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ABSTRACT In this paper, a mechanical system composed of a thin rotating rod under some constraints
is considered. For this system, the total torque of the gravity forces is fixed and the unknown function
to be determined is the mass density of the rod. This kind of problem is faced in several engineering
applications as in aerospace. The resulting problem is formulated as a non classical integral equation, where
the conventional methods of resolution do not apply. Therefore, a special treatment is required to solve the
obtained integral equation. First, the obtained integral equation is transformed into a system of mixed integral
and linear differential equations with two unknown functions. The latter transformation allows the inspiration
of the general expression of the requested functions. Consequently, a highly non linear system with several
unknowns is obtained. During the resolution of the latter system several mathematical technics are used.
After applying all these technics an analytical solution of the studied integral equation is obtained. Finally,
the technical feasibility from an engineering viewpoint of the production of a thin rod with the obtained
mass density function is briefly discussed. In this context, the Functionally Graded Material is proposed as
a material satisfying the obtained mass density function.

INDEX TERMS Thin rod, total torque, Integral equation, linear differential equation system, non-linear
system, functionally graded material.

I. INTRODUCTION
Several encountered problems in different scientific areas and
engineering are modeled as integral equations [33]. In this
context, authors in [1] modeled a problem of fluid mechanic
using the integral equations. The problem of diffraction by
an elongated body was addressed and formulated as integral
equation by [29]. In financial sector the problem of pricing
puttable convertible bonds is investigated and modeled as an
integral equation by [37]. An acoustic problem arising from
Geosciences was investigated by [19] and the mathematical
formulation yielded an integral equation. In [34] authors
modeled a Convection–diffusion problem using the integral
equation. The crack problem of poroelasticity wasmodeled as
an integral equation in [12]. Authors in [9] studied the elastic
wave scattering problem with integral equation modelling.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhixiong Peter Li .

The thin plate stability in subsonic flow problem was studied
by [9]. In addition, the integral equation mathematical theory
has attracted a lot of researchers and an abundant literature
was provided ([15]– [17]).

Several kinds of integral equations has been identified
as Fredholm equations (first and second kind)([24], [32]),
Volterra (first and second kind) [18] equations, and other
ones [35]. The resolution of these integral equations is the
topic of a plenty of researches, and few of them are solved
exactly [35] (closed form). Therefore, the attention was
focused on numerical solution ([1], [6], [11], [18], and [25]),
or on studying the qualitative behaviour of the solution. In this
context, the meshless numerical methods are used in recent
works for solving integral equations ( [38]–[40]). It is worth
noting that these methods do not need any background mesh.

In this work we are interested on a mechanical problem.
This problem consists on studying a thin rod that can turn
around a moving axis. In this problem, the total torque of
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the rod at the horizontal position about the axis is a given
function. In addition, the total torque also depends on the
mass density function of the rod. The problem is the determi-
nation of themass density function of the rod satisfying all the
required conditions. A more details and figures clarifying the
problem will be presented in the problem statement section.
The above mentioned problem is modeled using a non clas-
sical linear integral equation, that is not already referenced
in the related literature (to the best of our knowledge). The
resolution of the obtained integral equation is the main objec-
tive of this work. For that aim, several advancedmathematical
technics are used. These technics allow the resolution of the
studied integral equation.

The main advantage of the proposed method is to obtain
the exact solution in a closed form for a complex integral
equation. This exact solution is obtained after several math-
ematical transformations which are intended to simplify the
initial integral equation. These transformations lead to a par-
tial linear system which is considered as a relatively simple
problem to be solved.

The integral equations are mainly solved using two differ-
ent kind of methods. The first one is the approximate methods
or numerical methods, in which the unknown function is
replaced by an approximate function. This allows to trans-
form the integral equations into other simple equations. For
these methods, the accuracy and reliability of the methods
should be studied by analyzing the error. The second kind of
methods is the exact resolutionwhich is encountered for a few

types of integral equations as Volterra equation. To the best of
our knowledge the current integral equation is not previously
studied and no resolution methods are proposed.

It is worth noting that each integral equation is dictating
the way to be solved with: exact or numerical methods. In this
context, the current developedmethod for this special integral
equation could be applied to other problems. This will be the
topic of further investigations.

This paper is organized as follows. In section 2, the studied
problem is introduced. Section 3 is intended to the resolution
of the obtained integral equation. Section 4 is devoted to the
technical feasibility of the obtained solution. Finally, a con-
clusion summarizing the elaborated work and giving some
new future research directions, is presented.

