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ABSTRACT Cubature Kalman filter (CKF) is widely used for non-linear state estimation under Gaussian
noise. However, the estimation performance may degrade greatly in presence of heavy-tailed measurement
noise. Recently, maximum correntropy square-root cubature Kalman filter (MCSCKF) has been proposed
to enhance the robustness against measurement outliers. As is generally known, the square-root algorithms
have the benefit of low computational complexity and guaranteed positive semi-definiteness of the state
covariances. Therefore, MCSCKF not only possesses the advantages of square-root cubature Kalman filter
(SCKF), but also is robust against the heavy-tailed measurement noise. Nevertheless, MCSCKF is prone
to the numerical problems. In this paper, we propose a new maximum correntropy square-root cubature
Kalman filter (NMCSCKF) based on a cost function which is obtained by a combination of weighted least
squares (WLS) to handle the Gaussian process noise and maximum correntropy criterion (MCC) to handle
the heavy-tailedmeasurement noise. Compared toMCSCKF, the proposedmethod is more time-efficient and
most importantly, it avoids the numerical problem. A univariate non-stationary growthmodel and amulti-rate
vision/IMU integrated attitude measurement model are used to demonstrate the superior performance of the
proposed method.

INDEX TERMS Square-root cubature Kalman filter, maximum correntropy criterion, vision/IMU integrated
measurement.

I. INTRODUCTION
Measuring the attitude of moving objects is important in
many fields such as aerospace and industry manufacturing.
Sensors fusion systems combine multi-sensors’ advantages
to overcome single sensor’s limitations. Visual sensors have
slow output with stable accuracy, whereas Inertial sensors
have fast output with error accumulation. By fusing visual
measurements with inertial data, accurate and fast attitude
estimation can be realized [1], [2].

In the past few years, state estimation problem has drawn
many scholars’ attention due to its wide use [3], [4]. Kalman
filter (KF) is the most used linear estimator under mini-
mum mean square error (MMSE) criterion. To solve the
non-linear problems, many non-linear estimators are devel-
oped. Extended Kalman filter (EKF) is a direct nonlinear
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extension of KF, which uses Taylor series expansions to
linearize the nonlinear system. Nevertheless, it may lead to
low estimation accuracy and even filter divergence [5]. The
unscented Kalman filter (UKF) [5] and cubature Kalman
filter (CKF) [6] use sigma points to approximate the prob-
ability distribution to solve the nonlinear problem, which are
widely applied to non-linear systems. The aforementioned
filters are derived under Gaussian assumption. Their esti-
mation accuracy may decline significantly when there exist
measurement outliers from unreliable sensors [7]. To enhance
the robustness against large outliers, many approaches have
been proposed over the past few years. Particle filters (PFs)
use Monte Carlo random sampling method to approximate
the probability distribution of states with many random parti-
cles [8]. The high computational cost severely limits PFs’ use
in practical applications. Variational Bayesian (VB) meth-
ods have been embedded into KF to improve the estima-
tion accuracy in presence of heavy-tailed measurement noise.
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By using VB method to approximate the posterior state at
each time step, VB-based Kalman filters (VBFs) can deal
with state estimation problem under non-Gaussian noise
effectively [9]–[11]. Huber-based filters, using Huber func-
tion that combines minimum `1 and `2-norm, also exhibit
good robustness against measurement outliers [12], [13].

