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ABSTRACT Advances inmachine learning algorithms have improved the performance of malware detection
systems for the last decade. However, there are still some challenges such as processing a large amount of
malware, learning high-dimensional vectors, high storage usage, and low scalability in learning. This paper
proposes low-dimensional but effective features for a malware detection system and analyzes themwith tree-
base ensemble models. Expert knowledge and frequency analysis are adapted for relevant feature selection
from the collected data set, which contributes to fast low-dimensional feature preparation, low storage usage,
and fast learning. We extract the five types of malware features represented from binary or disassembly
files. Specifically, the novel WEM (Window Entropy Map) image is designed to represent malware with
variable length, and the set of frequently used APIs is analyzed to shorten the processing time. To validate
the effectiveness of the selected features, we compare the performance of tree-based ensemble models such
as AdaBoost, XGBoost, random forest, extra trees, and rotation trees. The proposed feature can reduce
the original feature dimensionality by several tens to hundreds of times and decrease the training time of
ensemble models without degrading the malware detection rate when compared to the performance of the
whole set of malware features. In accuracy and AUC-PRC evaluation, XGBoost is the highest in rank.

INDEX TERMS Malware detection, feature extraction, tree-based ensemble, AUC-PRC.

I. INTRODUCTION
Malware (malicious software) is any program or file that is
intended to damage computers, computer systems, or net-
works. Themalware performs a type of misbehavior that goes
against the benefits of users after it is implanted into comput-
ers. Types of malware include viruses, worms, trojans, rootk-
its, spyware, ransomware, etc. Malware infection has been
increasing over the years. There have been many endeavors
to prevent malware attacks and the spread of infection to
other computers, but it is difficult to deal with advanced
malware variants, such as polymorphism [1]–[4], packing [5],
obfuscation [6], etc.

A malware detection system utilizes known detective pat-
terns to verify whether a new application becomes a threat.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ahmed Farouk .

The set of detective patterns are collected by analyzing
the previously-known malware. The fast growth of malware
variants nullifies malware detection systems based on these
known patterns. Commercial antivirus software has diffi-
culty detecting new malware variants unless the software
is kept up-to-date. To resolve these difficulties, machine
learning techniques have been applied in malware detec-
tion systems [2], [7]. Static analysis using machine learning
algorithms is able to detect some parts of polymorphism or
obfuscation code that can appear as patterns in sequence or
2-dimensional image [2], [8].

The general workflow of the machine learning process
includes the following steps: data collection, feature extrac-
tion, model training, and model selection. The data collection
step collects malware and benign files. The feature extraction
step decides a suitable representation for malware vectoriza-
tion and prepares the training dataset. The model training
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step makes use of the training dataset to yield the learned
models for choosing the best model. In the model selection
step, the best learned model is selected and applies to a real
application.

Feature extraction is the important step ofmachine learning
process [7], [9]. It prepares feature vectors for represent-
ing the characteristics of malware because it is associated
with the general performance of a machine learning algo-
rithm. Leaning performance often depends on the types of
extracted features. The step of feature preparation is con-
sidered time-consuming in terms of selected feature types.
However, the feature vector preparation can be done in
parallel.

Malware feature extraction is conducted with static or
dynamic analysis [1], [2]. Static analysis examines executable
or disassembled files without execution. A PE (Portable Exe-
cutable) file is composed of headers and sections that tell the
dynamic linker how to map the file into memory. IAT (Import
Address Table) in PE can be analyzed to utilize DLL informa-
tion [1], [2], [10]. The chosen features are byte sequence [11],
[12], byte entropy [11], n-gram, opcode (operational code)
[8], [13], API sequence [10], [14], [15], etc.

Dynamic analysis observes malware behavior while mal-
ware is being executed in a virtual environment, such as
CWSandbox [16] or Cuckoo Sandbox [17]–[19]. In a virtual
environment, the malware attack cannot cause damage to a
system due to a controlled execution. The virtual environment
monitors the changes in network, registry, MFT (Master File
Table), and the behavior of processes. Additionally, the vir-
tual environment records log files. Dynamic features are
the API call sequence and arguments, monitored processes,
registry changes, mutex changes, etc. These kinds of features
require computationally intensive operations due to the need
of a virtual environment. However, they are able to detect
obfuscated malware while static features are vulnerable to
it [2], [10], [20].

