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ABSTRACT This paper investigates the performance of selection combining (SC) diversity in dual-hop
cooperative networks under double Rice fading channels. Expressions for the probability density func-
tion (PDF), cumulative distribution function (CDF), level-crossing rate (LCR), and average duration of
fades (ADF) of the SC output fading processes are first investigated. The obtained quantities are in the
form of finite and semi-infinite range integrals, which can be easily computed using numerical tools. For
the PDF, CDF, and LCR statistics corresponding approximate solutions are determined using the Laplace
method’s of integration. The PDF and CDF are then applied to derive exact and approximate solutions
for the average symbol error probability (SEP) of non-coherent M-ary differential phase-shift keying (M-
DPSK) modulation. Moreover, results corresponding to the special cases of mixed Rayleigh×Rice and
double Rayleigh fading channels are extracted. The validity of the derived expressions and the accuracy
of the approximations have been checked by using computer simulations. The results can be useful in
the performance assessment of mobile-to-mobile (M2M) communications with dual-hop cooperative SC
diversity andmillimeter wave (mmWave) bandswhere, in general, the line-of-sight (LOS) propagation arises.

INDEX TERMS Double Rice fading, selection combining (SC) diversity, dual-hop cooperative system,
level-crossing rate (LCR), average duration of fades (ADF), symbol error probability (SEP), M-ary differ-
ential phase-shift keying (M-DPSK) modulation.

I. INTRODUCTION
Multiplicative fading models [1], also referred to as cascaded
channels, are suitable for modeling multipath effects in a
variety of wireless communication scenarios ranging from
relay based systems [2], [3], inter-vehicular communica-
tions [4], to keyhole phenomenon in multiple-input multiple-
output (MIMO) systems [5]. For this reason, the statistics of
the underlying channels as well as the related performance
analysis have received a great deal of attention in recent
years. For instance, initial studies have been reported in [6]
and [1], where the first-order statistics of double Rayleigh
channels, constructed as the product of 2 Rayleigh random
variables (RVs), have been investigated. The second-order
statistics of multi-hop Rayleigh channels have been ana-
lyzed in [7], whereas those corresponding to the double
Nakagami-m fading model have been investigated in [8],
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where expressions for the level-crossing rate (LCR) (or
equivalently the frequency of outage) and the average dura-
tion of fades (ADF) have been obtained. The first- and
second-order statistics of double Rice fading channels have
been studied in [9], while the corresponding outage prob-
ability has been presented in [10]. Recently, novel ana-
lytical formulations for many of the fundamental statistics
of two independent and non-identically distributed κ − µ
RVs have been investigated in [11]. Closed-form expres-
sions for the n−th moment, amount of fading, and ergodic
capacity of the end-to-end signal-to-noise ratio (SNR) of a
dual-hop amplify-and-forward (AF) cooperative communi-
cation systems over α − η − µ fading channels have been
explored in [12]. In the context of cooperative vehicular
ad-hoc networks (VANETs), first- and second-order statis-
tics have been derived together with the outage probability
of radio links under the double-generalized Gamma fading
channel [13]. In [14], the error rate performance, in terms
of the bit error probability (BEP) of M-ary phase shift
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keying (M-PSK) andM-ary quadrature amplitudemodulation
(M-QAM) of AF relaying for an inter-vehicular coopera-
tive scheme, operating over cascaded Nakagami-m fading,
has been analyzed and optimized. Bithas et al. [15] have
studied the impact of co-channel interference (CCI) and out-
dated channel state information (CSI) on the performance of
a vehicular-to-vehicular cooperative system operating over
double Nakagami-m fading channels. More recently, exact
expressions for the moment generating function (MGF),
higher order moments of the SNR, ergodic capacity, and
average symbol error probability (SEP) of bidirectional AF
based cooperative vehicular systems, operating over cascaded
Nakagami-m fading channels, have been investigated in [16].
Considering asymmetrical Rayleigh×Rice fading channels
and MIMO relaying, Jayasinghe et al. have presented main
performance metrics, such as the BEP, moments of the SNR,
and the amount of fading, in [17], [18]. Likewise, a study on
the statistical properties of double Hoyt fading, with appli-
cations to the performance analysis of the average SEP of
both coherentM-PSK and squareM-QAM schemes, has been
presented in [19]. Khattabi [20] recently introduced a new
analytical approach to analyze the per-frame-average SEP
of CSI-and-noise-assisted dual-hop AF cooperative systems,
operating in Rayleigh multipath fading, where the nodes’
mobility and imperfect CSI estimates have been considered.
More recently, the average SEP of M-QAM modulation of
dual-hop CSI-assisted AF cooperative systems, operating in
Rayleigh fading environments, and affected by the in-phase
and quadrature imbalance, has been studied in [21].

As can be noted, the above survey has been devoted
to the conventional multi-hop transmission where the link
consists of a series of relaying stations. Apart from this,
the impact of multiplicative fading channels has, as well, been
addressed in the context of cooperative diversity [3] based
systems. For example, the first- and second-order statistics
of equal gain combiner (EGC) diversity signals have been
investigated in [22] for double Rayleigh fading, and later
on in [23] for double Rice propagation scenario. It should
be mentioned that, owing to the complexity of the problem
that has been dealt with in [22], the results reported there
have been obtained by resorting to the approximation of the
PDF of the sum of double Rayleigh processes by the gamma
distribution [24]. By invoking this same concept of approx-
imation, and considering double Rice fading, the perfor-
mance of M-PSK modulation with EGC has been addressed
in [25]. Recently, Peppas et al. [26] approximated the dis-
tribution of the sum of generalized normal RVs by invoking
the moments matching method, and applied the results to
the error performance of EGC for both double Rayleigh
and double Nakagami-m fading channels. In addition to the
EGC, the maximum ratio combining (MRC) diversity has
also been studied. For instance, the performance analysis
of M-PSK modulation scheme, with MRC diversity, under
double Nakagami-m and double Rice propagation scenarios,
has been presented in [27] and [28], respectively. MRC has
as well been addressed in [29], where the outage probability

and amount of fading of inter-vehicular communications have
been investigated, under n∗Rayleigh fading channels.
Despite the simplicity of implementation of selection

combining (SC) diversity, there are few works in the lit-
erature dealing with performance analysis issues of coop-
erative relaying systems under cascaded fading channels.
For instance, the authors in [30] have investigated the first-
and second-order statistics of SC over double Nakagami-
m fading channels. Expressions for the outage probability
and error rate of M-PSK modulation have been provided
in [31] considering SC diversity over double Rayleigh chan-
nels. Paper [32] addressed the derivation of expressions for
the BEP performance of binary non-coherent frequency-shift
keying (FSK) and differential phase-shift keying (DPSK)
modulations under double Rice fading channels.