II. PROBLEM STATEMENT
Consider the mechanical system presented in figure 1. In this
simple system, a thin rod [OL] with length equal to one is
allowed to rotate around an axis which is placed in the pointA.
The only external force acting on the rod is the gravity

force (this force can be replaced by an electrostatic force,
or electromagnetic force depending in the application). The
distance from A to O is denoted x. The magnitude of the
elementary torque at the point M of the gravitational force
about the origin A, when the rod is in the horizontal position,
is expressed as:

dτ = G× dm× (x − t)

FIGURE 1. The studied mechanical system.
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where G is the gravity acceleration, and dm the elementary
mass of the point M . It is worth noting that the negative
sense is the one of the clockwise direction (as indicated
in figure 1), therefore, the algebraic distance from A to M
is (x − t). Furthermore, the elementary mass dm is expressed
as dm = y(t)dt where y(t) is the mass density function of
the rod at point M , then the total torque about the origin A is
expressed as follows.

T τ (x) =

1∫
0

Gy (t) (x − t) dt (1)

The value of the total torque at the horizontal position
is important in some engineering applications (mechanic,
mechatronics, aerospace [36] ), and controlling it is a neces-
sity. The ways controlling this torque’s value is the mass
density function y (t) and the position of the axis (A). An
important property for the total torque is presented in the
following remark.
Remark 1: If y (t) is a continuous function on the interval

[0, 1], then:

T τ (x) = cx + d (2)

with c =
1∫
0
Gy (t) dt and d =

1∫
0
−Gty (t) dt .

Proof: Since the function y (.) is continuous on the

compact [0, 1], then
1∫
0
y (t) dt < +∞ and

1∫
0
−ty (t) dt <

+∞. Consequently, the presented integral in (1) T τ (x) =
1∫
0
Gy (t) (x − t) dt , is rewritten as T τ (x) = x

(
1∫
0
Gy (t) dt

)
+(

1∫
0
−Gty (t) dt

)
= cx + d , with c =

1∫
0
Gy (t) dt and d =

1∫
0
−Gty (t) dt .

It is worth noting that themass density function y (t), which
is requested in this work, is satisfying an integral equation that
will be introduced later, and that has the following expression:

1∫
0

Gy (t) (x − t) dt = g(x)

In this integral equation, the left side
1∫
0
Gy (t) (x − t) dt is

representing the total torque (1), and the right hand side g(x)
is a kind of constraints or preferences to be satisfied by the
unknown mass density function y (t).

According to remark 1, one could observe that:
1) the expression (2) is another representation of (1), and

it is not yet an integral equation.
2) the last remark restricts g(x) to be linear (i.e g(x) =

cx + d).
3) the introduction of any constraints or preferences that

should be satisfied by the mass density function y (t) is

achieved only throughout the selection of the param-
eters c and d . Therefore, first we should select the
parameters c and d , and after that solving the integral
equation.

The selection of c and d is performed in a way to keep track
of the mass density function y (t) variation. Since remark 1
states that the total torque is linear (i.e cx + d), then the
simplest way doing that is to consider the linear function
joining the points C (0, y (0)) and D (1, y (1)). These two
points are the extreme points of the graph of y (t), as indicated
in figure 2. In other terms, c and d are selected such that g(x)
is a linear interpolation of the mass density function y (t).

FIGURE 2. Selection of the coefficients c and d .

According to figure 2, the line connecting the two extreme
points C and D of the graph of y (t) has the following

equation:(CD): s =
y (1)− y (0)

1− 0
t + (2y (1)− y (0)) (t and s

are the coordinates). If in addition we assume that y (t) is a

decreasing curve then the slope of (CD) is sl =
y (1)− y (0)

1− 0
is negative. From the other side, T τ (x) is an increasing func-
tion then the symmetric of (CD) relatively to the line 1 with
equation: s = y (1) has to be consider and not (CD). In this
case we have:

c =
y (0)− y (1)

1− 0
> 0 (3)

d = 2y (1)− y (0) (4)

Therefore, the problem is the determination of a decreas-
ing and continuous function y (t) on [0, 1] that satisfies the
following integral equation.

1∫
0

y (t)G× (x − t) dt = (y (0)− y (1)) x + (2y (1)− y (0))

(5)

Without loss of generality, in the remaining of this paper,
G is assumed to be equal to one (G = 1). This is achieved in
an appropriate unit system, in order to simplify the calculus.
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To the best of our knowledge, equation (5) is not a classic
integral equation and it has the following general expression:

1∫
0

K (x, t) y (t) dt = 81 (y) x +82 (y) (6)

where:
• The kernelK (x, t) = (x − t), for (x, t) ∈ [0, 1]×[0, 1].
• y (.) the unknown decreasing and continuous function in
[0, 1].

• 81(.) and 82(.) are linear forms defined on the space
of continuous functions C ([0, 1]) and their respective
expressions are 81 (y) = y (0) − y (1) and 82 (y) =
2y (1)− y (0) .

Remark 2: The solutions’ space of the integral equa-
tion (5) is an IR sub-vector space of C ([0, 1]).