Recently, information theoretic learning has been gaining
more attention for its effectiveness in robust state estima-
tion [14]–[17]. By modifying the optimization criterion using
information theoretic quantities (e.g., entropy), high-order
statistics of data can be captured. Particularly, KF filters with
optimization criteria based on maximum correntropy crite-
rion (MCC) have been proven to cope with heavy-tailed mea-
surement noise successfully. Maximum correntropy Kalman
filter (MCKF) for linear system was first proposed in [18]
and then extended to non-linear system using UKF [19].
Based on the form of MCKF and its non-linear extension,
maximum correntropy square-root cubature Kalman filter
(MCSCKF) was newly proposed in [20]. As is generally
known, the square-root algorithms have reduced computa-
tional complexity, numerical stability and guaranteed pos-
itive semi-definiteness of the state covariances [21], [22].
MCSCKF combines the advantages of both square-root cuba-
ture Kalman filter (SCKF) [6] and MCKF. However, all
the aforementioned MCC-based filters are susceptible to
numerical instability problem when large measurement out-
liers occur [23]. Maximum correntropy criterion Kalman
filter (MCCKF) and its square-root form were developed
in [24], [25] to overcome the numerical problem. How-
ever, they are only applicable to linear systems. Inspired
by [24]–[26], we propose a new square-root MCC-based
CKF, denoted as NMCSCKF. The proposed algorithm is
verified by two examples. Simulation results show that NMC-
SCKF is robust and stable when the measurement noise is
heavy-tailed. Compared to MCSCKF, NMCSCKF not only
retains the advantages of MCSCKF, but also avoids the
numerical problem. Furthermore, it is shown that NMCSCKF
has lower computational cost and higher estimation accuracy.

The rest of the paper is organized as below: Section II
provides the preliminaries ofMCC, SCKF, aswell as themain
structure of the existing MCSCKF. In Section III, we derive
the NMCSCKF algorithm. Section IV uses two nonlinear
models to demonstrate the effectiveness of the proposed filter.
The final conclusions are drawn in Section V.

II. PRELIMINARIES
A. SQUARE-ROOT CUBATURE KALMAN FILTER
Considering a non-linear dynamic systemwith state andmea-
surement equations expressed as follows:

xk = fk−1(xk−1)+ wk−1 (1)

zk = hk (xk )+ vk (2)

where xk ∈ Rn is the system state,zk ∈ Rm is the
measurement vector at discrete time k . wk−1, vk represent
the process and measurement noise with known covariance

Qk−1 and Rk respectively.fk−1(·) and hk (·) denote the system
and measurement functions. The filtering process is summa-
rized as follows.

1) TIME UPDATE
Generate the cubature points according to the cubature rule:

xi,k−1 =
√
nSk−1|k−1 [1]i + x̂k−1, i = 1, 2, · · · , 2n (3)

Calculate the propagated cubature points by:

χ i,k|k−1 = f (xi,k−1) (4)

where Sk−1|k−1 is the square-root of the covariance matrix
Pk−1|k−1 at time k − 1.

The predicted state is computed as:

x̂k|k−1 =
2n∑
i=1

1
2n
χ i,k|k−1 (5)

The square-root of the predicted error covariance Pk|k−1,
denoted as Sk|k−1, can be obtained by:

[Sk|k−10] = [χ∗k|k−1SQ,k−1]2 (6)

where SQ,k−1 represents the square-root of Qk−1. 2 is an
orthogonal operator and the weighted, centered matrix

χ∗k|k−1=1/
√
2n·

[
χ1,k|k−1−x̂k|k−1, . . .χ2n,k|k−1−x̂k|k−1

]
(7)

2) MEASUREMENT UPDATE
Evaluate the cubature points and the propagated cubature
points by:

xi,k|k−1 =
√
nSk|k−1 [1]i + x̂k|k−1 (8)

zi,k|k−1 = hk (xi,k−1|k ) (9)

The predicted measurement ẑk and the square-root of the
innovation covariance Pzz,k , denoted as Szz,k , are calcu-
lated by:

ẑk =
2n∑
i=1

1
2n
zi,k|k−1 (10)

[Szz,k0] = [Zk|k−1SR,k ]2 (11)

where SR,k represents the square-root of Rk ,Zk|k−1 is calcu-
lated by:

Zk|k−1 = 1/
√
2n ·

[
z1,k|k−1 − ẑk , . . . z2n,k|k−1 − ẑk

]
(12)

Estimate the cross-covariance by:

Pxz,k = χk|k−1ZT
k|k−1 (13)

with

χk|k−1=1/
√
2n·

[
x1,k|k−1−x̂k|k−1, . . . x2n,k|k−1−x̂k|k−1

]
(14)

Finally, the updated state x̂k|k and the square-root of the error
covariance Pk|k , denoted as Sk|k , are obtained as follows:

x̂k|k = x̂k|k−1 + Kk (zk − ẑk ) (15)
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[Sk|k0] = [χk|k−1 − KkZk|k−1KkSR,k ]2 (16)

with the Kalman gain computed by:

Kk = Pxz,k (Szz,kSTzz,k )
−1 (17)

B. MAXIMUM CORRENTROPY CRITERION
Correntropy can be used to measure the similarity between
two random variables. The correntropy between X ,Y ∈ R
with joint distribution FXY (x, y) is defined by:

V (X ,Y ) = E[κ(X ,Y )] =
∫
κ(x, y)dFXY (x, y) (18)

where E is the expectation operator, and κ(·, ·) denotes a
shift-invariant Mercer kernel. In this paper, Gaussian kernel
is chosen as the correntropy kernel function:

κ(x, y) = Gσ (e) = exp(
−e2

2σ 2 ) (19)

where e = x − y and σ > 0 represents the kernel bandwidth.
As for a finite number of data with unavailable joint density

function, the correntropy can be estimated by:

V̂ (X ,Y ) =
1
N

N∑
i=1

Gσ (e(i)) (20)

where e(i) = x(i)−y(i), with {x(i)−y(i)}Ni=1 being the samples
drawn from the joint density function FXY (x, y).
Expanding the Gaussian kernel in Taylor series yields:

V̂ (X ,Y ) =
∞∑
n=0

(−1)n

2nσ 2nn!
E[(X − Y )2n] (21)

Clearly, the correntropy can capture all even order
moments of X − Y with an appropriate kernel bandwidth.

C. EXISTING MAXIMUM CORRENTROPY SQUARE-ROOT
CUBATURE KALMAN FILTER
For the nonlinear model described in (1) and (2), we have:

B−1k

[
x̂k|k−1
zk

]
= B−1k

[
xk

hk (xk )

]
+ ek (22)

with

Bk =
[
Sk|k−1 0

0 SR,k

]
E[ekeTk ] = I

where I is a unit matrix.
The MCC-based cost function is defined by:

JMCC (xk ) =
n+m∑
i=1

Gσ (ei(k)) (23)

where ei(k) is the i-th element of e(k).
The optimal estimate of xk can be found by setting the first-

order derivative of the cost function equal to zero. MCSCKF
can be regarded to improve the robustness by modifying the

square-root measurement noise covariance matrix in SCKF
with an adjusted matrix denoted as Cy,k :

SR̃,k = SR,kC
−1/2
y,k (24)

with Cy,k = diag(Gσ (en+1(k), . . . ,Gσ (en+m(k))).
Substituting SR,k with SR̃,k for operating the SCKF

framework in the measurement update process yields the
MCSCKF.

As can be seen from (24), there exists matrix inversion.
Therefore, MCSCKF tends to face numerical problems since
the adjusted matrix is probably singular in presence of large
measurement outliers. The authors of MCSCKF noticed this
problem and put forward to avoid the numerical problem by
setting a preset threshold denoted as c to decide whether or
not to conduct themeasurement update step. However, how to
choose an appropriate c was not discussed, which is of great
importance to numerical stability and estimation accuracy.

III. NEW MAXIMUM CORRENTROPY SQUARE-ROOT
CUBATURE KALMAN FILTER
To avoid the numerical problem in MCSCKF, we derive
NMCSCKF in this section. Firstly, a linear measurement
function is built through the statistical linearization technol-
ogy [27]:

zk = Akxk + bk + ζk (25)

with

Ak = (PTxz,k/S
T
k|k−1)/Sk|k−1 (26)

bk = ẑk − Ak x̂k|k−1 (27)

ζk ∼ N (0,Pζ ζ,k ),Pζ ζ,k = Pzz,k − AkPk|k−1ATk (28)

where Ak is the statistical regression matrix, ζk is the statisti-
cal linearization error.