From the brief summary of the state-of-the-art reported
above one can note a lack of contributions on the performance
analysis of SC diversity in cooperative relaying systems under
double Rice fading channels. The intention of this paper is
to contribute to this topic. It builds on our previous study
reported in [33], where first- and second-order statistics of
double Rice fading channels with SC diversity have been
presented.

We specifically consider a dual-hop, multi-relay based
cooperative diversity system over which the channel gain on
each diversity link is described by a double Rice process. All
the sub-channels of the underlying radio system are assumed
to be independent and identically distributed (i.i.d.). The relay
stations are assumed to transmit the symbols to the desti-
nation by using the time division multiple access (TDMA)
protocol. Then, the mobile station employs the SC diversity
to combine signals received over the TDMA frame. It should
be emphasized that this relaying scenario, combined with SC
diversity, has also been studied in [34]–[36].

Under the above setting, we provide theoretical results
for the first- and second-order statistics of the fading
process. We also derive expressions for the SEP of the
non-coherent M-ary DPSK (M-DPSK) modulation scheme.
Mainly, the major contributions of this paper are summarized
as follows:
• We first provide exact and approximate expressions for
the cumulative distribution function (CDF) and prob-
ability density function (PDF) of the fading envelope
available at the output of the SC diversity.

• Considering the underlying envelope, we also present
expressions for the LCR and ADF. As is known, these
quantities are useful in studying the outage statistics of
radio communications.

• Then, we confine our attention to the investigation of
the SEP of the non-coherent M-DPSK modulation. This
type of modulation is of practical interest owing to its
simplicity of implementation. Results corresponding to
both Rayleigh×Rice and double Rayleigh fading chan-
nels have also been deduced as special cases.

• Furthermore, the validity of the derived expressions has
been checked by means of computer simulations.
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To the best of our knowledge, we are not aware of any study
dealing with SC based cooperative diversity in double Rice
fading channels. The obtained results are useful in studying
the performance of, for example, mobile-to-mobile (M2M)
communications in a dual-hop cooperative SC diversity net-
work using millimeter wave (mmWave) bands, where the
radio link is splitted into short hops to compensate for the high
path-loss. This fact leads in general to line-of-sight (LOS)
propagation scenarios. It is appropriate to mention that the
exact, or even, the approximate solutions, reported here, are
in the form of integrals, which can, however, be easily eval-
uated numerically. This work takes a step towards analyzing
the performance of cooperative SC diversity in double Rice
fading. Deriving closed-form expressions remains, in our
opinion, an open complex problem.

The rest of the paper is organized as follows. In Section II,
we present the system model, and provide a review of known
statistics on double Rice fading channels. Section III is
devoted to the presentation of the CDF and PDF of the fading
process available at the output of the SC diversity, whereas,
in Section IV, expressions for the LCR and ADF of the
underlying envelope process have been derived. We investi-
gate in section V the SEP of non-coherent M-DPSK modu-
lation for a multi-relay cooperative SC diversity. Numerical
and simulation results are presented in Section VI. Finally,
the conclusion is outlined in Section VII.

II. SYSTEM AND FADING MODELS
As stated above, the problem under investigation is con-
cerned with the performance of selective diversity applied
to multi-relay communication systems in double Rice fad-
ing. In this section, we briefly provide a description of the
system involved, and review known statistics on double Rice
channels. The block diagram of the relaying system is shown
in Fig. 1. It consists of a transmitter, a receiver, and L relays,
each of which is equipped with a single antenna. We assume
that there is no direct radio path between the transmitter and
the receiver, and the communication is, therefore, considered
to be only through the relays. These relays are assumed to
operate according to the TDMA fixed gain AF protocols
proposed in [37], [38]. Under this transmission scenario,
the signals received over the L time slots are combined using
SC diversity. This is equivalent to selecting the relay over
which we have the highest end-to-end SNR. The fixed gains,
introduced in the relays, are taken, without loss of generality,
to be one. The multipath complex channel gains over the
two hops, denoted by ηji(t) (i = 1, 2; j = 1, 2, . . . ,L),
in Fig. 1, are assumed to be described statistically by the Rice
flat fading model. It follows that each of the L end-to-end
relaying paths is subject to double Rice flat fading. Referring
to Fig. 1, a double Rice fading process is simply obtained
as the product of two single Rice processes η1(t) and η2(t).
That is, by omitting the superscript j (j = 1, 2, . . . ,L), for
simplicity, we have [9]

η(t) = η1(t)η2(t). (1)

FIGURE 1. Dual-Hop multi-relay communication system.

For the statistics of the SC fading process to be determined,
we need to know those corresponding to the double Rice
process η(t). The PDF, CDF, and LCR of η(t) have been
derived in [9], and are reviewed subsequently, for the sake of
readability. Exploiting the independence assumption of η1(t)
and η2(t), the PDF of η(t) has been obtained as [9, eq. (12)]
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where I0(.) denotes the zeroth-order modified Bessel function
of the first kind [39], ki (i = 1, 2) stands for the Rice factor
of the ith envelope ηi(t), �i is the common mean power of
the radio signals propagating over the ith hop, and kT = (1+
k1)(1+ k2). Concerning the CDF of the double Rice process
η(t), it has been determined in [9, eq. (31)] as
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where z ≥ 0, Q1 (·, ·) is the first-order Marcum Q-
function [40], and pη2 (y) stands for the PDF of the single Rice
process η2(t) given by [41]
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Finally, in [9, eq. 26] as well, the LCR (or equivalently
the frequency of outage) of double Rice processes has been
derived to be
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where βi (i = 1, 2) is the variance of the process η̇i(t), in
which the upper dot denotes time derivative. In (5) also,8(·)
denotes the error function [39, eq. 8.250(1)], and the function
K (·, ·, ·, ·) is defined by [9]
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2π
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(1+k1)
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(6)

where fρi (i = 1, 2) is the Doppler frequency shift experi-
enced on the LOS component of the hop i. Here, we point
out that none of the semi-infinite range integrals involved
in (2), (3), and (5), is known to admit a closed-form solu-
tion. These complicated statistical properties constitutes the
main drawback of the double Rice fading model. For this
reason, and to circumvent this limitation, in [25] for example,
Laguerre series based approximation has been resorted to
study the performance of EGC diversity. With the reviewed
results at hand, we are now in a position to determine the fade
statistics of SC in the dual-hop multi-relay system illustrated
in Fig. 1. In SC diversity, assuming that all the dual-hop links
are subject to the same mean noise power, the best relay can
be chosen according to the highest amplitude among the L
double Rice fading processes. That is, the fading envelope,
available at the output of the SC receiver, can be written as

ηSC (t) = max
(
η(1)(t), . . . , η(j)(t), . . . , η(L)(t)

)
(7)

where η(j)(t) (j = 1, . . . ,L) stands for the double Rice fading
process of the jth relaying path. In the following section,
the CDF and PDF of the envelope process ηSC (t) will be
investigated.

