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ABSTRACT Human activity recognition (HAR) using body-worn sensors is an active research area in
human-computer interaction and human activity analysis. The traditional methods use hand-crafted features
to classify multiple activities, which is both heavily dependent on human domain knowledge and results
in shallow feature extraction. Rapid developments in deep learning have caused most researchers to switch
to deep learning methods, which extract features from raw data automatically. Most of the existing works
on human activity recognition tasks involve multimodal sensor data, and these networks mainly focus on
the top representation extracted from bottom-up feedforward process without reusing other features from
bottom layers. In this paper, we present a novel hybrid deep learning network for human activity recognition
that also employs multimodal sensor data; however, our proposed model is a ConvLSTM pipeline that
makes full use of the information in each layer extracted along the temporal domain. Thus, we propose
a dense connection module (DCM) to ensure maximum information flow between the network layers.
Furthermore, we employ a multilayer feature aggregation module (MFAM) to extract features along the
spatial domain, and we aggregate the features obtained from every convolutional layer according to the
importance of features in different spatial locations. The output of the MFAM is input into two LSTM layers
to further model the temporal dependencies. Finally, a fully connected layer and a softmax function are
used to compute the probability of each class. We demonstrate the effectiveness of our proposed model on
two benchmark datasets: Opportunity and UniMiB-SHAR. The results illustrate that our designed network
outperforms the state-of-the-art models. We also conduct experiments on efficiency, multimodal fusion and
different hyperparameters to analyze our proposed network. Finally, we carry out ablation and visualization
experiments to reveal the effectiveness of the two proposed modules.

INDEX TERMS Human activity recognition, deep learning, dense connection, multilayer feature aggrega-
tion, multimodal sensor data.

I. INTRODUCTION
The growing popularity of smart, wearable devices has
greatly expanded the availability of time-series sensor data
related to human activities. Therefore, wearable sensor-based
human activity recognition (HAR) has attracted consid-
erable research attention in the areas of pervasive com-
puting and artificial intelligence. The main goal of HAR
is to automatically detect and recognize activities based
on analyzing data acquired by sensors [1]. Applications
that benefit from HAR include health support [2], [3],
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smart homes [4], [5] and rehabilitation [6]. Compared with
recognition using computer vision, wearable sensor-based
HAR approaches offer low cost, high performance, and
portability [7].

A typical HAR system includes data acquisition, data pre-
processing, segmentation, feature extraction, and classifica-
tion. Smartwatches, smartphones, and other devices supply
data from multiple sensors. Pre-processing consists of seg-
mentation (e.g., with sliding windows) and partitioning. Each
segment provides features that can be useful in identifying
different activities. The system then trains a classifier to make
predictions based on these features. Fig. 1 illustrates this
process.
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FIGURE 1. The processing flow of the human activity recognition system.

Most existing research focuses on feature extraction meth-
ods because the discriminative features are important for
ensuring the generalizability of the HAR system. There are
two primary ways to extract features from sensor-based data.
One employs hand-crafted features based on the statistical
knowledge, while the other automatically extracts features
using neural networks [8]. The extraction of meaningful
hand-crafted features from the time and frequency domains
relies heavily on human experience and domain knowledge.
In addition, hand-crafted features are usually designed for a
specific task and are not suited for more general environments
and tasks. Deep learning advances have been widely applied
in HAR [9] because deep learning models can automatically
extract high-dimensional features and are not dependent on
domain knowledge.

Convolutional neural networks (CNNs) [10] and recurrent
neural networks (RNNs) [11] are among the most popular
deep learning methods. When used for classifying large-scale
time-series data such as HAR, CNNs have the advantages
of local dependency and scale invariance, making them the
best candidates for use in classification problems. RNNs
additionally consider long-term time dependencies, which is
beneficial for time-series data. However, RNNs suffer from
gradient exploding or vanishing problems. To address these
problems, a variant of the standard neuron called the long
short-term memory (LSTM) cell was proposed [12]. Thus,
to obtain high-dimensional features that have both short- and
long-term time dependencies, we combine CNN and LSTM
networks to form a hybrid deep-learning architecture.

Most of the existing works on human activity recognition
use CNN models with 1D or 2D kernels. For multimodality
time series data, a 1D convolution operation captures only
local dependencies over time but does not make full use of the
dependency between different channels of multiple sensors.
CNNs with 2D kernels can capture local dependency along
time and spatial domains for unimodal sensor data, but they
require large numbers of parameters, making them unsuitable
formobile devices with limitedmemory. Inspired by [13], any
N × N convolution can be replaced by a 1 × N convolution
followed by a N× 1 convolution, and this two-layer solution

is considerably cheaper than the same square convolution.
Therefore, in this paper, we use a 3× 1 convolution followed
by a 1 × 3 convolution to replace the 3 × 3 convolution.
To prevent the decrease in accuracy caused by this operation,
we use a dense connection after each 3 × 1 convolution.
Then, the output of all the preceding layers is used as the
input to each layer, and its output is used as input into all the
subsequent layers. Dense connections help ensure maximum
information flow between layers in the network. In addi-
tion, networks designed for human activity recognition focus
mainly on the top representation extracted from the bottom-
up feedforward process and ignore other features from the
bottom layers. Therefore, we collect feature maps after each
1×3 convolution and aggregate these feature maps according
to their importance in different spatial locations. We demon-
strate the effectiveness of our method on two open human
activity datasets, Opportunity [14] and UniMiB-SHAR [15].
Our contributions are as follows.
• To design network with fewer parameters, we replace
3 × 3 convolutional operations in our proposed model
with a 3×1 convolution followed by a 1×3 convolution.
The 3×1 convolution and the 1×3 convolution capture
local dependencies along the temporal dimension of a
single sensor and among multiple sensors, respectively.

• We design a dense connection module to collect the
output of each 3 × 1 convolutional layer and promote
information flow in the model. To reuse the information
from each layer, we collect feature maps after each 1×3
convolution and employ a softmax function to aggregate
the feature maps of each layer according to their impor-
tance in each spatial location. The aggregation module
is called the multilayer feature aggregation module.

• By combining the dense connectionmodule and themul-
tilayer feature aggregation module, we propose a novel
hybrid network for human activity recognition based on
an underlying ConvLSTM network.

• We show that the proposed model outperforms other
state-of-the-art models designed for human activity
recognition on different recognition tasks on the Oppor-
tunity dataset under different data division methods

VOLUME 8, 2020 68321



T. Lv et al.: Hybrid Network Based on Dense Connection and Weighted Feature Aggregation for HAR

(i.e., 5-fold cross-validation and leave-subject-out cross-
validation) on the UniMiB-SHAR dataset.