Proof: Indeed, let y1 (.) and y2 (.) be two different

solutions of (6) and let a ∈ IR. Thus,
1∫
0
K (x, t) y1 (t) dt =

81 (y1) x + 82 (y1) and
1∫
0
K (x, t) y2 (t) dt = 81 (y2) x +

82 (y2). Therefore,
1∫
0
K (x, t) (y1 (t) + ay2 (t))dt =

81 (y1 + ay2) x + 82 (y1 + ay2) since 81(.) and 82(.) are
linear forms. Consequently, y1 + ay2 is a solution of (6) and
the result is proved.
Remark 3: The uniform mass distribution is not a solution

for (6).
Proof: Assume y (t) = a, ∀t ∈ [0, 1] with a > 0 is a

solution of (6) then a
1∫
0
(x − t) dt = ax− 1

2a = 0x+awhich

involves a = 0. This contradicts the fact that a > 0.
Remark 4: The special expression of the kernel K (x, t) =

x − t suggests that
1∫
0
y (t) (x − t) is a convolution product of

y (t) and the identity function (i.e. f (x) = x). In this case
some technics including the inverse Fourier transformation
are used to explicitly solve the integral equation. Unfortu-
nately, the right hand side in equation (6), 81 (y) x + 82 (y)
depends on y (.) and the latter technics do not apply.
Remark 5: The function y (t) = 0 is a solution of (6)

that we do not consider. To avoid such a case the unknown
function y (t) is assumed to satisfy the following condition.

y (0) = 1 (7)

This choice does not impact the final solution as it will
be shown. In addition, since y (t) represents a mass density
function then

y (t) ≥ 0 for all t ∈ [0, 1] . (8)

III. PROBLEM RESOLUTION
In this section the integral equation, which is not a classical
one, will be solved explicitly using successive transforma-
tions. These transformations allow the simplification of the

proposed problem until reaching solving nonlinear system.
For that aim, and as a first step the following proposition
(proposition 1) is presented.
Proposition 1: Solving the system (9 and 10) where the

unknown is the function y (.) is equivalent to solving the
integral equation (6).

y (0)− y (1) =

1∫
0

y (t) dt (9)

and

2y (1)− y (0) =

1∫
0

−ty (t) dt (10)

Proof:
1∫
0
y (t) dt < +∞ this is because the function y (t)

is continuous on the compact [0, 1]. The same argument

holds for the function −ty (t) then
1∫
0
−ty (t) dt < +∞.

Consequently, the expression
1∫
0
y (t) (x − t) dt is rewritten as

follows: x
1∫
0
y (t) dt +

1∫
0
−ty (t) dt. The identification term

by term with (y (0)− y (1)) x + (2y (1)− y (0)) leads to the
result.
At this stage the following classical result is recalled.
Remark 6: Any continuous function y (t) on the interval

[0, 1], admits a unique primitive Y (t) satisfying: Y (0) = 1.
The choice of Y (0) = 1 is arbitrary and has no impact on

the obtained solution as it will be shown in the rest of this
paper.

The two results contained respectively in (9) and remark 6
allow to obtain the following obvious equation (11).

y (0)− y (1) = Y (1)− Y (0) (11)

The latter equation (11) is expressing the relationship
between the function Y (t) and its derivative y (t).

This is the beginning of the transformation of the integral
equation to a system of linear differential equations. It is
worth recalling that a system of linear differential equations
is a linear system, involving derivative operators and where
the unknowns are functions. The reader is referred to [22]
for a detailed introduction and results on system of linear
differential equations topic. In the next subsection, the details
of transforming the integral equation into a system of linear
differential equations, are presented.

A. FORMULATION USING SYSTEM OF LINEAR
DIFFERENTIAL EQUATIONS
Recall that equation (11) is the main motivation to add
another unknown function Y (t), which is the primitive of
y (t) (i.e. Ẏ (t) = y (t)), and this primitive satisfies Y (0) = 1.
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The partial transformation of the integral equation (6) into
a system of linear differential equations is the content of the
next proposition.
Proposition 2: Solving the system (12-17) is equivalent to

solve the integral equation (6).

Ẏ (t) = y (t) , t ∈ [0, 1] (12)

y (0)− y (1) = Y (1)− Y (0) (13)

y (0) = 1 (14)

Y (0) = 1 (15)

Ẏ (0) = 1 (16)
1∫

0

−ty (t) dt = 2y (1)− y (0) (17)

Proof: Let y (t) be a solution of (6), therefore y (t)
satisfies (9) and (10). Based on the fact that the requested
solution y (t) is a continuous function on [0, 1] then y (t)
has a unique primitive Y (t) satisfying Y (0) = 1. Taking

into account (9 ), we have y (0) − y (1) =
1∫
0
y (t) dt =

Y (1)− Y (0). In addition, Ẏ (0) = y (0) = 1.
Reversely, let y (t) and Y (t) be the solutions of the sys-

tem (12-17). Thus, Y (t) is a primitive of y (t) and
1∫
0
y (t) dt =

Y (1) − Y (0). Based on (13) we have y (0) − y (1) =

Y (1) − Y (0) =
1∫
0
y (t) dt , and equation (9) is satisfied.