III. CDF AND PDF OF THE ENVELOPE PROCESS ηSC (t )
A. CDF OF THE ENVELOPE PROCESS ηSC (t)
1) EXACT EXPRESSION
The CDF of the fading process ηSC (t) can be obtained accord-
ing to

FηSC (z) = Pr
[
ηSC (t) ≤ z

]
= Pr

[
η(1)(t) ≤ z, . . . , η(j)(t) ≤ z, . . . , η(L)(t) ≤ z

]
.

(8)

where Pr[·] denotes the probability operator. By assuming
that all the L fading processes affecting the L relaying paths
of the cooperative diversity system are i.i.d., the CDF of the
envelope process ηSC (t) is expressed by

FηSC (z) =
(
Fη(z)
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=
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(9)

where, as mentioned earlier, the semi-infinite integral can be
computed using numerical techniques.

2) SPECIAL CASES
We discuss here the special cases of the CDF FηSC (z).
Specifically, we present below simplified expressions for
the CDFs of Rayleigh×Rice and double Rayleigh fading
channels.

• CDF of SC diversity in Rayleigh×Rice fading: By
letting k1 = 0 in (9), the corresponding CDF FηSC (z)
is given by

FηSC (z) =

1−

∞∫
0

e

(
−

z2

y2�1

)
pη2 (y)dy

L

. (10)

• CDF of SC diversity in double Rayleigh fading: First
fixing k2 = 0 in (10), and then invoking [39, eq.
3.471(9)], the integral in (10) can analytically be solved,
and results in the following simplified expression

FηSC (z) =
(
1−

2z
√
�1�2

K1

(
2z

√
�1�2

))L
(11)

where K1(.) denotes the first-order modified Bessel
function of the second kind [39]. Obviously, letting
L = 1 in (11), yields the CDF of the double Rayleigh
fading process given in [6, eq. (4)].

At this point, it is worth mentioning that the CDF can directly
be applied to get the outage probability, which is a standard
performancemetric used in wireless communication systems.
This metric is defined as the probability that the fading
envelope falls below a given threshold r . Hence, the out-
age probability is immediately obtained from the CDF as
Pout (r) = FηSC (r).

3) APPROXIMATE SOLUTION
From (9), we have FηSC (z) = (Fη(z))L , where Fη(z) is given
in terms of a semi-infinite range integral as can be noted from
(3). In other words, seeking an approximation for FηSC (z)
consists in finding an approximation for Fη(z). To this end,
we apply the Laplace’s method of integration [43] on (3) to
get an approximate solution to the underlying integral. The
application of this method leads, as shown in Appendix A,
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to the following approximation for FηSC (z)
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Setting k1 = 0 in (12), gives the following approximate
solution for the CDF of SC diversity in Rayleigh×Rice fading
channels
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Letting, in addition, k2 = 0 in (13), i.e., the double Rayleigh
fading, we obtain

FηSC (z) ≈

(√
2π
�2

exp(−
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To the best of our knowledge, the approximations presented
above are new.

B. PDF OF THE ENVELOPE PROCESS ηSC (t)
1) EXACT EXPRESSION
The PDF of the envelope process ηSC (t) can now be deduced
by differentiating the CDF FηSC (z) in (9) as follows

pηSC (z) =
d
dz

(
FηSC (z)

)
= L · pη(z) · (Fη(z))L−1 (15)

where pη(z) and Fη(z) are the PDF and CDF of the double
Rice fading given by (2) and (3), respectively. Obviously,
by considering the non-diversity case, i.e., L = 1, (15)
simplifies to the PDF of double Rice processes given in
(2). In addition, (15) encompasses the PDFs corresponding
to Rayleigh×Rice and double Rayleigh channels. Explicit
expressions for both fading scenarios are presented below.
• PDF of SC diversity in Rayleigh×Rice fading: Letting
k1 = 0 in (15), results in

pηSC (z) = L
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• PDF of SC diversity in double Rayleigh fading: Fixing
k2 = 0 in (16), and using [39, eq.3.471(9)], yields the

following simplified expression for pηSC (z)
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whereK0(·) is the zeroth-order modified Bessel function
of the second kind [39]. Finally, for L = 1, (17) reduces
to the PDF of double Rayleigh processes [6].

2) APPROXIMATE SOLUTION
In a similar manner as for the CDF, we provide below a sim-
plified approximate solution for the PDF pηSC (z) by finding
an approximation for the PDF pη(z). Again, this is achieved
by invoking the Laplace’s method of integration. The appli-
cation of this method yields, as detailed in Appendix B,
the following approximate quantity for pηSC (z)
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Again, (18) is generic, and contains approximate results
for Rayleigh×Rice and double Rayleigh channels as special
cases. These results are provided below.
• Rayleigh×Rice fading: Letting k1 = 0 in (18),
we obtain
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• Double Rayleigh fading: Setting k2 = 0 in (19), and
using [39, eq. 3.471(9)], results in the following PDF
pηSC (z)

pηSC (z) ≈ 2L
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As an other point, we show in the following that the approx-
imate PDF given in (18) permits to find a rather alternative
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approximation for the CDF FηSC (z). Indeed, FηSC (z) can be
obtained from (18) according to [42]

FηSC (z) =

z∫
0

pηSC (x)dx

≈ 2L
√
π (
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3
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Obviously, approximate CDFs can be extracted for
Rayleigh×Rice and double Rayleigh fading by letting,
in (21), k1 = 0 and k1 = k2 = 0, respectively.

IV. SECOND-ORDER STATISTICS OF THE ENVELOPE
PROCESS ηSC (t )
In this section, we focus on the derivation of the second order
statistics of the fading process ηSC (t) in terms of the LCR and
ADF. Recall that the LCR and ADF are useful in determining,
respectively, the frequency and the average time duration of
outage of radio links.

A. LCR OF THE ENVELOPE PROCESS ηSC (t)
In problems dealing with the investigation of the LCR of
selective diversity, where the diversity paths are subject to
independent fading, the results reported in [44, eq. (12)] can
be applied to yield

NηSC (r) =
L∑
l=1

Nη(l) (r)
L∏
k=1
k 6=l

Fη(k) (r) (22)

where Nη(l) (r) (l = 1, . . . ,L) represents the LCR of the
lth SC diversity path available in (5), while Fη(k) (r) (k =
1 . . . ,L) is the CDF of the kth relaying path given in (3).
Since we are studying the case where the fading processes
of the cooperative diversity system are i.i.d., (22) simplifies
to

NηSC (r) = L · Nη(r) · (Fη(r))L−1. (23)

Upon replacement of the appropriate quantities in (23), we get
the expression (24), as shown at the bottom of the next page,
for the LCRNηSC (r), which is shown at the bottom of the next
page. Unfortunately, the expression involves four integrals
that can be evaluated only by using numerical techniques.
For the special cases given below, simplification of (24) is
possible.