• We analyze the efficiency of our proposed network and
discuss the influence of different numbers of sensor
channels and hyperparameters on the network. In addi-
tion, we also conduct an ablation experiment and a
visualization experiment to show the effectiveness of the
two proposed modules.

The rest of this paper is organized as follows. Section II
provides a brief overview of related works on HAR, includ-
ing both traditional methods and deep learning methods.
In Section III, we introduce the three main parts of our
proposed network: a dense connection module, a multilayer
feature aggregation module and a fundamental ConvLSTM
framework. In Section VI, we introduce the two benchmark
datasets, the performance metrics, and the settings used for
model training. Section V provides a comparative analysis
of the proposed network. We present conclusions and future
work in Section VI.

II. RELATED WORK
Early research into HAR uses traditional sensor-based
HAR systems with hand-crafted features extracted from the
time and frequency domains to predict the class labels.
The most popular traditional methods applied to recog-
nize human activities include k-nearest neighbor (kNN),
support vector machine (SVM), and decision tree (DT)
models. Janidarmian et al. [16] conducted an extensive anal-
ysis among 293 classifiers, includingDTs, KNNs, and SVMs,
on the most complete dataset available, which includes data
from accelerometers and various heterogeneous sources. The
average classification accuracies achieved were 96.44% ±
1.62% with under 10-fold evaluation and 79.92% ś 9.68%
under leave-subject-out cross-validation. The results indicate
that KNN and its ensemblemethods yield stable results across
different positions and window sizes. Xie et al. [17] proposed
a multilayer strategy based on inertial sensors and barome-
ters to recognize eight human activities that adopted random
forests (RFs) and SVMs for different classifications, and in
which different feature sets were selected for the different
classifiers.

Many achievements have been made by deep learning in
fields such as visual object recognition, natural language
processing, and logical reasoning [18]. Generally, the deep
learning architectures for HAR fall into three categories.
The first category consists of CNNs. Panwar et al. [19]
designed a generalized CNN-based model to recognize
three fundamental human forearmmovements collected from
a single accelerometer sensor on the wrist. The exper-
imental results showed that the CNN-based model out-
performed SVM, K-means and latent Dirichlet allocation
(LDA). The authors of [20] investigated the effectiveness
of proposed CNN-extracted features compared with hand-
crafted features for the paroxysmal atrial fibrillation (PAF)
screening problem. The use of a CNN structure to extract

features in combination with other classifiers can signif-
icantly improve the resulting classification performance.
Andrey and Ignatov [21] presented a CNN model for online
HAR, and their experiments showed that a CNN combined
with hand-crafted features yields significantly improved per-
formance and can be executed on mobile phones in real time.
Wang et al. [22] proposed a novel attention-based human
activity recognition method to process weakly labeled activ-
ity data. Compared with a CNN and DeepConvLSTM, their
experiments showed that the designed model worked well on
the traditional UCI HAR dataset and outperformed them on
the weakly labeled dataset in terms of accuracy.

The second category uses RNN models to capture the
time dependencies of time-series data. Edel and Koppe
proposed a binarized long short-term memory network
(B-BLSTM-RNN) that is especially suitable for resource-
constrained environments; it outperforms other recent meth-
ods by large margins on three tested datasets [23]. To tackle
the challenges of imbalanced datasets and problematic data
quality, Guan and Ploetz [24] designed a model through
ensembles of deep LSTM networks that improved the recog-
nition accuracy on the Opportunity, PAMAP2 and Skoda
datasets. Inoue et al. [25] investigated several models and
then proposed a good architecture that can perform mobile
HAR with high throughput.

The third category consists of hybrid models that combine
deep models to address HAR tasks. Ordóñez and Roggen
showed that a hybrid architecture based on both convolutional
and LSTM recurrent units functions better than do deep non-
recurrent networks, and confirmed the improved performance
on two benchmark datasets [6]. Xi et al. [26] presented a
novel deep learning framework for human activity recogni-
tion problems. The model includes dilated CNN and SRU
networks that exponentially expand the receptive field with
no loss of resolution or coverage andmodel the long-temporal
dependencies. Yi et al. [27] designed a novel deep learning
framework called multi-channel deep convolutional neural
networks (MC-DCNN) that learns features from the individ-
ual univariate time series in each channel and then applies
the learned features in a multilayer perceptron (MLP) for
classification. Extensive experiments on real-world data sets
show that the model is competitive in accuracy. To improve
the performance of the HAR system and design a smaller
network for use in mobile devices, we propose using a novel
hybrid model that fully aggregates features along both tem-
poral and spatial domains; it also requires fewer parameters
when combined with a DeepConvLSTM [6].

III. ARCHITECTURE
To analyze multimodal sensor data and obtain multivariate
time series, the existing works on HAR using CNNs often
use large convolution kernels to enlarge the receptive field.
In addition, they primarily employ only the top-level infor-
mation extracted from the bottom-up feedforward process,
neglecting the use of other features from the lower-level lay-
ers and failing to consider the importance of multiple features
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FIGURE 2. An overview of the proposed model for human activity recognition. The numbers shown inside each convolutional layer
denote the conv kernel size, and the output channels. The architecture of the brown block is shown in the lower left corner.
‘‘FC’’ stands for ‘‘Fully Connected’’. We provide detailed descriptions of the dense connection module and the multilayer feature
aggregation module in Sections III-A and III-B, respectively.

in the same spatial location. Therefore, we propose a novel
hybrid network with two modules designed to address these
problems. The overall architecture of our network is shown
in Fig. 2. The network includes a base ConvLSTM pipeline,
a dense connection module (DCM) and a multilayer feature
aggregation module (MFAM). In this section, we introduce
these two modules and the underlying ConvLSTM in detail.

A. DENSE CONNECTION MODULE
Traditional convolutional networks with L layers only have L
connections. However, our dense connectionmodule includes
L(L+1)

2 direct connections. The output of the preceding layers
are used as the input to each layer, and the output from
each layer is sent into all subsequent layers. This operation
promotes information flow in the model and ensures that each
layer can directly access the gradients from the loss function.

CNN networks commonly consist of S layers; here, we
denote the output of each layer as li. In our dense connection
module, the s-th layer obtains the features from its preceding
layers as input and uses a nonlinear functionFd (·) to obtain ls.
The process is formulated as follows:

ls = Fd (
s−1∑
i=1

li, θd ), , (1)

where
∑s−1

i=1 is the addition of the feature maps obtained
from layers 1, . . . , s − 1. Inspired by [28], we define
Fd (·) as a block of three stacked layers: a 1 × 1 convo-
lutional layer, batch normalization [29] and rectified lin-
ear units (RELU) [30], and θd represents its parameters.
This block is illustrated in the lower-left corner of Fig. 2.
Compared with the concatenation operation, using addition
to aggregate information saves parameters, which reduces
the number of channels and achieves better results in our
experiments.

