figs. 3(c) and 5(c), there were still some noise and
artifacts in the whole denoised images. From Figs. 3(d) and
5(d), BM3Dwas a bit better thanNLMmethod, but it suffered
from significant blocky effects, some edges and small struc-
tures were blurred. It can be seen that deep learning meth-
ods effectively reduced noise and remarkably overmatched
NLM and BM3D, they improved the effect of noise reduc-
tion and suppressed most artifacts. But in Figs. 3(e)−3(h)
and 5(e)−5(h), there were some differences among these
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FIGURE 4. Zoomed red circle area as the region of interest (ROI) in Fig. 3.
(a) Normal dose, (b) Low dose, (c) NLM, (d) BM3D, (e) RED-CNN, (f)
WGAN-VGG, (g) SMGAN, (h) Proposed.

FIGURE 5. Results of another abdominal CT scan from the testing set
using different methods. (a)-(h) correspond to the labels in Fig. 3.

networks for noise reduction. RED-CNN smoothened the
result images excessively, some crucial structures, such as the
region of porta were blurred. GAN based methods not only
reduced most noise and artifacts, but also preserved structural
details. From Figs. 3(h) and 5(h), it can be seen that our
proposed method produced better content details and textural
information thereby improving diagnostic performance com-
pared to the other methods in our study.

In Figs. 6(b) and 8(b), the metastases enclosed by the red
dashed line circles were hard to be observed. The results
restored by our adapted GANwas the most distinct compared
with all the other methods shown in Figs. 6(h) and 8(h). The
white spot which indicated by a blue arrow restored by our

FIGURE 6. Zoomed red circle area as the region of interest (ROI) in Fig. 5.
(a)-(h) correspond to those in Fig. 4.

FIGURE 7. Absolute difference image relative to the corresponding
normal-dose CT image in Fig. 3. (a) low-dose, (b) NML, (c) BM3D,
(d) RED-CNN, (e) WGAN-VGG, (f) SMGAN, (g) Proposed.

method was not only clear but also lest surrounding disturbed
compared with the other methods selected in our study.

To visualize the benefits of our proposed method, the abso-
lute difference images of the results using different methods
to the ground truth (normal-dose CT images) are provided
in Figs. 7 and 8, and the absolute difference images of ROIs
are shown in Figs. 9 and 10, respectively. From Figs. 7 to 10,
it can be seen that our method could do better in suppressing
artifacts and noise. The denoised image using ourmethodwas
closer to the normal-dose image.

2) QUANTITATIVE MEASUREMENTS
The PSNR, SSIM, and RMSE were calculated for quanti-
tative analysis. The quantitative results for the whole CT
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FIGURE 8. Absolute difference image relative to the corresponding
normal-dose CT image for Fig. 5. (a)-(g) correspond to those in Fig. 7.

FIGURE 9. Absolute difference ROI image relative to the corresponding
normal-dose ground truth in Fig. 4. (a) Low-dose, (b) NML, (c) BM3D,
(d) RED-CNN, (e) WGAN-VGG, (f) SMGAN, (g) Proposed.

images in Figs. 3 and 5 utilizing different methods are listed
in Tables 1 and II respectively. The average values for the
testing set (211 CT images) are listed in Table 3.

FIGURE 10. Absolute difference ROI image relative to the corresponding
normal-dose ground truth in Fig. 6. (a)-(g) correspond to those in Fig. 9.

TABLE 1. Quantitative results for Fig. 3 utilizing different methods.

TABLE 2. Quantitative results for Fig. 5 utilizing different methods.

In Tables 1 and 2, our adapted GAN obtained the best
scores in aspects of SIMM, but PSNR and RMSE were
less than RED-CNN. It is not surprising that RED-CNN
got the first place in terms of PSNR and RMSE. The rea-
son is that PSNR and RMSE are equivalent to the loss of
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FIGURE 11. Performance comparison of low-dose CT and different
methods over the ROIs images in Figs. 4 and 6. (a) The comparison of
PSNR, (b) The comparison of SSIM, and (c) the comparison of RMSE.

per-pixel. RED-CNN was trained to minimize the MSE loss,
and excessed to WGAN-VGG, SMGAN and our adapted
GAN, which trained to minimize other losses. The values
of SSIM in Tables 1 and 2 are consistent to Figs. 3 and
5 respectively. The averagemeasurements in Table 3 indicates
that our adapted GAN attained the best quantitative results in
the entire testing data sets.

The quantitative measurements of two ROIs in Figs. 4 and
6 are shown in Fig. 11. The comparative results of bar graphs
followed similar trends toward the visual effect of Figs. 4 and
6, as well as Tables 1, 2, and 3. Although there were a bit of
poor PSRN and RMSE than RED-CNN, our method gained
the best scores in respects of SSIM for all the ROIs.

3) TEXTURAL MEASUREMENTS
For attaining further perspectives of our adapted GAN for
noise reduction for low-dose CT, we conducted the textural

TABLE 3. Average quantitative results for testing set utilizing different
methods.