Furthermore, y (t) satisfies equation (17) and consequently
equation (10).
At this stage, it is worth noting that the system (12-17)

requires the determination of two unknown functions Y (t)
and y (t).

Inspired by the basics of the solutions for the system of
linear differential equations, Y (t) and y (t) could have the
following form.{

Y (t) = σ11 exp (α1t)+ σ12 exp (α2t)
y (t) = σ21 exp (α1t)+ σ22 exp (α2t)

(18)

where the real constants σ11, σ12, σ21, σ22, α1, and α2 are
to be determined. The exploration of this way requires the
determination of the unknowns which are the functions Y (t)
and y (t) if they exist and have the form presented in (18).
The determination of Y (t) and y (t) is now transformed in
searching the constants σ11, σ12, σ21, σ22, α1, and α2. The
substitution of the conditions satisfied by Y (t) and y (t) in
the equations (18) will results in a system of equations where
the unknowns are σ11, σ12, σ21, σ22, α1, α2, this is the topic
of the next subsection.

B. NON-LINEAR SYSTEM FORMULATION
Equation (10) is expressed according to the values of α1 and
α2, and its expression is contained in the following remark.
Remark 7: Based on (10) and (18) the four following

expressions are obtained.

1) If α1 6= 0 and α2 6= 0 then equation (10 ) is:

11 = σ21

(
2α21 + α1 − 1

)
α21

exp (α1)

+ σ22

(
2α22 + α2 − 1

)
α22

exp (α2)

+ σ21

(
1− α21

)
α21

+ σ22

(
1− α22

)
α22

= 0. (19)

2) If α1 = 0 and α2 6= 0, then equation (10) is:

12 =
3
2
σ21 + σ22

(
2α22 + α2 − 1

)
α22

exp (α2)

+ σ22

(
1− α22

)
α22

= 0. (20)

3) If α1 6= 0 and α2 = 0, then equation (10) is:

13 =
3
2
σ22 + σ21

(
2α21 + α1 − 1

)
α21

exp (α1)

+ σ21

(
1− α21

)
α21

= 0. (21)

4) if α1 = 0 and α2 = 0, then equation (10) is:

14 = σ21 + σ22 = 0 (22)

Proof: The proof is based on the explicit expression

of the integral �(λ) =
1∫
0
t exp (λt) dt where λ ∈ IR.

The calculation of �(λ) requires the consideration of two
cases. In the first case λ 6= 0, and an integration by
parts is used to calculate �(λ). For that aime we denote
f (t) = t and g

′

(t) = exp (λt), (g
′

(t) is the derivative of
g(t)) then f

′

(t) = 1 and g (t) = 1
λ
exp (λt). Therefore,

�(λ) =
[ t
λ
exp (λt)

]1
0 −

1
λ

1∫
0
exp (λt) dt = 1

λ
exp (λ) −

1
λ2
(exp (λ)− 1) = (λ−1)

λ2
exp (λ) + 1

λ2
. In the second case

λ = 0 then �(0) =
1∫
0
tdt = 1

2 . Consequently, four cases

have to be considered while simplifying (10 ). Indeed, using
equations (10) and (18) leads to the following expressions.

1) If α1 6= 0 and α2 6= 0 then 2y (1) − y (0) =
1∫
0
−ty (t) dt is equivalent to 2σ21 exp (α1) + 2σ22

exp (α2) − σ21 − σ22 =

1∫
0
−t(σ21 exp (α1t) +

σ22 exp (α2t))dt = −σ21�(α1) − σ22�(α2) =

−σ21(
(α1−1)
α21

exp (α1) + 1
α21
) − σ22(

(α2−1)
α22

exp (α2) +

1
α22
). Then,

(
2+ (α1−1)

α21

)
σ21 exp (α1)+

(
2+ (α2−1)

α22

)
σ22 exp (α2) + σ21

(
1
α21
− 1

)
+ σ22

(
1
α22
− 1

)
= 0.

Hence, σ21

(
2α21+α1−1

)
α21

exp (α1) + σ22

(
2α22+α2−1

)
α22

exp (α2)+ σ21
(
1−α21

)
α21
+ σ22

(
1−α22

)
α22
= 0 = 11.
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2) If α1 = 0 and α2 6= 0, then 2y (1) − y (0) =
1∫
0
−ty (t) dt is equivalent to 2σ21 + 2σ22 exp (α2) −

σ21 − σ22 = −σ21�(0) − σ22�(α2) = − 1
2σ21 −

σ22(
(α2−1)
α22

exp (α2) + 1
α22
). Consequently, 3

2σ21 +(
2+ (α2−1)

α22

)
σ22 exp (α2)+σ22

(
1
α22
− 1

)
= 0 which

yields 3
2σ21 + σ22

(
1−α22

)
α22
+ σ22

(
2α22+α2−1

)
α22

exp (α2) =

0 = 12.
3) The proof for the case α1 6= 0 and α2 = 0, is the

same as the previous proof with swapping the roles of
α1 and α2.