Considering the computational efficiency of the human
activity recognition task, we use only two dense connection

operations in our network. Along the temporal domain of
multivariate time series data, both dense layers collect infor-
mation produced by their preceding layers and pass on their
own features to the next 3 × 1 convolutional layers. Over
time, this model can acquire rich information via the dense
connection module.

B. MULTILAYER FEATURE AGGREGATION MODULE
We propose a multilayer feature aggregation module to col-
lect the features from each convolutional layer and aggregate
them in different spatial locations according to their impor-
tance, as illustrated in Fig. 3.
Specifically, we formulate the forward process in the mul-

tilayer feature aggregation module as follows. We denote
LS = {l1, l2, l3} as the set of feature maps obtained by
the three 3 × 1 convolutional layers, where li is the i-th
feature map, which has 64 channels. For each li, we capture
the spatial dependency among the sensors by generating the
feature maps Ii:

Ii = Fs(li, θs), (2)

where Fs is a composite function of two layers (a 1 × 3
convolutional layer and a RELU), and θs is its parameters.
To aggregate information from different layers, we concate-
nate the outputs of Fs. After concatenation, we apply a 1× 1
convolutional layer to reduce the number of channels. The
output of the 1 × 1 convolutional layer contains 3 channels,
corresponding to the number of LS . The concatenation and
the 1× 1 convolutional layer calculation is as follows:

H = Fr ([I1, I2, I3], θr ), (3)

where [I1, I2, I3] refers to the concatenation operation, Fr is
the 1× 1 convolutional layer, and θr is its parameters. Next,
H is normalized to A = {a1, a2, a3} along the channel
dimension by a softmax function:

ai =
exp(Hi)∑3
j=1 exp(Hj)

. (4)
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FIGURE 3. The multilayer feature aggregation module: the first stage of MFAM extracts features along the spatial domain and
concatenates features along the channel dimension. Then, the second stage aggregates these features in different spatial
locations according to their importance.

Finally, the normalized compatibility scores A and the feature
maps {I1, I2, I3} are used to produce the output It by elemen-
twise weighted averaging:

It = I1 · a1 + I2 · a2 + I3 · a3. (5)

A small value in position p of feature map ai means that
the information is irrelevant and should be suppressed. There-
fore, the softmax function controls the contribution made by
each of the three feature maps to the global feature map.
Throughweighted aggregation, themodel learns to extract the
rich features of both the temporal and spatial domains from
multimodal data.

C. FUNDAMENTAL ConvLSTM
The fundamental model on which the DCM and MFAM are
based is a ConvLSTM pipeline that consists of convolutional,
LSTM and fully connected layers. The fundamental model is
similar to the network in [6], but our model has fewer parame-
ters. The input data are extracted frommultimodal time series
data using a sliding window approach and then turned into a
two-dimensional matrix. The input data are passed into a 1×1
convolutional layer that can cast input into hidden spaces to
create better information representations. Next are three 3×1
convolutional layers that capture dependency over time. The
input to each of the three convolutional layers comes from
the DCM, and the output of every layer is passed into the
MFAM. Thus, the feature maps of MFAM include rich global
information regarding both the time and spatial dimensions.
We use RELU as the activation function after each of the three
convolutional layers. Based on the experiments in [31], two
stacked LSTM layers are beneficial for processing sequential
data. Therefore, we employ two LSTM layers to process the
output of MFAM. The last layer is a fully connected layer
that maps the features obtained from the last LSTM layer
into the output classes. After this layer, we apply a softmax
function to obtain model output. Following the expression in
[32], the shorthand description of our fundamental model is

C(1) − C(64) − C(64) − C(64) − R(64) − R(64) − D(64),
where C(nc) denotes a convolutional layer with nc feature
maps,R(nl) is an LSTM layer with nl cells andD(nd ) is a fully
connected layer with nd units. Moreover, we include three
dropout layers before the two LSTM and fully connected
layers for regularization.

IV. EVALUATION
In this section, we first introduce two benchmark datasets.
Then, to address the problem of the imbalanced classes, we
adopt weighted F1 score and macro average accuracy as
our metrics to assess the model performances. Finally, we
describe the training parameters for our network.

A. BENCHMARK DATASET
Human activities are commonly defined as periodic (e.g., run-
ning and jumping), static (e.g., standing still), or sporadic
(e.g., watching TV or driving a car) motions. A bench-
mark dataset should include all these types of activities.
Researchers have created several datasets for HAR, including
the Opportunity [14], UniMiB-SHAR [15], PAMAP2 [33],
and Skoda [34] datasets. The two datasets we employ to
evaluate the performance of our model are described below.

The Opportunity Dataset contains data from several on-
body sensors of 17 different activities performed by 4 subjects
in a kitchen scenario. It also includes a Null class, which
is unrelated to any of the other activities, for a total of 18
classes. The data were acquired from 12 body parts at a
frequency of 30 Hz. Each subject was asked to perform
each action 6 times to record the data. All the subjects in
the first 5 trials performed all the activities according to a
script and then repeated each activity 20 times in the final
trial. The data are stored in 5 ADL files and 1 drill file.
We used 113-dimensional data for our experiments; missing
values were inserted using linear interpolation. We chose
runs 4 and 5 from subjects 2 and 3 as the testing dataset, and
used the remaining data for training. For the frame-by-frame
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analysis, the length of the sliding windows was 0.8 s and the
sliding stride was 0.4 s. The resulting training set included
approximately 61k frames.

The UniMiB-SHAR Dataset consists of annotated data
obtained by a Samsung Galaxy Nexus I9250 smartphone
from 30 volunteers (6 males and 24 females). Data from
the smartphone’s 3-axis accelerometer were captured at a
constant rate of 50 Hz. Each subject placed the smartphone
in his or her left or right pocket and performed 17 activities.
For this dataset, the data were sliced with a fixed-width
sliding window of approximately 3 s using a segmentation
technique [15]. The total dataset includes approximately
11k frames. For the experiments with the UniMiB-SHAR
dataset, we conducted both 5-fold and leave-subject-out
cross-validation [15].