TABLE 4. The values textural statistics of Fig. 4 for different denoised
methods.

measurements by calculating the statistical properties, con-
taining mean CT number (Housnfield Unit), standard devia-
tion (Std), uniformity, and entropy of two ROIs in Figs. 4 and
6. Ideally, denoising methods should generate latent clean CT
image, in which the statistical properties are as close as to the
corresponding normal-dose version. The textural statistics of
Figs. 4 and 6 are shown in Tables 4 and 5 respectively.

From Table 4, it can be noted that our method obtained
the best values except for standard deviation. While BM3D
got highest standard deviation, which are consistent to visual
appearance of Fig. 4. In Table 5, our adapted GAN obtained
the best values except for the entropy. That RED-CNN gener-
ated over-smoothed images and BM3D had poor capacity of
noise reduction for low-dose CT. It is important to point out
that the statistical values of ROIs produced by our method
were nearest to that of the normal-dose version and acquired
the best matching textural statistics to normal-dose CT image
in comparison of all other approaches selected in this study.

IV. DISCUSSIONS
By training a pair of competitive networks iteratively, GAN
learns a deep representation, and achieves impressive suc-
cesses in a variety of applications. GAN also provides an
opportunity for medical imaging tasks, such as denoising,
deblurring, reconstruction, detection, segmentation, and so on
[50], [51].

The main goal of our study is to investigate low-dose
CT deoising, approaching the gold standard normal-dose CT
images as close as possible. We adapted GAN to tackle the
low-dose CT problem, and compared it with the state-of-the-
art traditional and deep learning methods. Because of Poisson
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TABLE 5. The values textural statistics of Fig. 6 for different denoised
methods.

noise in low-dose CT, it is hard to be modeled precisely in
the image domain, while NLM [19] and BM3D [20] are the
typical ways appropriate for specific types of noise different
fromCT data noise. Hence, NLM [19] andBM3D [20] cannot
achieve a satisfactory performance for low-dose CT denois-
ing. In contrast to these classic methods, deep learning meth-
ods, especially convolutional neural networks are powerful
for knowledge representation, and fit various complicated
functions with an excellent generalizability. Once deep learn-
ing applies for image processing, high level abstract features
can be captured from training data, enabling the state-of-the-
art low-dose CT performance. Which is observed visually
and quantitatively in our experiments. It is not surprising that
RED-CNN [28], WGAN-VGG [35], SMGAN [38], and our
adapted GAN outperformed NLM [19] and BM3D [20] in
suppressing noise and removing artifacts significantly, and
our GAN performed favorably relative to the other deep
learning methods.

To a great extent, the loss function of deep learning influ-
ences the low-dose image restoration process. RED-CNN
[28] with the MSE loss produced high values of PSNR and
RMSE, but was featured by over-smoothened images. The
background noise can be indeed suppressed by the MSE
loss, but the denoised image is blurry and unnatural [36],
[52]. Furthermore, the background noise is assumed as white
Gaussian noise in general, independent of the local image
features. Clearly, this is not suitable for low-dose CT image
denoising, since the statistical fluctuations in a low-dose CT
image reconstructed with FBP is correlated as determined by
specific structures in the field of view.

WGAN-VGG [35] and SMGAN [38] both utilized the
Wasserstein distance to learn the distribution of real data
and the regularization term of gradient penalty to stabilize
the training process and accelerate the convergence. While
the WGAN-VGG [35] adopted the VGG loss for perceptual
fidelity, mimicking the human visual system (HVS) at a cost
of lower PSNR, SSIM, and RMSE than that of RED-CNN.
The SMGAN [38] addressed low-dose CT denoising with
the multi-scale structural similarity index (MS-SSIM), and
generated CT images better than that of WGAN-VGG. Our
adapted GAN utilized the least squares loss to decrease the
distance between distributions of denoised CT image and
standard normal-dose CT image, which relieves vanishing

gradients, penalizes data samples near the decision boundary,
and facilitates contents learning with the structural similarity
index (SSIM). Compared with WGAN-VGG [35], SMGAN
[38], our adapted GAN was optimized for low-dose CT
denoising, and delivered better results at a lower computa-
tional cost.

V. CONCLUSION
In conclusion, we have proposed a novel method for low-dose
CT denoising, which adopted noise learning and enhanced
a GAN with least squares loss, structural similarity and
L1 losses. The generator learned noise distributed in the
low-dose CT image and then subtracted it from the input
contaminated low-dose CT image to obtain the clean one.
After training offline with the pairs of low-dose and normal-
dose CT images, our method could improve noise reduced CT
images competitively relative to the state-of-the-art methods
selected in this study. The results are promising in terms of
both visual effects and quantitative measurements pertaining
to suppressing noise and removing artifacts. The compari-
son of the textural statistics of the resultant images between
our method and the other methods has further confirmed
the effectiveness of our network design. In the future, deep
learning methods for low-dose CT will be further advanced
by taking additional priors and features into account in the
low-dose sinogram domain.
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