Secondly, unlike the cost function expressed in (23),
the cost function is constructed by a combination of weighted
least squares (WLS) and MCC [26]:

JMCC = α||̂xk|k − x̂k/k−1||2P−1k|k−1
+βGσ (||zk − ẑk − Ak x̂k|k + Ak x̂k|k−1||P−1ζ ζ,k

)

(29)

where α and β are adjusting weights, and ‖x‖2A = xTAx.
The weights should be properly selected to guarantee the
convergence of the filter to CKF when the kernel bandwidth
goes infinity. Therefore, we use α = 1, β = −2σ 2 here. The
optimal estimate of state x̂k|k is computed by minimization of
JMCC with respect to x̂k|k :

∂JMCC
∂ x̂k|k

= 2P−1k|k−1 (̂xk|k − x̂k|k−1)

− 2LkAkP−1ζ ζ,k (zk −̂zk − Ak x̂k|k+Ak x̂k|k−1)=0

(30)

where

Lk = Gσ (||zk − ẑk − Ak x̂k|k + Ak x̂k|k−1||P−1ζ ζ,k
) (31)
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We can establish the following equation from (30):

(P−1k|k−1 + LkA
T
k P
−1
ζ ζ,kAk )̂xk|k

= (LkATk P
−1
ζ ζ,kAk + P

−1
k|k−1 )̂xk|k−1

+LkATk P
−1
ζ ζ,k (zk − ẑk − Ak x̂k|k + Ak x̂k|k−1) (32)

Equation (32) can be solved using the fixed point iteration
algorithm by updating Lk and x̂k|k alternately until x̂k|k has
been converged. To save computation time, we here carry out
one iteration by replacing x̂k|k−1 with x̂k|k .

By simplifying (32), the state estimation can be calculated
by:

x̂k = x̂k|k−1 + Kk (zk − ẑk )˙ (33)

with

Kk=LkPk|k−1ATk (R̃e,k )
−1, R̃e,k=(Pζ ζ,k+AkPk|k−1LkATk )

(34)

The error covariance is updated by:

Pk|k = (I − KkAk )Pk|k−1(I −KkAk )T + KkPζ ζ,kK
T
k

(35)

The detailed derivations of (34) and (35) can be found in
Appendix A.

Nowwe derive (33), (34) and (35) in square-root form. The
predicted state estimation x̂k|k−1, the square-root predicted
error covariance Sk|k−1, the predicted measurement ẑk , the
square-root innovation covariance matrix Szz,k and the cross-
covariance Pxz,k are computed in the same way as SCKF
does.

To derive the revised Kalman gain Kk and the square-root
error covariance Sk|k , we built a pre-array [28] (denoted asV )
as follows:

V =
[
Sζ ζ,k L

1/2
k AkSk|k−1

0 Sk|k−1

]
(36)

where Sζ ζ,k is the square-root of the statistical linearization
error covariance Pζ ζ,k .
Sζ ζ,k can be obtained by:[

Zk|k−1 − Akχk|k−1 SR,k
]
2 =

[
Sζ ζ,k 0

]
(37)

The detailed derivation of (37) can refer Appendix B.
Next, an orthogonal operator 2 is applied to V in order to

get a lower triangular matrix (denoted as W ). We have the
following equation:

V2 =

[
R1/2
e,k 0

K
n
k Sk|k

]
= W (38)

where K
n
k is the normalized revised Kalman gain:

K
n
k = L1/2k Pk|k−1ATk R

−T/2
e,k (39)

The detailed derivation of (38) and (39) can refer
Appendix C.

The revised Kalman gain Kk can be computed using K
n
k

by:

Kk = L1/2k K
n
kR
−1/2
e,k (40)

Finally, the estimated state is updated by:

x̂k|k = x̂k|k−1 + L
1/2
k K

n
kR
−1/2
e,k (zk − ẑk ) (41)

The square-root error covariance Sk|k is read off from W
directly.

The NMCSCKF algorithm can be summarized as follows:

1) Assume an initial estimate state x̂0|0, a square-root error
covariance S0|0; Select an appropriate kernel band-
width σ ;

2) Compute the predicted state x̂k|k−1 and the square-root
predicted error covariance Sk|k−1 using (3)−(7);

3) Compute the predicted measurement ẑk , the square-
root innovation covariance Szz,k and the cross covari-
ance Pxz,k using (8)−(14);

4) Compute the statistical regressionmatrixAk using (26);
5) Compute the square-root statistical linearization error

covariance Sζ ζ,k using (37), and obtain the statistical
linearization error covariance by:

Pζ ζ,k = Sζ ζ,kSTζ ζ,k

6) Compute the adjusting item Lk using (31);
7) Build the pre-array V through (36);
8) Apply an orthogonal operator to the pre-array V for

computing the post-array W ; Read off R1/2
e,k , K

n
k and

Sk|k fromW ;
9) The updated state is estimated by (41).