4) If α1 = 0 and α2 = 0 then (10) is equivalent to 2σ21 +
2σ22−σ21−σ22 = −σ21�(0)−σ22�(0) = − 1

2σ21−
1
2σ22 which involves σ21 + σ212 = 0 = 14.

Remark 8: The case α1 = α2 = 0 is not considered.
Indeed, based on (18) we have Y (t) = σ11 + σ12 and
Ẏ (t) = y (t) = 0 for all t ∈ [0, 1]. This contradicts the fact
that y (0) = 1.

In the sequel, the system of equations involving the
unknowns σ11, σ12, σ21, σ22, α1, and α2 is derived.
Firstly, including the conditions Ẏ (0) = 1 and Y (0) = 1

respectively in (18) will results in the following system.{
σ11 + σ12 = 1
σ21 + σ22 = 1

(23)

Using equations (18) and Ẏ (t) = y (t) one could deduce
that (α1σ11 − σ21) exp (α1t)+(α2σ12 − σ22) exp (α2t) = 0 ∀
t ∈ [0, 1]. Since the latter expression holds for all t ∈ [0, 1],
then an identification allows to obtain the following system.{

α1σ11 − σ21 = 0
α2σ12 − σ22 = 0

(24)

Substituting equations (18) into equation (11) yields the
following equation.

(σ11 + σ21) exp (α1)+ (σ12 + σ22) exp (α2)− 2 = 0 (25)

All the previous obtained equations (19, 20, 21, 23, 24,
and 25) are collected and a set of three systems Si(i = 1, 2, 3)
are obtained. It is worth noting that each system Si depends
on 1i (i = 1, 2, 3). The obtained systems Si(i = 1, 2, 3)
with unknowns σ11, σ12, σ21, σ22, α1 and α2, are displayed
as follows.

Si(i = 1, 2, 3) :



α1σ11 − σ21 = 0
α2σ12 − σ22 = 0
σ11 + σ12 = 1
σ21 + σ22 = 1
α1σ11 + α2σ12 = 1
(σ11 + σ21) exp (α1)+
(σ12 + σ22) exp (α2)− 2 = 0
1i = 0(i = 1, 2, 3)

(26)

Clearly, the system (26) presents a strong nonlinearity.
Indeed, terms as α1σ11, σ11 exp (α1), and 1i are contained
in these systems.
Remark 9: If systems (26) have a solution the it should

satisfy the following condition.

α1 6= α2 (27)

Proof: Assume that α1 = α2, therefore α1σ11+α2σ12 =
α1 (σ11 + σ12) = 1 (because σ11 + σ12 = 1), then α1 = 1.
In addition, exp (α1) (σ11 + σ12 + σ21 + σ22)− 2 = 0 which
gives 2 exp (α1) = 2, then exp (α1) = 1, and consequently
α1 = 0. This involves that α1 = 1 and α1 = 0 at the same
time which is impossible and consequently α1 6= α2.
Based on the latter remark (Remark 9), we assume in the

remaining of this paper that α1 6= α2.
At this point, the resolution of the system (12-17) is

transformed into a resolution of the nonlinear system (26).
The resolution of the system (26) is the subject of the next
subsection.

C. NON-LINEAR SYSTEM RESOLUTION
The resolution of the system (26) requires a special treat-
ment, since it is strongly non linear. Indeed, the system (26)
contains the terms 1i (i = 1, 2, 3) (19-21) and σij exp (αi)
(i = 1, 2 and j = 1, 2).
The adopted strategy to solve the system (26) is to sub-

divided it into more easy partial subsystem. In this context,
we first consider the following subsystem which is the least
complicated part in (26):

α1σ11 − σ21 = 0
α2σ12 − σ22 = 0
σ11 + σ12 = 1
σ21 + σ22 = 1

(28)

By fixing α1 and α2, the system (28) is transformed into a
linear system expressed as follows.

α1 0 −1 0
0 α2 0 −1
1 1 0 0
0 0 1 1



σ11
σ12
σ21
σ22

 =

0
0
1
1

 (29)

Once the system (29) is solved then the unknowns
σ11, σ12, σ21, σ22 are obtained and expressed with respect to
α1 and α2.
Based on Remark 9, we have α1 6= α2, and the solution of

system (29) is as follows.