B. PERFORMANCE METRICS
Because human activity datasets often have unbalanced
classes, reasonable performance metrics are required to mea-
sure human activity recognition algorithms. For example, the
NULL class of the Opportunity dataset represents over 75%
of the data. Therefore, when using classification accuracy as
a performance assessment metric, the majority class will have
a significant influence on the total accuracy. For this reason,
we assess models using the weighted F1 score, which is the
harmonic mean of precision and recall that provides a better
evaluation than can precision alone. Precision and recall are
defined as TP

TP+FP and TP
TP+FN , respectively, where TP, FP, and

FN represent the number of true positives, false positives,
and false negatives, respectively. The weighted F1 score
calculates the F1 score for each class and then multiplies it
by a weight value. We compute the weighted F1 score using

Fw =
∑
c

2 ∗ wc
precisionc · recallc
precisionc + recallc

, (6)

where c represents the class index, andwc = nc/N designates
the proportion of samples belonging to the c-th class. We
also use macro average accuracy (MAA) to evaluate the
classification performances. The MAA is defined as follows:

MAA =
1
c

∑
c

TPc
nc
. (7)

C. MODEL TRAINING
We implemented our deep-learning models in Python using
the PyTorch [35] framework, trained fully supervised models
with the time-series data and calculated gradients by back-
propagation from the softmax layers. We then employed the
Adadelta optimizer and the gradient descent algorithm for all
the trainable parameters. The recorded data were sampled as
mini-batches with a size of 100 in the training and testing
phases. We used the categorical cross-entropy function to
calculate the loss between predictions and targets. In addition,
all the parameters were randomly orthogonally initialized.
The dropout probability was set to 0.5. Each model was
trained for 150 epochs. All the experiments were performed

on aworkstation equippedwith an Intel E5-2620 at 2.10 GHz,
9.6 GB RAM and a 11 GB NVIDIA 1080 Ti GPU.

V. RESULTS
A. CLASSIFICATION PERFORMANCE
To evaluate the recognition performances, we compared our
proposed model with some other recognition models on the
Opportunity and UniMiB-SHAR datasets in terms of the
weighted F1 score (Fw) and performed leave-subject-out
cross-validation on the UniMiB-SHAR dataset. We evaluated
the following recognition models.

1) CONVOLUTIONAL NEURAL NETWORKS WITH A 1D
KERNEL (1D CNN) [1]
In this model, each convolutional layer uses a 1D convolution
operation along the temporal axis of an individual channel.
In addition, the layer adopts RELU as its activation function
and includes a max pooling operation. The shorthand descrip-
tion is C(50) − C(40) − C(30) − D(1000) − Sm, where Sm
is a softmax layer.

2) LSTM [1]
Thismodel, which is based on previous experiments, uses two
stacked LSTM layers. Similar to a CNNmodels, the output of
the second LSTM layer is sent to dense and softmax layers.
The LSTM cells use a sigmoid function for gate activations
and a hyperbolic tangent for other activations. The shorthand
description is R(64)− R(64)− D(512)− Sm.

3) HYBRID NETWORKS AND DEEPCONVLSTM [1], [6]
This is a combined architecture consisting of several con-
volutional layers and LSTM layers. In [1], the author calls
the model the Hybrid Network but name it DeepConvLSTM
in [6]. Both models use convolutional layers with 1D kernels.
The shorthand descriptions are C(50) − R(27) − R(27) −
D(512)−Sm and C(64)−C(64)−C(64)−C(64)−R(128)−
R(128)− Sm.

4) DilatedSRU NETWORK [26]
This is a novel model for human activity recognition that
introduces a dilated convolutional layer to avoid the informa-
tion loss caused by pooling and padding operations. In addi-
tion, a novel RNN model called the dilatedSRU is proposed
to model the temporal dependencies at different time scales.

The results of our model and the mentioned recognition
models are listed in Table 1. We highlight the best score in
bold. In terms of performance, the proposed model achieves
the highest scores on both datasets. Our proposed model
outperforms the other models with a 92.2% weighted F1
score on the Opportunity dataset and achieves the best per-
formance with a 78.4% on the UniMiB-SHAR dataset. The
DilatedSRU network also achieves a Fw score above 92%,
but we find that the dilated convolutional operation reduces
the time efficiency, which is an important aspect of online
real-time sensor-based human activity recognition. To further
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TABLE 1. Weighted F1 score performances of different recognition
models on the Opportunity and UniMiB-SHAR datasets.

illustrate the effectiveness of our network, we conducted
experiments on both tasks of the Opportunity challenge,
either including or ignoring the Null class. The performances
are shown in Table 2. Our proposed model outperforms
DeepConvLSTM on all the tasks except modes of locomotion
without the Null class. This result occurs because the loco-
motion task has fewer classes and is easier to recognize than
the gesture recognition task; consequently, our novel modules
cannot realize their potential.

FIGURE 4. Weighted F1 scores on different classes of the Opportunity
dataset. The blue line shows the percentage of each class in the dataset,
and the orange line represents the performance on every class. The
horizontal axis represents the number of gestures in the Opportunity
dataset. 1: ‘‘Null’’, 2: ‘‘Open Door 1’’, 3: ‘‘Open Door 2’’, 4: ‘‘Close Door 1’’,
5: ‘‘Close Door 2’’, 6: ‘‘Open Fridge’’, 7: ‘‘Close Fridge’’, 8: ‘‘Open
Dishwasher’’, 9: ‘‘Close Dishwasher’’, 10: ‘‘Open Drawer 1’’, 11: ‘‘Close
Drawer 1’’, 12: ‘‘Open Drawer 2’’, 13: ‘‘Close Drawer 2’’, 14: ‘‘Open Drawer
3’’, 15: ‘‘Close Drawer 3’’, 16: ‘‘Clean Table’’, 17: ‘‘Drink from Cup’’, and 18:
‘‘Toggle Switch’’.

For the gesture recognition task, we depict the Fw for
each gesture to reveal the influence of training data size
on the recognition performance. As shown by the blue line
in Fig. 4, the Opportunity dataset has a serious imbalance
problem. The Null class (class 0) represents almost 70% of
the items in the dataset, while the other classes rarely repre-
sent more than 2%. This phenomenon reveals that most of this
dataset involves uninteresting human activities. Although the
dataset is imbalanced, the performances on these classes are
quite different. As shown by the orange line plots in Fig. 4,
the Null class achieves the best performance (above 95%).

Surprisingly, however, we find that the ‘‘Open Door 2’’ class
(class 3) and ‘‘Close Door 2’’ class (class 5) achieve high
performances (above 88%), while class 5 even achieves anFw
of 90%. This experiment shows good human activity recogni-
tion performance can be achieved from only a small amount
of training data, which motivates us to seek even better deep
learning models for HAR. We also compare our model’s per-
formance in this experiment with that of [26]. That model’s
worst performance on this dataset is below 40%, while our
model’s worst performance is approximately 50%, further
demonstrating the effectiveness of our proposed model.

FIGURE 5. Five-fold cross-validation evaluation results of different
models on the UniMiB-SHAR dataset.