Theorem 1: NMCSCKF is equivalent to SCKF when the
kernel bandwidth σ goes infinity.
Proof of Theorem 1. As σ goes infinity, Lk will

approach 1, and NMCSCKF will reduce to SCKF.
As for NMCSCKF, the resulting adjusted item Lk will

approach zero when extremely large measurement error
occurs. In this case, x̂k|k and Sk|k are equal to x̂k|k−1 and
Sk|k−1 respectively since the revised Kalman gain Kk is close
to zero. However,MCSCKFmay fail to work properly since it
needs to calculate the inversion of zero matrix when comput-
ing the adjusted square-root measurement covariance SR,k .

IV. SIMULATION EXAMPLES
We use two examples to illustrate the performance of
NMCSCKF. The first example shows the influence of
kernel bandwidth in NMCSCKF. In the second example,
NMCSCKF is compared with SCKF [3] and other robust fil-
ters including MCSCKF [23], Huber-based cubature Kalman
filter (HSCKF) [35], Variational Bayesian cubature Kalman
filter (VB-CKF) [9] to prove its superiority. In this section,
NMCSCKF with kernel bandwidth of x is denoted as
NMCSCKF-x. MCSCKF with kernel bandwidth of x is
denoted as MCSCKF-x. All filters are initialized with the
same condition in each Monte Carlo run.
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A. UNIVARIATE NON-STATIONARY GROWTH MODEL
First, we use a benchmark example called univariate nonsta-
tionary growth model [18,19]. The state and measurement
equations are given by:

xk = 0.5xk−1 + 25
xk−1

1+ x2k−1
+ 8 cos(1.2(k − 1))+ wk−1

(42)

zk =
x2k
20
+ vk (43)

where wk−1 ∼ N (0, 2), and vk ∼
{

N (0, 1) w.p.0.8
N (0, 1000) w.p.0.2

.

N (µ, σ ) denotes the Gaussian distribution with mean
vector µ and covariance matrix σ , w.p. denotes ‘‘with
probability’’.

The total root mean square error (TRMSE) is used to
evaluate the overall estimation performance in this example.
The calculation formula is defined as follows:

TRMSE =
1
KM

K∑
k=1

M∑
m=1

√
(xk − x̂k|k )2 (44)

whereM is the number of Monte Carlo runs and K is the total
time steps in each Monte Carlo run.

We use K = 100 and M = 100 in this example. The
TRMSE results of SCKF, NMCSCKF with different kernel
bandwidths are listed in Table 1. As can be seen from the
results, the estimation accuracy of NMCSCKF would decline
if the kernel bandwidth is too large or too small. However,
NMCSCKF still has great superiority over SCKF with a
rough selection of the kernel bandwidth in presence of non-
Gaussian measurement noise.

TABLE 1. TRMSEs under non-Gaussian noise.

B. VISION/IMU INTEGRATED ATTITUDE
MEASUREMENT MODEL
The state propagation equation is expressed as [29]:

xk = xk−1 +

 1 tan θk−1 sinφk−1 tan θk−1 cosφk−1
0 cosφk−1 − sinφk−1
0 sec θk−1 sinφk−1 sec θk−1 cosφk−1


×
−→
ω k−1 × τ + wk−1 (45)

where xk =
[
φk θk ψk

]T with φk , θk and ψk being the
azimuth angle, pitch angle and rolling angle at time k respec-
tively; −→ω k−1 refers to the angular rate obtained by IMU,

τ is the sampling time interval, wk−1 is considered to be
independent zero-mean Gaussian white process noise with:

wk−1 ∼ N (0, 5e-9 · I)

where I ∈ R3×3 refers to identity matrix.
The angular rate obtained by IMU is simulated with a

constant acceleration of a = [0.1, 0.1, 0.1]T rad/s2. The
angular rate model is constructed as follows:

−→
ω k =

−→
ω k−1 + a · τ + ς (46)

where ς ∈ R3×1 is a random vector with mean of
[0.005, 0.005, 0.005]T rad/s.
Since the visual sensors can provide the angular

information directly after processing captured visual
images [30]–[32], we have the following measurement
model:

zk = xk + vk (47)

where zk is the measurement vector, vk represents the mea-
surement noise.