σ11 = −
α2 − 1
α1 − α2

, σ12 =
α1 − 1
α1 − α2

, (30)

σ21 = −
α1 (α2 − 1)
α1 − α2

, σ22 =
α2 (α1 − 1)
α1 − α2

. (31)

Recall that we have three systems Si(i = 1, 2, 3) depending
on the already quoted cases in (19-22). According to these
cases, we explore the rest of the equations in system (26) as
follows.
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1) CASE α1 6= 0 AND α2 6= 0
Denoting Z = exp (α1), T = exp (α2) and substituting the
obtained expressions of σ11,σ12,σ21,σ22 (in (30)) in equa-
tions (25) and (19: (11 = 0)). Therefore, a system with the
unknowns Z and T is obtained and expressed as follows.{

011 (α1, α2)Z + 012 (α1, α2)T = 51 (α1, α2)

021 (α1, α2)Z + 022 (α1, α2)T = 52 (α1, α2)
(32)

where:
011 (α1, α2) = −

(α2−1)(α1+1)(2α1−1)
(α1−α2)α1

012 (α1, α2) =
(α1−1)(α2+1)(2α2−1)

(α1−α2)α2

021 (α1, α2) = −
(α2−1)(α1+1)
(α1−α2)

022 (α1, α2) =
(α1−1)(α2+1)
(α1−α2)

51 (α1, α2) =
(α2−1)(α1−1)

α1α2

52 (α1, α2) = 2.
It is worth noting that system (32) is well defined since

α1 6= α2, α1 6= 0, and α2 6= 0. In addition, the deter-
minant of the linear system in Z and T (32) is: 1 =

011 (α1, α2)× 022 (α1, α2)− 021 (α1, α2)× 012 (α1, α2) =
(α2−1)(α1+1)(α1−1)(α2+1)

(α1−α2)α2α1
.This determinant1 = 0 for α2 = 1,

or α1 = −1, or α1 = 1, or α2 = −1. These cases have to be
considered separately.

1) case (α2 = 1, α1 6= α2, α1 6= 0) : If α2 = 1 then
012 (α1, α2) = 021 (α1, α2) = 51 (α1, α2) = 0 and

the system (32) becomes
{
2T = 0
2T = 2

thus T = 0 and

T = 1. Therefore, exp (α2) = 0 and exp (α2) = 1
which is impossible.

2) case (α1 = −1, α1 6= α2, α2 6= 0) : If α1 =

−1 then 011 (α1, α2) = 021 (α1, α2) = 0
and 51 (α1, α2) =

2(α2−1)
α2

the system (32)

becomes
{ 2(2α2−1)

α2
T = 2(α2−1)

α2
2T = 2

thus T = (α2−1)
(2α2−1)

and

T = 1. Therefore, exp (α2) =
(α2−1)
(2α2−1)

and exp (α2) =
1 which involves α2 = 0, this is impossible since
α2 6= 0.

3) case (α1 = 1, α1 6= α2, α2 6= 0) : If α1 = 1 then
011 (α1, α2) = 022 (α1, α2) = 51 (α1, α2) = 0 and

the system (32) becomes
{
2Z = 0
2Z = 2

thus Z = 0 and

Z = 1. Therefore, exp (α1) = 0 and exp (α1) = 1
which is impossible.

4) case (α2 = −1, α1 6= α2, α1 6= 0) : If α2 = −1 then
012 (α1, α2) = 022 (α1, α2) = 0 and 51 (α1, α2) =

2(α1−1)
α1

the system 32 becomes
{ 2(2α1−1)

α1
Z = 2(α1−1)

α1
2Z = 2

thus Z = (α1−1)
(2α1−1)

and Z = 1. Therefore, exp (α1) =
(α1−1)
(2α1−1)

and exp (α1) = 1 which involves α1 = 0, this

is impossible since α1 6= 0.

Therefore, for the above mentioned cases the system (32)
has no solution.

The resolution of the linear system regarding Z and T (32),
when 1 6= 0 yields the following solution.

Z=
−α1 + 3α1α2 + α2 − 1
(α2 − 1) (α1 + 1)

and T =
α1 + 3α1α2 − α2 − 1
(α1 − 1) (α2 + 1)

which are expressed in other terms as follows.

exp (α1) =
−α1 + 3α1α2 + α2 − 1
(α2 − 1) (α1 + 1)

(33)

and

exp (α2) =
α1 + 3α1α2 − α2 − 1
(α1 − 1) (α2 + 1)

(34)

The equations (33) and (34), allow to express α2 and α1
respectively as follows.

α2 =
(α1 + 1) exp (α1)− α1 − 1
(α1 + 1) exp (α1)− 3α1 − 1

(35)

α1 =
(α2 + 1) exp (α2)− α2 − 1
(α2 + 1) exp (α2)− 3α2 − 1

(36)

The equations (35-36) are the conditions that should be
satisfied by the unknowns α1 and α2.
The existence of α1 and α2 satisfying (35-36) is the objec-

tive of the next study. For that aim the following functions are
defined.
• h(t) = (t + 1) exp (t)− 3t − 1, t ∈ IR.
• l(t) = (t + 1) exp (t)− t − 1, t ∈ IR.
• k(t) = l(t)

h(t) , t ∈ IR such that h(t) 6= 0.
Based on the latter notations the equations (35-36) are

rewritten as follows.