1) SPECIAL CASES
For the special case where the Doppler frequencies of the
LOS components are equal to zero, i.e., fρ1 = fρ2 = 0, (24)
simplifies, and yields the equation (25), which is given at

the bottom of the next page. Regarding the special case of
Rayleigh×Rice fading channels, i.e., the case where k1 = 0,
the finite-range integral with respect to the variable θ1 in (24)
can be evaluated and the result is provided in (26), as shown
at the bottom of the next page, where the function F(·, ·, ·) is
given by

F (r, y, θ2) =
2π
√
k2�2fρ2r sin (θ2)√

(1+ k2)
(
β1y4 + β2r2

) . (27)

Also, for the special case corresponding to fρ2 = 0,
(26) reduces to

NηSC (r) =
4Lr(1+ k2)
√
2π�1�2

∞∫
0

√
β2
r2

y4
+ β1

× e
−

(
y2(1+k2)

�2
+k2

)

×e
−

(
r2

�1y
2

)
I0

(
2y

√
k2 (1+ k2)

�2

)
dy

×

1−
∞∫
0

e

(
−

r2

z2�1

)
pη2 (z)dz


L−1

. (28)

Additionally, by fixing k1 = k2 = 0 in (24), a simplified
expression for the LCR of SC diversity in double Rayleigh
fading channels can be deduced as

NηSC (r) =
4Lr

√
2π�1�2

×

(
1− 2r

√
1

�1�2
K1

(
2r

√
1

�1�2

))L−1

×

∫
∞

0

√
β2
r2

y4
+ β1e

−

(
y2
�2
+

r2

�1y
2

)
dy. (29)

Setting L = 1 in (29), i.e., the non-diversity case, we obtain
the LCR of double Rayleigh fading given in [45, eq. (17)].

2) APPROXIMATE LCR IN DOUBLE RAYLEIGH FADING
It can be noted that the semi-infinite range integral appearing
in (29), i.e., the LCR NηSC (r) in double Rayleigh fading,
has the form of the Laplace type integral in one dimension,
as described in Appendix A. Thus, the application of the
Laplace’s method of integration [7], [43] on (29) allows us to
get the following approximate solution for the LCR of double
Rayleigh fading channels

NηSC (r) ≈
Lr
�2

√
2
�1

√
β2
�1

�2
+ β1e

−

(
2r
√

1
�1�2

)

×

(
1− 2r

√
1

�1�2
K1

(
2r

√
1

�1�2

))L−1
. (30)

Again, for L = 1, (30) coincides with the already known
result presented in [7, eq. (33)].
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B. ADF OF THE ENVELOPE PROCESS ηSC (t)
Complementary to the LCR, we here give the ADF corre-
sponding to ηSC (t). Recalling the definition given in [46], this
statistics can be determined as

TηSC (r) =
FηSC (r)

NηSC (r)
=

Fη (z)
LNη (z)

. (31)

That is, using (3) and (5), TηSC (r) can be determined
from (31). Consequently, the approximations investigated for
the LCR and CDF apply also in getting an approximation for
the ADF. Besides, in line with the above, (31) degenerates to
the ADF of Rayleigh×Rice (k1 = 0), and double Rayleigh
(k1 = k2 = 0) channels.

V. SEP OF M-DPSK MODULATION SCHEME
In this section, we focus on the determination of the SEP of
M-DPSK modulation SC diversity. To this aim, we confine
our attention to the case of noiseless relays. This scenario can
be encountered in many practical cases as reported in [47],
[48]. Under such condition, the SEP to be presented can be
seen as a lower bound of that corresponding to the case where
the noise of the relays cannot be ignored. Besides, the subse-
quent performance analysis applies also if the overall additive
noise, corresponding to the relaying path, is Gaussian [49].
To proceed with the derivation of the SEP, we invoke the
CDF approach reported in [51, eq. (32)]. According to this
approach, the SEP performance P̄s is defined by

P̄s = −

∞∫
0

Ps′ (E |γ )Fγsc (γ ) dγ (32)

where Ps′ (E |γ ) stands for the first-order derivative of the
conditional SEP of the non-coherent M-DPSK modulation
over an additivewhite Gaussian noise (AWGN) channel given
by [52, eq. (3)]

P′s (E |γ ) = −
sin
(
π
M

)
2π

π
2∫

−
π
2

e(−γ (1−cos(
π
M ) cos(θ)))dθ (33)

where M is the number of transmitted information symbols.
In (33) also, FγSC (γ ) stands for the CDF of the instantaneous
SNR per symbol of the SC diversity. Considering the same
noise power over the paths, the underlying SNR is defined
by γSC (t) = η2

SC
(t) EsN0

, in which Es stands for the average
symbol energy, andN0 is the one-sided power spectral density
of the receiver noise. An expression for FγSC (γ ) can directly
be determined from FηSC (z) according to

FγSC (γ ) = FηSC

(√
γ

Es
/
N0

)
. (34)

Substituting (9) in (34), we obtain

FγSC (γ ) =

1−

∞∫
0

Q1

(√
2k1,

1
y

√
2�2 (1+ k1)

γ

γ̄

)

×
2y (1+ k2)

�2
e
−

(
y2(1+k2)

�2
+k2

)
I0

(
2y

√
k2 (1+k2)

�2

)
dy

)L
(35)

NηSC (r) =
LrkT

√
2π5�1�2

∞∫
0

√
β2
r2

y4
+ β1e

−

(
y2(1+k2)

�2
+k2

)
e
−

(
r2(1+k1)
y2�1

+k1

) π∫
−π

e
2r cos θ1

y

√
k1(1+k1)

�1

π∫
−π

e
2y cos θ2

√
k2(1+k2)

�2 e−
K2(r,y,θ1,θ2)

2

×

(
1+

√
π

2
K (r, y, θ1, θ2) e

1
2K

2(r,y,θ1,θ2)
{
1+8

(
K (r, y, θ1, θ2)

2

)})
dθ2dθ1dy.

×

1−

∞∫
0

Q1

(√
2k1,

r
z

√
2 (1+ k1)
�1

)
pη2 (z)dz

L−1

. (24)

NηSC (r) =
4LrkT
√
2π�1�2

∞∫
0

√
β2
r2

y4
+ β1e

−

(
r2(1+k1)
�1y

2 +k1

)
e
−

(
y2(1+k2)

�2
+k2

)
I0

(
2r
y

√
k1 (1+ k1)

�1

)
I0

(
2y

√
k2 (1+ k2)

�2

)
dy

×

1−

∞∫
0

Q1

(√
2k1,

r
z

√
2 (1+ k1)
�1

)
pη2 (z)dz

L−1

. (25)

NηSC (r) =
4Lr(1+ k2)

(2π)
3
2�1�2

∫
∞

0

√
β2
r2

y4
+ β1e

−

(
y2(1+k2)

�2
+k2

)
e
−

r2

�1y
2

π∫
−π

e
2y cos θ2

√
k2(1+k2)

�2 e−
F2(r,y,θ2)

2

(
1+

√
π

2
F (r, y, θ2) e

F2(r,y,θ2)
2

×

{
1+8

(
F (r, y, θ2)

2

)})
dθ2dy

1−
∞∫
0

e

(
−

r2

z2�1

)
pη2 (z)dz


L−1

(26)
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where γ̄ = �1�2
Es
N0

[27] stands for the average SNR per
symbol. Letting, in (35), k1 = 0 and k1 = k2 = 0,
yields, the CDFs of the SNR in Rayleigh×Rice and double
Rayleigh fading, respectively. In the sequel, we derive an
exact expression for P̄s.