IMU output is usually faster than visual output in reality.
We assume that the rate of IMU output is 50 HZ, the rate of
visual output is 16.7 HZ.When there is no visual output, only
time update is carried out, as expressed in (48):

x̂k|k = x̂k|k−1,Sk|k = Sk|k−1 (48)

The RMSE and TRMSE in Euler angles are used to evaluate
the performance of filters:

RMSEAngle(k)

=

√√√√ 1
M

M∑
m=1

((φk − φ̂k )2 + (θk − θ̂k )2 + (ψk − ψ̂k )2)

(49)

TRMSEAngle

=
1
K

K∑
k=1

RMSEAngle(k) (50)

We choose K = 250 and M = 100 in this example.

1) GAUSSIAN MEASUREMENT NOISES
Assuming the measurement noise is Gaussian:

vk ∼ N (0, 8e-5 · I)

Since the simulation is performed under Gaussian measure-
ment noise without large outliers, the preset threshold in
MCSCKF is set to infinity. Table 2 illustrates the in Euler
angles. It is shown that SCKF achieves the smallest TRMSE
among all filters. VB-CKF andMCC-based robust filters with
large kernel bandwidths have similar estimation performance
as SCKF. A small kernel bandwidth in NMCSCKF leads
to an unsatisfactory estimation; whereas, the accuracy of
NMCSCKF increases and gets closer to that of SCKF as the
kernel bandwidth becomes large.
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TABLE 2. TRMSEs under Gaussian noise.

2) NON-GAUSSIAN MEASUREMENT NOISES
We further assume the measurement noise satisfies the fol-
lowing mixed-Gaussian distribution:

vk ∼

{
N (0, 8e− 5 · I), w.p.0.8
N (0, 400 · 8e-5 · I), w.p.0.2

Since the measurement contains outliers, the numerical
problem of MCSCKF needs to be considered. MCSCKF uses
a preset threshold for avoiding the dysfunction caused by
matrix inversion. However, how to choose c is not discussed.
We perform our simulations with five different c and σ
respectively for MCSCKF. The TRMSE in Euler angles are
shown in Table 3, where ‘NAN’ indicates that numerical
problem occurs in 100Monte Carlo runs. As can be seen from
Table 3, c should be chosen cautiously to avoid numerical
instability and ensure high accuracy. A small c help avoid the
numerical problems, whereas a large c improves the accuracy.

TABLE 3. TRMSEs of MCSCKF with different σ and c .

The TRMSEs in Euler angles of SCKF, VB-CKF, HSCKF,
NMCSCKF with different kernel bandwidths and MSCKF
with its optimal parameters in Table 3 are listed in Table 4.
The corresponding RMSE in Euler angles is plotted in Fig. 1.
Fig. 2 shows the details within the black bordered rectangle
in Fig. 1. As we can see, SCKF is very sensitive to mea-
surement outliers. Compared to SCKF, other robust filters
show improvement in estimation accuracy to a great extent.
NMCSCKF obtains the best estimation accuracy with an
appropriate kernel bandwidth. The performance of NMC-
SCKF would decline if the kernel bandwidth is too large
or too small. However, even with a rough selection of the
kernel bandwidth (i.e., σ = 2, 3, 4, 5), NMCSCKF still gains

TABLE 4. TRMSEs under non-Gaussian noise.

FIGURE 1. RMSE in Euler angles of different filters.

FIGURE 2. Details within the black bordered rectangle in Fig. 1.

satisfying results. We can also draw this conclusion from the
first example.