To further examine the effectiveness of our proposed
method, we performed a 5-fold cross-validation on the
UniMiB-SHAR dataset and compared its results with the
TriPSDRNN [36], LSTM [25] and Hybrid [1] models, as
shown in Fig. 5. The proposed model achieves the highest
weighted F1 score and MAA (97.3% and 95.3%, respec-
tively). Compared with the TriPSDRNN, whose hand-crafted
features include both time and frequency characteristics, our
proposed network extracts discriminative features from accel-
eration data and outperforms TriPSDRNN by a margin of
0.8% on weighted F1 score and 0.6% on the MAA. We can
also see that our proposed model outperforms the LSTM and
Hybrid models, which further demonstrates the effectiveness
of the two proposed modules.

B. EFFICIENCY
Because collecting data from body-worn sensors typically
has high temporal resolution, human activity recognition is
a time-critical issue. Therefore, we analyzed the recognition
efficiency of our model compared to the DeepConvLSTM
model from three aspects: the number of parameters, the com-
putational complexity, and the recognition time per activity.

Table 3 presents the numbers and sizes of the parameters
required by our model and by the DeepConvLSTM model.
Both models have 8 fundamental layers: one input layer, four
convolutional layers, two LSTM layers and a single fully
connected layer. In addition, our network includes the two
proposed modules; we also count their parameters. The last
row of Table 3 lists the total number of parameters. Ourmodel
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TABLE 2. Weighted F1 scores of the proposed model and DeepConvLSTM on the Opportunity dataset for the gesture and modes of locomotion
recognition tasks when including or omitting the Null class.

TABLE 3. The numbers and sizes of parameters required by the DeepConvLSTM model and our proposed model. The final number of parameters depends
on the number of classes in the classification task, denoted as nc.

FIGURE 6. FLOPs of the proposed network and deepConvLSTM on the
Opportunity dataset and UniMiB-SHAR dataset.

requires approximately 2 times fewer parameters than those
of DeepConvLSTM, which indicates that the proposed net-
work is more suitable for devices with limited memory.

To further reveal the computational complexity and the
time efficiency, we calculated the floating-point operations
(FLOPs) and the inference time of our network and deep-
ConvLSTM. Measuring FLOPs can help reveal the compu-
tational complexity, while inference time is the time that
models require to recognize a data segment on a computing

FIGURE 7. Inference times for CPU and GPU versions of the proposed
network and deepConvLSTM on the Opportunity and UniMiB-SHAR
datasets.

device.We conducted this experiment on an Intel(R) Xeon(R)
Gold 6130 CPU and a RTX 2080 Ti GPU. The results are
shown in Fig. 6 and Fig. 7. As shown in Fig. 6, the total
FLOPs are given at the top of each bar. The FLOP values
for our proposed model are further individually divided into
those used by the fundamental ConvLSTM, the DCM and the
MFAM. Compared with the deepConvLSTM, our fundamen-
tal ConvLSTM (whose architecture is similar to that of the
deepConvLSTM) achieves inconsistent performances on the
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two datasets. This inconsistency is caused by the following
two factors. On the one hand, our proposed model uses a
1 × 1 convolutional layer and a padding operation, which
helps align the output size of the multilayer features in the
3 × 1 and 1 × 3 convolutional layers. However, the input
data matrix of the Opportunity dataset is larger than that of
the UniMiB-SHAR dataset, and the FLOPs are more affected
by the 1 × 1 convolutional layer and padding operation,
which increases the number of FLOPs required by the funda-
mental ConvLSTM on the Opportunity dataset. On the other
hand, the longer the input time steps of the data segment
on the UniMiB-SHAR dataset, the smaller are the FLOPs
of the fundamental ConvLSTM compared with those of the
deepConvLSTM, because the LSTM layers require fewer
parameters. Regarding the two modules, the MFAM FLOP
values are larger than those of the DCM because the MFAM
includes more convolutional layers. On CPU, the inference
time performance is consistent with the results of the FLOPs.
However, on the GPU, which is more suitable for parallel
computing, the proportion of inference time spent in theDCM
and MFAM modules is small. Overall, although our model’s
human activity recognition speed is slower than that of the
DeepConvLSTM, our model is still fast enough to meet the
application requirements because the sliding window lengths
of the Opportunity dataset and the UniMiB-SHAR dataset are
800 ms and 3,000 ms, respectively.

C. MULTIMODAL FUSION ANALYSIS
Sensor-based human activity recognition often uses multi-
modal sensor data with many sensor channels, which makes
device setups complex. It is important for a network designed
for human activity recognition to be robust to variations of
different modalities and different sensor channels. Therefore,
we conducted experiments with various modalities and var-
ious sensor channels. In Fig. 8, we show the weighted F1

FIGURE 8. Performances using different sensor modalities on the
Opportunity dataset. The blue histogram represents the weighted F1
scores by the proposed model when employing different sensor
modalities. The green line represents the total number of sensor
channels. ‘‘A’’, ‘‘G’’ and ‘‘M’’ represent accelerometer, gyroscope and
magnetic data, respectively. The ‘‘Total’’ represents the complete
Opportunity sensor set, which includes 113 channels.

score of our model on the Opportunity dataset for different
modalities. In this experiment we used all the classes in this
dataset except the Null class to match the setting of [26].
The results show that when using only several accelerom-
eters with 15 channels, our model achieves a performance
of 74%, and it improves the Fw by 6% when using gyro-
scopes with 15 channels. The performance exceeded 85%
when we combined accelerometers and gyroscopes. When
magnetic sensors are also added, the Fw is decreased slightly.
In addition, we tested using all sensors (113 channels), but
the performance improved by only 3%. This result reveals
that model performance is not linear based on the number of
sensor modalities.

We also conducted experiments with different subsets of
the 113 sensor channels on the Opportunity dataset. We used
the minimal-redundancy maximal-relevance (mRMR) algo-
rithm [37], which selects a sensor channel based on mutual
information, to select different sensor channel subsets, and
we set the channel number to 5, 10, 20, 50, 80, and 113.
The experimental settings are the same as those used in the
experiment with various modalities. The results are shown in
Fig. 9. As expected, increasing the number of sensor chan-
nels can achieve better performances. The best performance
occurs when using all the sensor channels. However, because
the amount of redundant information also increases, the rate
of classification performance growth decreases.

D. HYPERPARAMETER EVALUATION
We conducted experiments on the influences of the four
key hyperparameters in our network: sliding window length,
kernel size of the convolutional layers, fusion mode of the
DCM, and the number of convolutional layers. We performed
5-fold cross-validation for these hyperparameter evaluation
experiments, which were conducted on the UniMiB-SHAR
dataset.