A. EXACT EXPRESSION
1) MULTI-RELAY CASE
The substitution of (33) and (35) in (32) yields the following
generic expression for P̄s

P̄s =
sin
(
π
M

)
2π

π
2∫

−
π
2

∞∫
0

e(−γ (1−cos(
π
M ) cos(θ)))

×

1−

∞∫
0

2y (1+ k2)
�2

e
−

(
y2(1+k2)

�2
+k2

)

×Q1

(√
2k1,

1
y

√
2�2 (1+ k1)

γ

γ̄

)

× I0

(
2y

√
k2 (1+ k2)

�2

)
dy

)L
dγ dθ. (36)

Unfortunately, the integrals involved in (36) can not, again,
be evaluated analytically. The complexity of the expression
in (36) can, slightly, be simplified in the special cases given
below.

• Rayleigh×Rice fading: Letting k1 = 0 in (36), results
in

P̄s =
sin
(
π
M

)
2π

π
2∫

−
π
2

∞∫
0

e(−γ (1−cos(
π
M ) cos(θ))),

×

1−

∞∫
0

2y (1+ k2)
�2

e
−

(
y2(1+k2)

�2
+k2

)

×e
−

(
�2
y2

γ
γ̄

)
I0

(
2y

√
k2 (1+ k2)

�2

)
dy

)L
dγ dθ.

(37)

• Double Rayleigh fading: Putting k1 = k2 = 0 in (36),
yields

P̄s =
sin
(
π
M

)
2π

π
2∫

−
π
2

∞∫
0

e(−γ (1−cos(
π
M ) cos(θ)))

×

(
1− 2

√
γ

γ̄
K1

(
2
√
γ

γ̄

))L
dγ dθ. (38)

• Binary Case: Setting M = 2 in (36), (37), and (38),
we get known results for, respectively, double Rice
[32, eq. (7)], Rayleigh×Rice [32, eq. (8)], and double
Rayleigh [32, eq. (9)] channels, as required.

2) TWO RELAY CASE (L = 2)
Here, we show that it is possible to simplify the generic
expression for the SEP given in (36). Letting L = 2 in
(36), performing an integration-by-part, and doing lengthy
algebraic manipulations, results in an expression that can, for
convenience, be written as

P̄s =
2kT
γ̄ π

sin
( π
M

)
[P1 − P2] (39)

where P1 and P2 are given by

P1 =

π
2∫

−
π
2

∞∫
0

I0(2y
√

k2(1+k2)
�2

)

y(1− cos( πM ) cos(θ ))
e
−

(
y2(1+k2)
�2

+k2+k1

)

×

∞∫
0

e
−

(
γ
(
�2(1+k1)

y2 γ̄
+(1−cos( πM ) cos(θ ))

))

×I0(
2
y

√
�2k1(1+ k1)

γ

γ̄
)dγ dydθ (40)

and

P2 =

π
2∫

−
π
2

∞∫
0

∞∫
0

I0(2y
√

k2(1+k2)
�2

)I0(2x
√

k2(1+k2)
�2

)

1− cos( πM ) cos(θ )

×
2x(1+ k2)

y�2
e
−

(
(y2+x2)(1+k2)

�2
+2k2+k1

)

×

∞∫
0

I0(
2
y

√
�2k1(1+ k1)

γ

γ̄
)

×e
−

(
γ
(
�2(1+k1)

y2 γ̄
+(1−cos( πM ) cos(θ ))

))
×Q1

(√
2k1,

2
x

√
2�2(1+ k1)

γ

γ̄

)
dγ dxdydθ, (41)

respectively. Then, in (40), the semi-infinite integral
with respect to the variable γ can be solved. Indeed,
using [39, eq. (6.614.3)], [53, eqs. (07.44.26.0008.01) and
(07.34.03.0006.01)] and doing some algebraic manipula-
tions, the quantity P1 reduces to (42), which is shown at the
bottom of the next page. Similarly, using [40, eq. (46)] in
(41), the quantity P2 is simplified to yield (43), as shown at
the bottom of the next page, where the quantities m and n are
given by

m =

√
2k1
√
γ̄ + �2

y2
(1+ k1)− cos

(
π
M

)
cos (θ) γ̄√

γ̄ +�2 (1+ k1)
(
x2+y2

y2x2

)
−cos

(
π
M

)
cos (θ) γ̄

(44)

and

n =

√
2k1�2 (1+ k1)√

γ̄ +
�2(1+k1)

y2
− cos

(
π
M

)
cos (θ) γ̄

×

√√√√√ 1
y2x2

γ̄+�2 (1+k1)
(
x2+y2

y2x2

)
−cos

(
π
M

)
cos (θ) γ̄

(45)
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respectively. In summary, for the important case of two-relay
based cooperative SC diversity, the SEP of M-DPSK is
obtained by substituting (42) and (43) in (39). Now, for
Rayleigh×Rice fading, i.e., k1 = 0, the application of
[53, eq. (07.20.03.0001.01)], allows us to write

P̄s = 2
sin
(
π
M

)
π

(1+ k2)

π
2∫

−
π
2

∞∫
0

e
−

(
y2(1+k2)

�2
+k2

)
1− cos

(
π
M

)
cos (θ)

×

yI0
(
2y
√

k2(1+k2)
�2

)
y2γ̄ +�2 − cos

(
π
M

)
cos (θ) y2γ̄

dydθ

−4

π
2∫

−
π
2

∞∫
0

∞∫
0

I0
(
2x
√

k2(1+k2)
�2

)
I0
(
2y
√

k2(1+k2)
�2

)
π�2

(
1− cos

(
π
M

)
cos (θ)

)

×
xsin

(
π
M

)
(1+ k2)2 e

−

(
(y2+x2)(1+k2)

�2
+2k2

)

y
(
γ̄ +�2

(
x2+y2

y2x2

)
− cos

(
π
M

)
cos (θ) γ̄

)dydxdθ.
(46)

Additionally, by setting k1 = k2 = 0 in (39),
and using [39, eqs. (3.382.4) and (3.383.10)] and [53,
eq. (07.45.03.0004.01)], yields the following result for the
SEP in double Rayleigh fading