α2 = k(α1) and α1 = k(α2) (37)

The variation of the function h(t), is performed over the
sign of its derivative function ḣ(t) = (t + 2) exp(t) − 3. The
sign of ḣ(t) is out of reach due to its complexity. In order
to overcome this drawback, the derivative of ḣ(t) is calcu-
lated and we have ḧ(t) = (t + 3) exp(t). Thus, ḧ(t) =
(t + 3) exp(t) = 0 for t = −3 and the sign of ḧ(t) is the
sign of the function (t + 3). Moreover, ḣ(0.3) = 0.1 and
ḣ(0) = −1 which involves the existence of a unique α ∈
[0, 0.3] such that ḣ(α) = 0.
Based on the variation table of h(t) (see figure 3), there

exists a unique β ∈ [0.50, 0.55] such that h(β) = 0 (since
h(0.5)× h(0.6) ' (−0.02)× (0.03) < 0).
At this stage we start the study of the function k(t), and we

first observe that l(0) = h(0) = 0. Thus, a special treatment
is required for the function k(t) at the point t = 0. The

limt→0 k(t) =
l(t)−l(0)
t−0

h(t)−h(0)
t−0

=
limt→0

l(t)−l(0)
t−0

limt→0
h(t)−h(0)
t−0

=
l
′
(0)

h′ (0)
=

1
1 = 1,

the function k(t) is well defined at the point t = 0 and
k(0) = 1. Furthermore, l(β) = (β + 1) exp (β) − β −

1 = (β + 1) exp (β) − 3β − 1 + 2β = h(β) + 2β =
2β > 0. According to the variation table of h(t) which is
displayed in figure 3, the function h(t) satisfies the following
condition: (h(t) < 0) for t < β and h(t) > 0 for t < β

(t enough close to β). Therefore, limt→β+ k(t) = +∞ and
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FIGURE 3. Variation table of the function h(t).

limt→β− k(t) = −∞, which involves that the line 5 : t = β
is a vertical asymptote for the curve of k(t).
In addition, limt→+∞ k(t) = 1 and limt→−∞ k(t) = 1

3 ,
which means that lines 3 : s = 1 and 9 : s = 1

3 are
horizontal asymptotes for the curve of k(t) at+∞ and at−∞,
respectively.

The variation of k(x) is given throughout the sign of its

derivative k̇(t) = −
2
((
t2+t−1

)
exp(t)+1

)
((t+1) exp(t)−3t−1)2

. The function k̇(t) has

the opposite sign of function m(t) =
(
t2 + t − 1

)
exp(t)+ 1.

The sign of m(t) is determined over the sign of its derivative
ṁ(t) = t (t + 3) exp(t). The variation table of the function
k(t) is presented in figure 4.

FIGURE 4. Variation table of the function k(t).

Based on the variation table, which is presented in figure 4,
the function k(t) is strictly decreasing. This involves that the
function k(t) has an inverse function k−1(t). An immediate
consequence is that the equations (35-36) are rewritten as:

α2 = k(α1) and α2 = k−1(α1) (38)

The figure 5 displays the respective curves of the functions
k(t) and k−1(t).

FIGURE 5. Curves of the function k(t) and its inverse.

Since the only intersection points of the curves of k−1(t)
and k(t) should satisfy s = t then α1 = α2. This cannot occur
since this case is excluded from the beginning (according to
Remark 9). Thus, the system (26) has no solution for the case
α1 6= 0 and α2 6= 0.

2) CASE α1 6= 0 AND α2 = 0
The expressions of σ11, σ12, σ21, σ22 which are already pre-
sented in (30) become:

σ11 =
1
α1
, σ12 =

α1 − 1
α1

, σ21 = 1, σ22 = 0 (39)

When equations (39) are substituted in equations (25)
and (21), we obtain the following system.{

d1 (α1)Z = e1 (α1)
d2 (α1)Z = e2 (α1)

(40)

where
Z = exp (α1)

d1 (α1) =
(α1+1)(2α1−1)

α21

d2 (α1) =
(α1+1)
α1

e1 (α1) =
(
α21−1

)
α21

e2 (α1) =
(α1+1)
α1

According to the expressions of d1 (α1), d2 (α1), e1 (α1),
and e2 (α1) , three cases have to be examined.
• If α1 = 1

2 , then the first equation d1 (α1)Z = e1 (α1) of
system (40 ) is transformed into 0 × Z = −3, which is
impossible.

• If α1 = −1, then the second equation d2 (α1)Z =
e2 (α1) of system (40) becomes 0 = 0,
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• If α1 /∈
{
1
2 ,−1

}
then equation d1 (α1)Z = e1 (α1) is

solved and the solution is Z = (α1−1)
(2α1−1)

. This solution Z

is substituted in the equation d2 (α1)Z = e2 (α1). In
other term (α1+1)

α1

(α1−1)
(2α1−1)

+
(α1−1)
α1

= 2, and conse-

quently (α1+1)
α1

(α1−1)
(2α1−1)

+
(α1−1)(2α1−1)
α1(2α1−1)

= 2. In other

term,
α21−1+2α

2
1−3α1+1

α1(2α1−1)
= 2, which is expressed as

3α21−3α1
α1(2α1−1)

= 2, and 3α1−3
(2α1−1)

= 2. Therefore, 3α1 − 3 =
4α1 − 2 which gives α1 = −1. This contradicts the
assumption of α1 /∈

{
1
2 ,−1

}
.