1) SLIDING WINDOW LENGTH
To enable a fair comparison with the DeepConvLSTM, the
default sliding window length on the Opportunity dataset was

FIGURE 9. Performances using different numbers of sensor channels on
the Opportunity dataset (selected by the mRMR algorithm).
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set to 0.8 s. The UniMiB-SHAR dataset was sliced using
a fixed-width sliding window of approximately 3 s. How-
ever, regarding different sliding window lengths, a too-short
window is insufficient to extract effective features, while a
too-long window leads to excessive amounts of redundant
information. Therefore, we wanted to reveal the influences
of various sliding window lengths. We conducted the experi-
ments with length sequences of 0.4 s, 0.8 s, 1 s, and 1.5 s on
the Opportunity dataset and 1.5 s, 2 s, 2.5 s, and 3 s on the
UniMiB-SHAR dataset.

FIGURE 10. Weighted F1 scores of the proposed network on the
Opportunity dataset and the UniMiB-SHAR dataset with different sliding
window lengths. The green and orange histograms represent the
classification performances for sliding window lengths of 0.4 s, 0.8 s, 1 s,
and 1.5 s and 1.5 s, 2 s, 2.5 s, and 3 s, respectively.

Fig. 10 illustrates the performances under different
sequence lengths on the Opportunity and UniMiB-SHAR
datasets. Lengths of 0.8 s and 3 s achieve the best weightedF1
scores (92.2% and 97.3%) for the two datasets, respectively.
For the Opportunity dataset, when the sliding window length
is longer or shorter than 0.8 s, the performance begins to
decrease. For the 0.4 s and 1.5 s cases, the weighted F1
scores fell below 91.5%. On the UniMiB-SHAR dataset, the
performance decreases when the sliding window length is
shorter than 3 s, and the worst performance (96.0%) occurs
at a window length of 2 s. From these results we can observe
that the recognition performance of the network for human
activity recognition is strongly affected by the slidingwindow
length setting.

2) KERNEL SIZES OF CONVOLUTIONAL LAYERS
We know that large convolution kernels for CNNs can enlarge
receptive field; thus, intuitively they should extract better
features. Using a square (N × N) convolution simultane-
ously captures local dependencies along the time and spatial
domains for unimodal sensor data, but this setting requires
high numbers of parameters. A two-layer convolution oper-
ation (a N × 1 convolution followed by a 1 × N convo-
lution), can also capture local dependency along time and
spatial domains but requires fewer parameters. Therefore,
we conducted experiments to reveal the classification perfor-
mances of our proposed model under different kernel sizes

FIGURE 11. Different fusion modes of the DCM.

FIGURE 12. Classification performances of our proposed network on the
Opportunity dataset and the UniMiB-SHAR dataset with different
numbers of convolutional layers.

on the Opportunity dataset and the UniMiB-SHAR dataset.
We embedded different kernel sizes in the fundamental Con-
vLSTM and the MFAM, which use 3 × 1 and 1 × 3 kernel
sizes, respectively, in our proposed network. TheMFAMuses
a 1 × 3 kernel size on the UniMiB-SHAR dataset because it
includes data only from a 3-axis accelerometer.

TABLE 4. Weighted F1 score performance of the proposed network on
the Opportunity dataset and the UniMiB-SHAR dataset with different
kernel sizes. ’F’ and ’M’ represent the fundamental ConvLSTM and the
MFAM, respectively.

As Table 4 shows, we can observe that the kernel sizes
(3 × 1 and 1 × 3) on the Opportunity dataset and the kernel
sizes (5×1 and 1×3) on the UniMiB-SHAR dataset achieve
the best weightedF1 scores (92.2% and 97.4%, respectively).
From this experiment, we can make two inferences. First, the
two-layer convolution operation is suitable for our proposed
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FIGURE 13. Probability estimations of I1, I2, I3, It for the true class of 40 sample data
on the Opportunity dataset (I1, I1, I3, It are illustrated in Fig. 3). Each row represents
the probability estimation for the corresponding true class of each Ii, and each column
represents the probability estimation for each sample.

network and has fewer parameters. Second, compared with
the Opportunity dataset, the longer input time steps of the
UniMiB-SHAR dataset require a relatively larger kernel size
to extract the most effective features along the temporal
dimension.

3) FUSION MODE OF THE DCM
The fusion mode of the features extracted by multilay-
ers networks affects their classification performances; their
architectures are designed to aggregate multilayer features.
Therefore, we conducted an experiment to investigate the
influence of using different fusion modes in the DCM. Our
proposed network uses mode A of Fig. 11, which also cor-
responds to Equation 1. For comparisons with mode A, we
employ three other fusion modes. Mode B is an average
weighted fusion mode similar to mode A. Mode C is the
fusion method we use in the MFAM, and mode D is similar
to mode C except for the concatenation operation.

TABLE 5. Weighted F1 score performance of the proposed network on
the Opportunity and UniMiB-SHAR datasets when using different fusion
modes in the DCM.

As Table 5 illustrates, the proposed network simultane-
ously achieves its best performances on both the Opportunity
and UniMiB-SHAR datasets when using mode C (92.3% and
97.3%, respectively), illustrating the following three points.
First, using a better fusion mode for the DCM improves the
classification performance of our proposed network. Second,
the results further prove the effectiveness of the aggregation
method designed for the MFAM. Third, because the perfor-
mance of mode D is lower than that of mode C on the two
datasets, in our proposed model, the addition operation is
more suitable for aggregating information than is the concate-
nation operation.

4) THE NUMBER OF CONVOLUTIONAL LAYERS
We also show how the performance of our model changes
when using different numbers of convolutional layers.
Because the DCM and MFAM require at least two 3 × 1
convolutional layers, we set the range for the number of
layers to [2, 5]. As the results in Fig. 12 show, the Fw score
improves by 0.7% and 0.2%, respectively, on the Oppor-
tunity dataset and the UniMiB-SHAR dataset when a new
layer is added to the two-convolutional-layer model. The
recognition performance was highest when using 3 and 4
convolutional layers on the Opportunity and UniMiB-SHAR
datasets, respectively.

We conducted an ablation experiment to show the effec-
tiveness of the two proposed modules on the final recognition
performance on the two datasets. As listed in Table 6, we
achieved Fw scores of 91.4% and 96.6%, respectively when
employing the fundamental ConvLSTM (M1). Then, when
we added the DCM to the baseline model (M2), the Fw scores
improved to 91.8% and 97.0%, respectively, as listed in the
second row in Table 6. Next, we added only the MFAM to
the model, and the performance decreased slightly, as shown
in the M3 row. Finally, our complete network obtains Fw
scores of 92.2% and 97.3% on the two datasets, respectively.
These results demonstrate that the DCM and MFAM both
help improve the recognition performance.