P̄s =
sin
(
π
M

)
π

π
2∫

−
π
2

e

(
1

γ̄(1−cos( πM )cos(θ))

)

γ̄
(
1− cos

(
π
M

)
cos (θ)

)2
×0

(
0,

1

γ̄
(
1− cos

(
π
M

)
cos (θ)

)) dθ
−2

sin
(
π
M

)
π

π
2∫

−
π
2

∞∫
0

e
−y2

(
1
�2
−

1
y2 γ̄+�2−cos( πM )cos(θ)y

2 γ̄

)
(
1− cos

(
π
M

)
cos (θ)

)
×

y30
(
−1, y2

y2γ̄+�2−cos( πM )cos(θ)y
2γ̄

)
(
y2γ̄ +�2 − cos

(
π
M

)
cos (θ) y2γ̄

)2 dydθ (47)

where 0 (·, ·) denotes the incomplete gamma function [39].
Finally, forM = 2, (39) reduces, as required, to [32, eq. (10)],
[32, eq. (17)] and [32, eq. (18)], which are known results
for double Rice, Rayleigh×Rice, and double Rayleigh fading
channels, respectively.

3) SINGLE RELAY CASE (L = 1)
To the best of our knowledge, even for the non-diversity
case, i.e., L = 1, the SEP of non-coherent M-DPSK, over
double Rice fading, has not been reported previously. The
result corresponding to this case is obtained by fixing L = 1
in (36), performing an integration-by-part, and doing lengthy
algebraic manipulations. This yields

P̄s =
sin
(
π
M

)
kT

π

π
2∫

−
π
2

dθ

∞∫
0

yI0

(
2y

√
k2 (1+ k2)

�2

)

×
e
−

(
y2(1+k2)

�2
+k2+k1

)
e
−

(
k1�2(1+k1)

y2 γ̄+�2(1+k1)−cos( πM )cos(θ)y
2 γ̄

)
(
1− cos

(
π
M

)
cos (θ)

)
×

1

y2γ̄ +�2 (1+ k1)− cos
(
π
M

)
cos (θ) y2γ̄

dy. (48)

Similarly, for Rayleigh×Rice (k1 = 0) and double Rayleigh
fading (k1 = k2 = 0), (48) reduces to

P̄s =
sin
(
π
M

)
π

(1+ k2)

π
2∫

−
π
2

∞∫
0

yI0

(
2y

√
k2 (1+ k2)

�2

)

×
1

y2γ̄ +�2 − cos
(
π
M

)
cos (θ) y2γ̄

×
e
−

(
y2(1+k2)

�2
+k2

)
1− cos

(
π
M

)
cos (θ)

dydθ (49)

P1 = γ̄

∞∫
0

ye
−

(
y2(1+k2)

�2
+k2+k1

)
I0

(
2y

√
k2 (1+ k2)

�2

) π
2∫

−
π
2

e
−

(
�2k1(1+k1)

y2 γ̄+�2(1+k1)−cos
(
π
M

)
cos(θ)y2 γ̄

)
(
1− cos

(
π
M

)
cos (θ)

) (
y2γ̄ +�2 (1+ k1)− cos

(
π
M

)
cos (θ) y2γ̄

)dθdy
(42)

P2 =
2γ̄ (1+ k2)

�2

π
2∫

−
π
2

∞∫
0

∞∫
0

xyI0
(
2y
√
k2(1+k2)
�2

)
I0
(
2x
√
k2(1+k2)
�2

)
e
−

(
(y2+x2)(1+k2)

�2
+2k2+k1

)
(
1− cos

(
π
M

)
cos (θ)

) (
y2γ̄ +�2(1+ k1)− cos

(
π
M

)
cos (θ) y2γ̄

)
e �2k1(1+k1)(

y2 γ̄+�2(1+k1)−cos
(
π
M

)
cos(θ)y2 γ̄

)

×Q1 (m, n)−

I0

 2�2k1(1+k1)
xyγ̄

1+�2(1+k1)
(
x2+y2

x2y2 γ̄

)
−cos

(
π
M
)
cos(θ)


x2γ̄+�2(1+k1)

(
x2+y2

y2

)
−cos

(
π
M
)
cos(θ)x2γ̄

�2(1+k1)

e

k1cos
(
π
M

)
cos(θ)x2y2 γ̄−k1x

2y2 γ̄

x2y2 γ̄+�2(1+k1)(x2+y2)−cos
(
π
M

)
cos(θ)x2y2 γ̄

 dydxdθ (43)
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and

P̄s =
sin
(
π
M

)
2π

π
2∫

−
π
2

e

(
1

γ̄(1−cos( πM )cos(θ))

)

γ̄
(
1− cos

(
π
M

)
cos (θ)

)2
×0

(
0,

1

γ̄
(
1− cos

(
π
M

)
cos (θ)

)) dθ (50)

respectively. In addition, for DPSK modulation (M = 2),
the results obtained from (48), (49), and (50), are, as expected,
in agreement with [32, eq. (19)], [32, eq. (20)], and
[32, eq. (21)], respectively.

B. APPROXIMATE SOLUTIONS
Here, we exploit the approximate solutions for FηSC (r), given
in (12) and (21), to get approximate solutions for P̄s.

1) APPROXIMATE SOLUTION BASED ON (12)
Substituting (12) in (34), yields the following expression for
the CDF FγSC (γ )

FγSC (γ ) ≈

(√
2π

1+ k2
�2

exp(−
1
2
(1+ log(2

1+ k2
�2

)− k2)

×I0(
√
2k2)

(
1− Q1(

√
2k1, 2

√
kT
γ

γ̄
)
))L

. (51)

Then, replacing (51) and (33) in (32), results in

P̄s ≈
sin( πM )

2π
(I0(

√
2k2))L

×

(√
2π

1+ k2
�2

exp(−
1
2
(1+ log(2

1+ k2
�2

)− k2)

)L
π
2∫

−
π
2

dθ

∞∫
0

exp(−γ (1− cos(
π

M
) cos(θ )))

×

(
1− Q1(

√
2k1, 2

√
kT
γ

γ̄
)
))L

dγ. (52)

For the particular case corresponding to L = 1, the semi-
infinite range integral in (52) can be solved using the results
of [50]. This gives, as detailed in Appendix C,

P̄s ≈ sin(
π

M
)

√
1+ k2
2π�2

exp(−
1
2
(1+ log(2

1+ k2
�2

)− k2)

π
2∫

−
π
2

I0(
√
2k2)

1− cos( πM ) cos(θ )

(
1− 0

(
1, 2

kT
γ̄

)

+γ

(
1,

2 k1kT
γ̄

k1 + 1− cos( πM ) cos(θ )

)

× exp

(
−

2 kT
γ̄
(1− cos( πM ) cos(θ ))

k1 + 1− cos( πM ) cos(θ )

))
dθ. (53)

Fixing, in addition, k1 = 0 in (53), and using [54,
eq. (4.3.133)], the finite-range integral is solved, to yield the
following closed-form expression for P̄s in Rayleigh×Rice
fading

P̄s≈ 2

√
2
1+ k2
π�2

exp(−
1
2
(1+ log(2

1+ k2
�2

)− k2)

×I0(
√
2k2) tan−1

(
1+cos( πM )

sin( πM )

)
(1−exp(−2

1+k2
γ̄

)).