Among the three latter cases, only the one with α1 = −1
holds. Thus, the solution of the system (26) is presented as
follows.

σ11 = −1, σ12 = 2, σ21 = 1, σ22 = 0, α1 = −1, α2 = 0.

(41)

Therefore, the requested solution of the system (12-17).

Y (t) = − exp (−t)+ 2

y (t) = exp (−t) (42)

3) CASE α2 6= 0 AND α1 = 0
This case is the symmetric of the one with α1 6= 0 and α2 = 0
and

σ11 = 2, σ12 = −1, σ21 = 0, σ22 = 1, α1 = 0, α2 = −1.

(43)

In this case we have

Y (t) = 2− exp (−t)

y (t) = exp (−t) (44)

4) CASE α2 = 0 AND α1 = 0
Based on remark 8, this case is rejected.

Clearly, a solution of the integral equation (6) is:

y (t) = exp (−t) , t ∈ [0, 1] . (45)

Seeking simplicity, the above complex technical part about
solving the non-linear system is summarized in the following
paragraph. The encountered non-linear system (26) is com-
posed of seven equations and six unknowns. First, a simple
non-linear subsystem composed of the four first equations,
is selected. This subsystem contains only addition and multi-
plication operations between the variables. The other subsys-
tems contain in addition the exponential of some variables.
This is the main reason of selecting the first subsystem. The
non-linearity of the first subsystem is overcome by fixing two
variables involved in multiplication. This allows to obtain a
partial linear subsystem, which is solved easily. The result is
four variables expressed using only the two fixed ones. All
these four variables are replaced in the two last equations of
system (26). Consequently, a system of two equations with

two variables (35-36) is obtained. This system contains the
exponential function. A technical part, using the study of
particular functions is performed. This allows to obtain the
values of these two variables and consequently all the other
variables.

D. TECHNICAL FEASIBILITY OF THE OBTAINED SOLUTION
At this stage and after obtaining an analytical (exact) solu-
tion to the addressed integral equation, the question to be
raised is: is it possible technically to produce a rod with an
exponential mass density? Indeed, the response is yes and
the Functionally Graded Material (FGM) is an example of
such a requested material. The FGM’s are nonhomogeneous
material composed of more than two different homogeneous
materials (such as ceramic and metal). The proportions of
these materials are continuously and smoothly varying in a
given direction as indicated in figure 6.

FIGURE 6. Functionally Graded Material composition.

The thick of the presented layers in figure 6 is almost a
nanometer (10−9m), thus the FGMmaterial is considered as a
nano material. In addition, if t is denoting the thickness direc-
tion distance then a physical propriety p(t) is expressed as:
p(t) = p0 exp(−at) with p0 and a positive parameters. These
physical proprieties are for example: the heat conductivity,
the shear modulus and the thermal expansion coefficient
([7], [8]). This is also the case of the mass density func-
tion y(t) solution of the studied integral equation, where
p0 = a = 1.
The FGM’s are widely used in different engineering fields

as for the aerospace industry, where they serve as a coating
of the space shuttles against the thermal shock. The car
industry is also using the FGM’s material. The Biomedical
area is benefiting from these materials where some human
body parts as bones and teeth are replaced by FGMmaterials
([30], [31]). In the Electrical/Electronics area the FGMmate-
rial is also used ([13]).

A dramatic advances in the fabrication of the FGM
during the two latter decades had been observed and a
lot of technical procedures had been proposed and used
as: Chemical vapour deposition/infiltration, Thermal spray,
Surface reaction process, and Laser deposition in addition to
others ([21]).
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IV. CONCLUSION
In this paper, a non classical integral equation modeling
a rotating thin rod under some constraints is derived. The
unknown function to be determined is the mass density func-
tion of the rod. Conventional methods solving the classical
integral equations do not apply therefore a special treatment
of the proposed problem is carried out. In order to solve
the obtained integral equations, several mathematical and
technical steps have been performed. These steps start by
transforming the studied integral equation into a system of
linear differential and integral with two unknown functions.
The next transformation allows the suggestion of a particular
solution with unknown constants to be determined. After
including the suggested solution, a strong non-linear system
is obtained. Deriving the solutions of the latter system
requires some mathematical technics as studying some
encountered functions. A solution for the latter system is
obtained and consequently the addressed integral equation is
solved. The obtained solution (mass density of the thin rod)
is an exponential one. Finally, an engineering solution for
producing such a mass distribution is proposed. This solution
requires the utilisation of the Functionally Graded Material
which is a wide used and produced material.

More research need to be provided to study the uniqueness
of the solution of the studied integral equation. In addition,
the resolution of the proposed integral equation in the general
case, where the two linear forms 81 (.) and 82 (.) have
other expressions. In the latter case new methods have to be
explored.
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