Machine learning models require persistent malware anal-
ysis against increasing malware variants. Malware detection
systems are being developed with machine learning tech-
niques to reduce FPR (False Positive Rate) of signature-based
malware detection techniques. In recent years, tree-based
ensemble algorithms are one of most important methods
among all the ensemble algorithms for solving prediction and
classification [21], [22]. Decision trees have less impact on
learning time than SVM, despite the growth of training data.
However, a decision tree with high depth has the disadvantage
of being overfit. Ensemble learning algorithms can prevent
overfitting with the bias-variance analysis. Thus, the tree-
based ensemble algorithms are considered for this study.
Through an ensemble approach, the experimental results
show that the performance of malware detection systems can
be improved by learning numerous classifiers and combining
their outputs.

In summary, this paper makes the following contributions:
• We propose updated malware features that minimize the
drawbacks, such as variable length size, high dimension,

and high storage use. The proposed malware features
show that their overall performance is better than the
original training feature in terms of training time and
accuracy.

• By applying expertise analysis knowledge, frequently
used functions, and entropy discretization to the stud-
ied malware features, the variable lengths of malware
features can turn into fixed lengths. Such features do
not require selecting a fixed length and padding feature
vectors.

• We perform extensive experiments with tree-based
ensemble algorithms. Experimental results show that the
tree-based ensemble model is effective and efficient to
detect malware in terms of training time and overall
performance.

The paper is organized as follows: Section II presents
the related works of malware detection methods in terms
of datasets, feature vectors, machine learning algorithms,
and performance. Section III discusses gram matrix, entropy
feature, and API or DLL feature that characterize malware.
Section IV presents the experimental results and Section V
concludes our work.

II. RELATED WORKS
The evaluation of malware learning models uses known
datasets or self-collected datasets. Training datasets are col-
lected from Web databases and composed of binary classifi-
cation or malware family classification. Table 1 summarizes
the malware datasets in terms of class size, malicious and
benign size, adopted feature, learning model, and data source.

Various n-gram features of opcode are selected to repre-
sent malware and benign [8], [13], [23]. Learning models
were tested for TF and TF-IDF (Term Frequency - Inverse
Document Frequency [35]) features of 2-gram opcode [23].
Random forest achieved the highest accuracy of 0.95 for
TF feature and n-gram feature was optimal if n = 2. The
2-gram and weighted term frequency features were tested
for learning models [13]. SVM of polynomial kernel showed
the best accuracy of 0.96. A major block of opcode was
chosen to avoid a high dimensional feature when including
all the opcode, which lowered feature extraction time [8].
The selected opcode was transformed into a square image
and tested CNN (Convolution Neural Network [36]). Since
the length of the selected opcode differs in malware, a hash
function was applied to opcode and transformed hash values
into a squared image. The detection accuracy of 0.87 or more
was reported for all classes.

The ANN (All-Nearest-Neighbor) algorithm was intro-
duced to detect malware based on sequential patterns from PE
headers [26]. The results showed a detection rate of 96.0%.
Each training feature was vectorized from PE sections with
byte entropy, histogram, and imported functions and meta
data [11]. The dimension of each feature was 256 and the
neural network structure was 1024 × 1024 × 1024 × 1. The
result ranged from 67.0 to 95.0% and the highest rate was
95.2%. The histogram similarity analysis [37] was adapted
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TABLE 1. List of malware detection systems in the studies.

to detect malware family by comparing the peak points of
the byte entropy graph [12]. The malware family detection
rate was about 98.0% with threshold 0.75. When the static
feature was gathered from bytecode features, disassembly
code, and PE features, the performance of random forest
was the highest and the F1-ratio was 93.56% [28]. XGBoost
learned multiple byte-based features from registry, keyword
frequency, n-gram, entropy, and byte images [30]. The accu-
racy was 0.98 for the entropy feature and 0.99 for the keyword
frequency feature.

The DNA sequence matching method was applied to
extract LCS (Longest Common Subsequence) from API
call sequences [15]. The LCS subsequences were collected
from malware only and excluded patterns that appeared
in benign. They reported near 99.9% generalization per-
formance. Cuckoo Sandbox was used to capture API call
sequences, DLL call sequences, and the presence or absence
of string information [19]. IGR (Information Gain Ratio)
monitored the feature dimension for feature fusion process.
Random forest achieved 0.996 in AUC for malware detec-
tion and 0.978 in AUC for malware family classification.
Under Cuckoo Sandbox, malware features were represented
with resource related data such as file access log, registry
key access, process execution, packet log, CPU, and mem-
ory [17]. Self-organizing feature map (SOFM) was trained
with malware features and used to predict the cluster of test
data [29]. The detection accuracy of about 0.9 was the best
when the feature map size was 80× 80.