(54)

where tan−1(·) denotes the inverse of the tangent func-
tion. Similarly, the approximate SEP in double Rayleigh
fading channels is deduced by putting k2 = 0 in (54).
This gives

P̄s ≈ 2

√
2

π�2
exp(−

1
2
(1+ log(

2
�2

))

× tan−1
(
1+ cos( πM )

sin( πM )

)
(1− exp(−

2
γ̄
)). (55)

2) APPROXIMATE SOLUTION BASED ON (21)
By proceeding similarly as above, the approximate solution
for P̄s, obtained by making use of the CDF in (21), is found
to be given by

P̄s ≈ L
sin( πM )
√
π

(
kT
�1�1

)
3
4 exp(−k1 − k2)

∞∫
0

dγ

π
2∫

−
π
2

dθ

√
γ
γ̄
�1�1∫
0

exp(−γ (1− cos(
π

M
) cos(θ )))

×
√
xI0(2

√
xk2(

kT
�1�1

)
1
4 )I0(2

√
xk1(

kT
�1�1

)
1
4 )

× exp(−2x

√
kT
�1�1

)(Fη(x))L−1dx. (56)

Numerical and simulation results are given for the purpose
of verifying the validity of the derivations and the accuracy
of the approximations. This will be the topic of the next
section.

VI. NUMERICAL AND SIMULATION RESULTS
In this section, the validity of the exact theoretical results, for
the PDF, CDF, LCR and SEP, is checked, and the accuracy of
the proposed approximations is assessed.

The simulation of the fading process ηSC (t) is achieved
by using the concept of Rice’s sum-of-sinusoids [46]. The
method of exact Doppler spread [55] is employed in the
determination of the parameters of the sinusoids. We also
use Clarke’s isotropic scattering model [56] for which βi =
�i

(1+ki)

(
π fmaxi

)2 (i = 1, 2), where fmax1 (fmax2 ) denotes the
maximum Doppler frequency caused by the motion of the

VOLUME 8, 2020 72197



N. Hajri et al.: On SC Diversity in Dual-Hop Relaying Systems Over Double Rice Channels

FIGURE 2. The CDF FηSC
(z) of ηSC (t) over double Rice fading channels for

different values of L.

mobile transmitter (mobile receiver) station. All the results
to be shown are obtained for the Doppler frequencies fmax1 =

fmax2 = 80 Hz, except that of Fig. 4. Also, for simplicity,
the Doppler frequencies of the LOS components are set to
zero, i.e., fρi = 0 (i = 1, 2).

The results, derived for the CDF, PDF, ADF, and SEP,
are plotted together with corresponding simulation data
in Figs. 2–9. It can be observed from these figures that the
simulation data match the exact theory quite well, thereby
confirming the validity of the exact derived expressions.
Fig. 2 illustrates the behavior of the CDF (the outage prob-
ability) of SC diversity for different values of L. For a fixed
fading level z, an increase in the number of diversity paths L
results, as expected, in a decrease in the outage probability.
It should be pointed out that the slightly poor fit between
theory and simulation, for L = 1 and over the range z >
6, could be caused by the lack of averaging over different
simulation trials. Fig. 3 shows a comparison between the
theoretical, approximate, and simulated PDFs of the fading
process ηSC (t) for k1 = k2 = 0.5, �1 = �2 = 3, and
different values of L. The shape correspondence between
the approximate and theoretical results reveals the validity
of (18) as a simple approximate solution for (15). It also
appears that the accuracy of the approximate PDF is slightly
improved when the number of paths L increases. Indeed,
this observation can be confirmed from the Kullback-Leibler
divergence (KL) measure, between the approximate and the-
oretical PDFs, shown in Table 1.

Fig. 4 illustrates the shape of the LCR NηSC (r) for different
values of the maximum Doppler frequencies. The curves in
this figure manifest the expected behavior of the LCR as a
function of the Doppler frequencies and the crossing level.
Likewise, the accuracy of the approximate solution in (30),
considering the scenario of double Rayleigh channels, can
be interpreted from Fig. 5. The results reveal that the accu-
racy of (30) improves as the number of relays L increases.
Hence, it appears that, in this case, (30) is computationally

FIGURE 3. The PDF pηSC
(z) of ηSC (t) over double Rice fading channels

for different values of L.

FIGURE 4. The LCR NηSC
(r ) of ηSC (t) over double Rice fading channels

for L = 4 and different values of the maximum Doppler frequencies.

FIGURE 5. The LCR NηSC
(r ) of ηSC (t) over double Rayleigh fading

channels for different values of L.

advantageous over (29). Moreover, to provide an accurate
assessment for the LCR approximation in (30), the mean
square error (MSE) between approximate and exact LCR
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TABLE 1. The Kullback-Leibler divergence measure between the exact PDF expression in (15) and the corresponding approximate solution in (18) for
different values of L.

FIGURE 6. The ADF TηSC
(r ) of ηSC (t) over double Rice fading channels

for different values of L.

FIGURE 7. The SEP of non-coherent M-DPSK modulation for two relay
cooperative SC diversity receivers over double Rice fading channel for
various values of M.

solutions is computed and reported in Table 2. As can
be observed, the MSE declines as the number of paths L
increases. Concerning the behavior of the ADF TηSC (r), it is
illustrated in Fig. 6 for various values of L.
Figs. 7–9 show both analytical and simulated curves of the

SEP P̄s for M-DPSK modulations. Fig. 7 presents P̄s for the
scenario of two relays based cooperative SC diversity, consid-
ering k1 = k2 = 4, �1 = �2 = 10, and various values ofM .
As expected, by increasing M , the SEP increases, and thus,
the quality of the transmission deteriorates. It should also
be mentioned that the numerical evaluation of P̄s, expressed
in (36), has been accomplished by using Mathematica tool

FIGURE 8. The BEP of binary non-coherent DPSK modulation over double
Rice fading channel for various values of L.