E. MULTILAYER FEATURE AGGREGATION ANALYSIS
To further clarify the effectiveness of the MFAM, we choose
40 sample data points and extracted feature maps from I1,
I2, I3, It (see Fig. 3). Then, we separately input these feature

TABLE 6. Weighted F1 scores on the Opportunity and the UniMiB-SHAR
datasets for our complete proposed model and three ablated models: the
fundamental ConvLSTM and the fundamental ConvLSTM with either the
DCM or the MFAM.
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maps into the two LSTM layers and the fully connected layer
of our model to obtain output probability estimations for each
sample representation. Each column of Fig. 13 reflects one
data sample, and the four rows for each data point represent
the probability estimations of I1, I2, I3, It for the true class.
We intuitively observe from Fig. 13 that multilayer feature
aggregation (It ) can select the most discriminant weighted
feature maps and prevent incorrect predictions. For example,
the probability of I1, I2, I3 for No.16 is approximately 0%;
however, themultilayer feature aggregation (It ) extracts fused
information from the other three feature maps and obtains a
probability of 95%. Although multilayer feature aggregation
may reduce the probability of the true class for some samples
(such as No.18 and No.23), it still produces a reasonable
correct probability for these samples.

VI. CONCLUSION
For multimodal sensor-based human activity recognition
applications, most existing works use large convolution ker-
nels and employ only the top-level information extracted by
the bottom-up feedforward process. These operations often
achieve only low recognition efficiency and ignore consider-
able amounts of rich information. In this paper, we propose
a novel hybrid network by designing a fundamental Con-
vLSTM pipeline with a dense connection module (DCM)
and a multilayer feature aggregation module (MFAM). The
DCM promotes information flow in the model and ensures
that each layer can directly access the gradients of the loss
function. The MFAM collects the features of each layer and
aggregates them according to their importance. Compared
with DeepConvLSTM and other state-of-the-art methods, our
proposed network achieves the best performances on the
Opportunity and UniMiB-SHAR datasets. To fully reveal
the effectiveness of our network, we conducted experiments
to test its efficiency and the effects of multimodal fusion
and hyperparameter settings on the two datasets. In addition,
we show the performances of the two modules on the two
datasets separately and visualize the probability output by the
MFAM for some samples.

In future work, to verify the robustness and practicality
of our model, we plan to conduct experiments on additional
datasets and apply our modules to other state-of-the-art deep
learning models.

REFERENCES
[1] F. Li, K. Shirahama, M. Nisar, L. Köping, and M. Grzegorzek, ‘‘Com-

parison of feature learning methods for human activity recognition using
wearable sensors,’’ Sensors, vol. 18, no. 3, p. 679, 2018.

[2] A. Avci, S. Bosch, M. Marin-Perianu, R. Marin-Perianu, and P. Havinga,
‘‘Activity recognition using inertial sensing for healthcare, wellbeing and
sports applications: A survey,’’ in Proc. 23th Int. Archit. Comput. Syst.
Conf., Feb. 2010, pp. 1–10.

[3] S. Mazilu, U. Blanke, M. Hardegger, G. Tröster, E. Gazit, and
J. M. Hausdorff, ‘‘GaitAssist: A daily-life support and training system for
parkinson’s disease patients with freezing of gait,’’ in Proc. 32nd Annu.
ACM Conf. Hum. Factors Comput. Syst. CHI, 2014, pp. 2531–2540.

[4] A. Tolstikov, X. Hong, J. Biswas, C. Nugent, L. Chen, and G. Parente,
‘‘Comparison of fusion methods based on DST and DBN in human activity
recognition,’’ J. Control Theory Appl., vol. 9, no. 1, pp. 18–27, Feb. 2011.

[5] J. Hong and T. Ohtsuki, ‘‘A state classificationmethod based on space-time
signal processing using SVM for wireless monitoring systems,’’ in Proc.
IEEE 22nd Int. Symp. Pers., Indoor Mobile Radio Commun., Sep. 2011,
pp. 2229–2233.

[6] F. Ordóñez and D. Roggen, ‘‘Deep convolutional and LSTM recurrent
neural networks for multimodal wearable activity recognition,’’ Sensors,
vol. 16, no. 1, p. 115, 2016.

[7] O. D. Lara and M. A. Labrador, ‘‘A survey on human activity recognition
using wearable sensors,’’ IEEE Commun. Surveys Tuts., vol. 15, no. 3,
pp. 1192–1209, 3rd Quart., 2013.

[8] Y. Wang, S. Cang, and H. Yu, ‘‘A survey on wearable sensor modality
centred human activity recognition in health care,’’ Expert Syst. Appl.,
vol. 137, pp. 167–190, Dec. 2019.

[9] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, ‘‘Deep learning for sensor-
based activity recognition: A survey,’’ Pattern Recognit. Lett., vol. 119,
pp. 3–11, Mar. 2019.

[10] S. Ha and S. Choi, ‘‘Convolutional neural networks for human activity
recognition using multiple accelerometer and gyroscope sensors,’’ in Proc.
Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2016, pp. 381–388.

[11] D. Singh, E. Merdivan, I. Psychoula, J. Kropf, S. Hanke, M. Geist, and
A. Holzinger, ‘‘Human activity recognition using recurrent neural net-
works,’’ inMach. Learn. Knowl. Extraction, vol. 2017, pp. 267–274.

[12] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[13] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking
the inception architecture for computer vision,’’ 2015, arXiv:1512.00567.
[Online]. Available: http://arxiv.org/abs/1512.00567

[14] D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Forster, G. Troster,
P. Lukowicz, D. Bannach, G. Pirkl, A. Ferscha, J. Doppler, C. Holzmann,
M. Kurz, G. Holl, R. Chavarriaga, H. Sagha, H. Bayati, M. Creatura,
and J. D. R. Millan, ‘‘Collecting complex activity datasets in highly rich
networked sensor environments,’’ in Proc. 7th Int. Conf. Networked Sens.
Syst. (INSS), Jun. 2010, pp. 233–240.

[15] D. Micucci, M. Mobilio, and P. Napoletano, ‘‘UniMiB SHAR: A new
dataset for human activity recognition using acceleration data from
smartphones,’’ 2016, arXiv:1611.07688. [Online]. Available: http://arxiv.
org/abs/1611.07688

[16] M. Janidarmian, A. Roshan Fekr, K. Radecka, and Z. Zilic, ‘‘A com-
prehensive analysis on wearable acceleration sensors in human activity
recognition,’’ Sensors, vol. 17, no. 3, p. 529, 2017.

[17] L. Xie, J. Tian, G. Ding, and Q. Zhao, ‘‘Human activity recognition method
based on inertial sensor and barometer,’’ in Proc. IEEE Int. Symp. Inertial
Sensors Syst. (INERTIAL), Mar. 2018, pp. 1–4.