Table 5 illustrates the computational times of filters.
As we can see from the TRMSE results, both VB-CKF and
MCC-based filters with appropriate parameters can obtain
high estimation accuracy. However, the execution time is
several times higher for VB-CKF than for MCC-based filters.
NMCSCKF takes a bit more time than SCKF. Compared to
MSCKF, NMCSCKF not only has lower computational cost

VOLUME 8, 2020 70167



J. He et al.: MCSCKF for Non-Gaussian Measurement Noise

TABLE 5. Execution time comparisons.

TABLE 6. TRMES and average iteration numbers.

but also obtain higher estimation accuracy. Most importantly,
NMCSCKF has good numerical stability.

NMCSCKF uses only one iteration to save computational
cost. However, the performance of NMCSCKF can be further
improved by a few more iterations. We simply investigate
the influence of iteration number here. The stop condition
controls the number of iterations, which is defined by:

||̂xtk|k − x̂
t−1
k|k ||

||̂xt−1k|k ||
< ε (51)

where ε is a small positive number, x̂tk|k represents the optimal
estimate of state at the t-th fixed-point iteration.

Table 6 shows the TRMSEs and average iteration numbers
for every step with different ε. The estimation accuracy is
improved with a smaller ε. However, the improvement is
slight and more computation is required.

V. CONCLUSIONS
In this paper, we derive a new maximum correntropy square-
root cubature Kalman filter (NMCSCKF) to enhance the
robustness in presence of heavy-tailed measurement noise.
NMCSCKF can obtain much more accurate estimation than
SCKF without much extra computation under impulsive
noise. With a large kernel bandwidth, the estimation per-
formance of NMCSCKF will be similar to that of SCKF
under Gaussian noise. Simulation results demonstrate that
NMCSCKF with a proper kernel bandwidth can outperform
other robust filters in both speed and estimation accuracy.
Compared to the existing maximum correntropy square-root
cubature Kalman filter (MCSCKF), NMCSCKF is also supe-
rior in numerical stability.

APPENDIX
APPENDIX A. Derivation of (34) and (35)
By simplifying (32), the revised Kalman gain can be written
as follows:

Kk = (P−1
k|k−1
+ LkATk P

−1
ζ ζ,k

Ak )−1LkATk P
−1
ζ ζ,k

(A.1)

By using the matrix inversion lemma

(A+ BC−1D)−1 = A−1 − A−1B(C+ DA−1B)−1DA−1

(A.2)

with

P−1k|k−1→ A,LkAT
k → B,Pζ ζ,k → C,Ak → D (A.3)

We have:

Kk = (Pk|k−1 − Pk|k−1LkAT
k (Pζ ζ,k + AkPk|k−1LkAT

k )
−1

AkPk|k−1)× LkATk P
−1
ζ ζ,k

= Pk|k−1LkAT
k (I − (Pζ ζ,k + AkPk|k−1LkAT

k )
−1

×AkPk|k−1LkAT
k )P
−1
ζ ζ,k

(A.4)

By using the matrix inversion lemma again with:

I → A, I → B,Pζ ζ,k → C,AkPk|k−1LkAT
k → D (A.5)

We have the following formula:

Kk = Pk|k−1LkAT
k (I + P

−1
ζ ζ,k

AkPk|k−1LkAT
k )
−1P−1

ζ ζ,k

= Pk|k−1LkAT
k (Pξξ,k + AkPk|k−1LkAT

k )
−1 (A.6)

Now we give the derivation of (35).
We define εx,k = xk − x̂k|k and εx,k−1 = xk − x̂k|k−1, and

the following formulas can be established:

Pk|k = E(εx,kεTx,k ),Pk|k−1 = E(εx,k−1εTx,k−1) (A.7)

Combining (25) and (33), We have:

εx,k = xk − x̂k|k−1 − Kk (zk − ẑk )

= xk − x̂k|k−1 − Kk (Akxk
+ bk + ζk − (Ak x̂k|k−1 + bk ))

= (I − KkAk )εx,k−1 − ζk (A.8)

Therefore, the error covariance is expressed as follows:

Pk|k = E(εx,kεTx,k )