TABLE 2. Mean square errors between the exact analytical expression
and approximate solution for the LCR of double Rayleigh fading channels
for different values of L.

and an ordinary laptop computer. This operation has taken a
time period ranging from 19.5 s (for M = 2) to 109.2 s (for
M = 16). The BEP, corresponding to binary DPSK modula-
tion, is depicted in Fig. 8 for L ∈ {1, 2, 4, 6}. As expected,
the quality of the wireless transmission improves as the num-
ber of paths L increases. Finally, the impact of the Rice
factors k1 and k2 on the SEP P̄s is illustrated in Fig. 9 for
L = 1. As expected, the best SEP performance is obtained
in the case of double Rice fading (k1 = k2 = 4), while
the worst one corresponds to the double Rayleigh fading
(k1 = k2 = 0).
In Fig. 10, we examine the accuracy of the proposed

approximate solutions for the CDFFSC (z) in (21), considering
k1 = k2 = 2, �1 = �2 = 6, and L ∈ {1, 2, 4}. The results
in this figure reveal that (21) is a good approximation for
(9) over the range of low values of the fading amplitude z.
Moreover, it can be observed that the error between the exact
solution, given in (9), and approximate quantity, shown in
(21), decreases as L increases. This tends to indicate that
the approximation in (21) is useful in evaluating, efficiently,
low-SNR outage of radio links. Finally, the quality of the
approximate BEP, provided in (56), can be studied from the
content of Fig. 11, for k1 = k2 = 2, �1 = �2 = 6,
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FIGURE 9. The SEP of non-coherent 8-DPSK modulation for L = 1 (single
relay case) and various values of k1 and k2.

FIGURE 10. The approximate CDF FηSC
(z) in (21) for different values of L.

FIGURE 11. The approximate BEP of non-coherent DPSK in (56) for
various values of L.

and L ∈ {1, 2, 4}. We observe from this figure that (56)
appears to be a reasonably good lower bound for the exact
BEP performance given in (36).

VII. CONCLUSION
This paper has presented a theoretical analysis of fade statis-
tics and SEP performance of dual-hop AF multi-relay based
cooperative selection diversity in double Rice fading chan-
nels. Exact and approximate analytical expressions for the
CDF, PDF, LCR, and ADF of the fading process have first
been derived. By resorting to the CDF approach, the SEP
performance of non-coherentM-DPSKmodulation has there-
after been investigated. Additionally, corresponding results
have been extracted for RayleighxRice and double Rayleigh
channels, which appear as special cases of the double Rice
fading channel. Despite that all the statistical quantities and
the performance metrics, reported in this work, are expressed
in terms of integrals, numerical computation and simulation
results have proved their usefulness in assessing the per-
formance of the considered cooperative selection diversity.
Deriving exact closed-form expressions for these quantities
remains an open problem.

APPENDIXES
APPENDIX A
In this appendix, we detail the Laplace’s method of integra-
tion applied to approximate the CDF FηSC (z) given in (12).
This method uses the following result [7], [43]

∞∫
0

g(y)e−λf (y)dy ≈

√
2π
λ

g(y0)√
f ′′(y0)

e−λf (y0) (57)

where λ is a positive parameter that can be large or small [7],
[43], f (y) and g(y) represent two real-valued functions that
are assumed to be infinitely differentiable, and the parameter
y0 denotes the critical point of the function f (y). Also in (57),
f ′′(y) denotes the second derivative of the function f (y) with
respect to the variable y. By observing the semi-infinite inte-
gral in (3), it is clear that this integral satisfies all conditions
of the Laplace’s theorem of integration. Hence, by identifying
(3) and (57) we can write

f (y) =
1+ k1
�1

y2 − log(y)

g(y) = 2
1+ k2
�2

exp(−k2)I0(2y

√
1+ k2
�2

k2)

×

(
1− Q1(

√
2k1,

z
y

√
2
1+ k1
�1

)
)

f ′′(y) = 2
1+ k2
�2

−
1
y2

y0 =

√
�1

2(1+ k1)

(58)

Substituting (58) in (57), and performing some algebraic
manipulations, the CDF Fη(z) of the double Rice process η(t)
can be approximated by

Fη(z) ≈

√
2π

1+ k2
�2

exp(−
1
2
(1+ log(2

1+ k2
�2

)− k2)

×I0(
√
2k2)

(
1− Q1(

√
2k1, 2z

√
kT
�1�2

)

)
. (59)
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Finally, inserting (59) in (9), results in the approximate solu-
tion of the CDF FηSC (z) and gives (12).

APPENDIX B
In this appendix, we again apply the Laplace’s method of
integration to get (18). To this end, we proceed by identifying
(2) and (57) to get

f (y) =
y2 (1+ k2)

�2
+
z2 (1+ k1)
�1y2

+ k1 + k2

g(y)=
4zkT
�2�1y

I0

(
2y

√
k2 (1+k2)

�2

)
I0

(
2z
y

√
k1 (1+ k1)

�1

)
f ′′(y) =

2 (1+ k2)
�2

+
6z2 (1+ k1)
�1y4

y0 =

√
z

√
�2 (1+ k1)
�1 (1+ k2)

.

(60)

Then, substituting (60) in (57), and doing some algebraic
manipulations, gives

pη(z) ≈ 2

√√√√
πz
(

kT
�1�2

) 3
2

I0

(
2
√
zk2

(
kT
�1�2

) 1
4
)

×I0

(
2
√
zk1

(
kT
�1�2

) 1
4
)
e
−

(
2z
√

kT
�1�2

+k1+k2
)
. (61)

Finally, the desired quantity in (18) is obtained by replacing
(61) in (15).

APPENDIX C
This appendix explains the derivation of (53). Specifically,
(53) is obtained by solving the following integral given in (52)
for the case of L = 1

I =

∞∫
0

exp(−γ (1− cos(
π

M
) cos(θ )))

×

(
1− Q1(

√
2k1, 2

√
kT
γ

γ̄
)
))

dγ. (62)

This integral can easily be simplified to

I =
1

1− cos( πM ) cos(θ )
− J (63)

where J is a semi-infinite range integral expressed by

J =

∞∫
0

exp(−γ (1− cos(
π

M
) cos(θ )))

×Q1(
√
2k1, 2

√
kT
γ

γ̄
)dγ. (64)

Next, using [50, eq. (19)], a closed-form expression for J is
obtained to be

J =
1

1− cos( πM ) cos(θ )

(
0

(
1, 2

kT
γ̄

)

+γ

(
1,

2 k1kT
γ̄

k1 + 1− cos( πM ) cos(θ )

)

× exp

(
−

2 kT
γ̄
(1− cos( πM ) cos(θ ))

k1 + 1− cos( πM ) cos(θ )

))
(65)

where γ (·, ·) denotes the lower incomplete gamma func-
tion [39]. Finally, replacing (65) in (63), a closed-form
expression for I is given by

I =
1

1− cos( πM ) cos(θ )

(
1− 0

(
1, 2

kT
γ̄

)
+γ

(
1,

2 k1kT
γ̄

k1 + 1− cos( πM ) cos(θ )

)

× exp

(
−

2 kT
γ̄
(1− cos( πM ) cos(θ ))

k1 + 1− cos( πM ) cos(θ )

))
. (66)

This concludes the derivation of (53).
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