[18] Y. Lecun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
pp. 436–444, May 2015.

[19] M. Panwar, S. Ram Dyuthi, K. Chandra Prakash, D. Biswas, A. Acharyya,
K. Maharatna, A. Gautam, and G. R. Naik, ‘‘CNN based approach
for activity recognition using a wrist-worn accelerometer,’’ in Proc.
39th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2017,
pp. 2438–2441.

[20] B. Pourbabaee, M. J. Roshtkhari, and K. Khorasani, ‘‘Deep convolutional
neural networks and learning ECG features for screening paroxysmal atrial
fibrillation patients,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 48, no. 12,
pp. 2095–2104, Dec. 2018.

[21] A. Ignatov, ‘‘Real-time human activity recognition from accelerometer
data using convolutional neural networks,’’ Appl. Soft Comput., vol. 62,
pp. 915–922, Jan. 2018.

[22] K. Wang, J. He, and L. Zhang, ‘‘Attention-based convolutional neu-
ral network for weakly labeled human activities recognition with wear-
able sensors,’’ 2019, arXiv:1903.10909. [Online]. Available: http://arxiv.
org/abs/1903.10909

[23] M. Edel and E. Koppe, ‘‘Binarized-BLSTM-RNN based human activ-
ity recognition,’’ in Proc. Int. Conf. Indoor Positioning Indoor Navigat.
(IPIN), Oct. 2016, pp. 1–7.

[24] Y. Guan and T. Ploetz, ‘‘Ensembles of deep LSTM learners for activity
recognition using wearables,’’ 2017, arXiv:1703.09370. [Online]. Avail-
able: http://arxiv.org/abs/1703.09370

[25] M. Inoue, S. Inoue, and T. Nishida, ‘‘Deep recurrent neural network
for mobile human activity recognition with high throughput,’’ Artif. Life
Robot., vol. 23, no. 2, pp. 173–185, Jun. 2018.

[26] R. Xi, M. Li, M. Hou, M. Fu, H. Qu, D. Liu, and C. R. Haruna, ‘‘Deep
dilation on multimodality time series for human activity recognition,’’
IEEE Access, vol. 6, pp. 53381–53396, 2018.

VOLUME 8, 2020 68331



T. Lv et al.: Hybrid Network Based on Dense Connection and Weighted Feature Aggregation for HAR

[27] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, ‘‘Exploiting
multi-channels deep convolutional neural networks for multivariate time
series classification,’’ Frontiers Comput. Sci., vol. 10, no. 1, pp. 96–112,
Feb. 2016.

[28] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Identity mappings in deep residual
networks,’’ in Proc. Eur. Conf. Comput. Vis., 2016, pp. 630–645.

[29] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ 2015, arXiv:1502.03167.
[Online]. Available: http://arxiv.org/abs/1502.03167

[30] X. Glorot, A. Bordes, and Y. Bengio, ‘‘Deep sparse rectifier neural net-
works,’’ in Proc. conf. Artif. Intell. Statist., Jun. 2011, pp. 315–323.

[31] A. Karpathy, J. Johnson, and L. Fei-Fei, ‘‘Visualizing and understand-
ing recurrent networks,’’ 2015, arXiv:1506.02078. [Online]. Available:
http://arxiv.org/abs/1506.02078

[32] L. Pigou, A. van den Oord, S. Dieleman, M. Van Herreweghe, and
J. Dambre, ‘‘Beyond temporal pooling: Recurrence and temporal convo-
lutions for gesture recognition in video,’’ Int. J. Comput. Vis., vol. 126,
nos. 2–4, pp. 430–439, Apr. 2018.

[33] A. Reiss and D. Stricker, ‘‘Introducing a new benchmarked dataset
for activity monitoring,’’ in Proc. 16th Int. Symp. Wearable Comput.,
Jun. 2012, pp. 108–109.

[34] P. Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen, L. Benini, and
G. Tröster, ‘‘Activity recognition from on-body sensors: Accuracy-power
trade-off by dynamic sensor selection,’’ in Wireless Sensor Networks.
Berlin, Germany: Springer, 2008, pp. 17–33.

[35] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, ‘‘Automatic differentiation in
pytorch,’’ in Proc. Adv. Neural Inf. Process. Syst. (NIPS) Workshop, 2017.

[36] X. Li, Y.Wang, B. Zhang, and J.Ma, ‘‘PSDRNN: An efficient and effective
HAR scheme based on feature extraction and deep learning,’’ IEEE Trans.
Ind. Informat., early access, Jan. 23, 2020, doi: 10.1109/TII.2020.2968920.

[37] H. Peng, F. Long, and C. Ding, ‘‘Feature selection based on mutual infor-
mation criteria of max-dependency, max-relevance, and min-redundancy,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226–1238,
Aug. 2005.

TIANQI LV received the B.E. degree in electronic
information engineering from Yanshan University,
Hebei, China, in 2015. He is currently pursuing
the Ph.D. degree with the Beijing University of
Posts and Telecommunications, Beijing, China.
His research interests include deep learning and
artificial intelligence.

XIAOJUAN WANG received the Ph.D. degree in
electronic science and technology from the Beijing
University of Posts and Telecommunications. She
is currently an Associate Professor with the School
of Electronic Engineering, Beijing University of
Posts and Telecommunications. Her research inter-
ests include deep learning, complex networks, and
human gesture recognition.

LEI JIN received the B.E. degree from the Beijing
University of Posts and Telecommunications,
Beijing, China, in 2015, where he is currently
pursuing the Ph.D. degree. His research interests
include complex networks and deep learning.

YABO XIAO received the B.E. degree from Jilin
University, China, in 2017. He is currently pursu-
ing the Ph.D. degree with the Beijing University of
Posts and Telecommunications. His research inter-
ests include computer version and deep learning.

MEI SONG is currently a Professor with the
School of Electronic Engineering, Beijing Univer-
sity of Posts and Telecommunications. She has
conducted research and development for key tech-
nologies in future communication and integra-
tion networks, mobile Internet, integrated circuit
and communication systems, next-generation net-
works, the Internet of Things, and modern service
science. Under her leadership, the ICN & CAD
Laboratory has planned and undertaken high-level

scientific research projects for the National Science and Technology Sup-
port Plan, the National 863 Plan, the National Natural Science Foundation
Project, the International Cooperation Project of Ministry of Science and
Technology, China Mobile, China Unicom, and other enterprise cooper-
ation projects. She is a member of the Teaching Steering Committee of
the Ministry of Education, the Semiconductor and Integration Technology
Branch, China Electronics Society, and the Device Professional Group of
the Microcomputer Professional Committee, China Computer Society.

68332 VOLUME 8, 2020

http://dx.doi.org/10.1109/TII.2020.2968920