= (I − KkAk )E(εx,k−1εTx,k−1)(I − KkAk )T

−KkE(ζkεTx,k−1)(I − KkAk )T −

(I − KkAk )E(εx,k−1ζ Tk )K
T
k + KkE(ζkζ Tk )K

T
k

= (I − KkAk )Pk|k−1(I − KkAk )T + KkPζ ζ,kK
T
k

(A.9)

APPENDIX B. Derivation of (37)
As expressed in (28), the following equalities can be estab-
lished:

Pζ ζ,k = Pzz,k − AkPk|k−1ATk
= Pzz − (PTxz,kP

−1
k|k−1

)Pk|k−1(PTxz,kP
−1
k|k−1

)T

= Pzz,k − AkPxz,k (B.1)

Some matrix manipulations in (26) lead to:

PTxz,kA
T
k = AkSk|k−1STk|k−1A

T
k (B.2)

70168 VOLUME 8, 2020



J. He et al.: MCSCKF for Non-Gaussian Measurement Noise

Adding (B.1) and (B.2) together yields:

Pζ ζ,k = Szz,kSTzz,k − AkPxz,k
+AkSk|k−1STk|k−1A

T
k − P

T
xz,kA

T
k (B.3)

Replacing Sk|k−1STk|k−1, Szz,kS
T
zz,k and Pxz,k in (B.3) with:

Sk|k−1STk|k−1 = χ
∗

k|k−1χ
∗T
k|k−1

+SQ,k−1STQ,k−1 = χk|k−1χ
T
k|k−1 (B.4)

Szz,kSTzz,k = Zk|k−1ZT
k|k−1 + SR,kS

T
R,k (B.5)

Pxz,k = χk|k−1ZT
k|k−1 (B.6)

Equation (B.3) can be rewritten in the following form:

Pζ ζ,k = Zk|k−1ZT
k|k−1 + SR,kS

T
R,k − Akχk|k−1Z

T
k|k−1

+Akχk|k−1χ
T
k|k−1A

T
k −Zk|k−1χ

T
k|k−1A

T
k (B.7)

Therefore, we can derive:

Pζ ζ,k = Sζ ζ,kSTζ ζ,k
=
[
Zk|k−1 − Akχk|k−1 SR,k

]
×
[
Zk|k−1 − Akχk|k−1 SR,k

]T (B.8)

APPENDIX C. Derivation of (38) and (39)
We denote the lower triangular matrix in the right side of (40)
asW . The relation between the pre-arrayV and the post-array
W is [28]:

WWT
= (V2) · (V2)T = V (22T )VT

= VVT (C.1)

The entries
{
X Y Z

}
in the post-arrayW can be identified

by squaring both sizes of (40):[
Sζ ζ,k L

1/2
k AkSk|k−1

0 Sk|k−1

]
(22T )

[
Sζ ζ,k L

1/2
k AkSk|k−1

0 Sk|k−1

]T
=

[
X 0
Y Z

] [
X 0
Y Z

]T
(C.2)

Here we give an alternate form of error covariance [33]:

Pk|k = Pk|k−1 − Pk|k−1ATk R
−1
e,kAkPk|k−1 (C.3)

The following equalities can be established based on (C.2):

XXT = Sζ ζ,kSTζ ζ,k + AkSk|k−1S
T
k|k−1LkA

T
k

= Re,k

= R
1/2
e,k (R

1/2
e,k )

T (C.4)

YXT = L1/2k Sk|k−1STk|k−1A
T
k = L1/2k Pk|k−1ATk (C.5)

ZZT = Sk|k−1STk|k−1 − YY
T

= Pk|k−1 − L
1/2
k Sk|k−1STk|k−1A

T
k ·

(X−TX−1)(L1/2k Sk|k−1STk|k−1A
T
k )
T

= Pk|k−1 − Pk|k−1ATk R
−1
e,kAkPk|k−1

= Pk|k = Sk|kSTk|k (C.6)

X can be obtained by (C.3) with:

X = R
1/2
e,k (C.7)

Z can be obtained by (C.5) with:

Z = Sk|k (C.8)

By combing (C.6) and (C.4), we have:

Y = YXT · (XT )−1

= L1/2k Pk|k−1ATk · (R
T/2
e,k )
−1

= K
n
k (C.9)
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