Malicious behavior was encoded with resource data such
as files, mutexes, registry keys, network traffic, and error
messages [34]. Random forest reported TPR (True Positive
Rate) of 95.0%. They claimed three limitations of dynamic
malware analysis. In absence of malware behavior, dynamic
analysis cannot characterize malicious behavior. More and
more malware has evolved along with anti-sandbox function-
ality. Lastly, due to high FPR (False Positive Rate), malware
can be installed easily in the system directory without user
interactions. To overcome these limitations, FPR should be
lowered if training data containing malicious behavior is
prepared.

MIST (malware instruction set) encoded malware behav-
ior as a sequence of instructions captured under CWSand-
box [32]. Their fusion learning model grouped training data
into similar behavior and predicted malware into behavioral
classes by the nearest-neighbor algorithm [16]. The results
showed that F-measure was 0.94 to 0.99 when theMIST level
was 1 or 2.

The malware feature of this study uses static analysis
and proposes the modification of opcode, API, DLL, and
entropy features. The modification method utilizes dimen-
sion reduction to represent a fixed-length malware feature,
which is essential for applying machine learning algorithms.
Various tree-based ensemble algorithms are chosen to model
malware detection systems and their results are analyzed for
practicability.

III. MALWARE DETECTION MODEL
The malware detection system consists of three steps as
in Figure 1: feature engineering, model learning and model
evaluation. The feature engineering step prepares training
sets based on byte, opcode, and API data from the collected
dataset. Radare21 is used to generate disassembly code.
For the model learning step, tree-based ensemble models are
used for our malware detection models. Themodel evaluation
step chooses the best model through cross-validation and
confusion matrix.

A. DATA COLLECTION
Malware files were collected from Malwares.2 18 mal-
ware families are listed as shown in Table 2. Adware
is the most frequent family, and CoinMiner is the rarest
family. Kaspersky3 categorizes malware files according
to malware behavior. The collected dataset is composed
of 122,963 files including 20,000 benign files. Malicious files
are labeled with positive class (+1) and benign files with
negative class (−1) for a binary classification problem.

1https://rada.re/r
2http://www.malwares.com
3https://usa.kaspersky.com
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FIGURE 1. Structure of malware detection model.

TABLE 2. Malware family classification.

B. FEATURE ENGINEERING
It is necessary to map training samples to feature vectors
for the ensemble algorithm. A vector representation is
obtained by defining a numerical measurement method that
can replace samples. We focus on static features, mainly from
both executable and disassembly code.

1) GRAM MATRIX
Malware M is represented as a sequence of opcodes:
M =< s1, s2, · · · , sN > and si ∈ S, where N is the
total length and S is the set of opcodes. An n-gram presents
a contiguous subsequence of n items. By sliding a win-
dow of length n over M, the n-gram of the ith index is
subsequence (si, si+1, · · · , si+n−1). The n-gram maps M to
a high-dimensional vector space, where each dimension is
related to a single gram. The function φ returns the n-gram
feature for M: φ(M) = {(g, freq(g|M))|g ∈ G}, where
G is the set of unique n-grams and the function freq(g|M)
returns the frequency, the probability, or the binary flag
of g in M.

The gram features are widely used in natural language
processing and DNA sequence analysis [35]. Although
n-gram feature provides the effective representation of mal-
ware, the exponential growth of feature dimension suffers
from time complexity [38]. The total number of unique byte
n-grams becomes 28n. The experimental analysis showed that
the appropriate value of nwas 2 for opcode features [13], [23].

FIGURE 2. Example of 2-gram matrix.

TABLE 3. List of the 32 most frequent opcodes.

The dimension reduction method of malware features was
adapted by finding out the frequent relevant opcodes from
malware and benign files [13], [39]. Table 3 lists the selected
opcodes along with frequency rate. The number of selected
opcodes is 32 (i.e., 25), so a 2-gram training feature is pre-
sented with a 32× 32 matrix.
Gram matrix can solve the drawback that the feature vec-

tors of n-gram have different lengths according to file size. It
is also represented as a sparse vector which has the benefit of
high-dimensional features [40]. Figure 2 is the example of a
gram matrix of a binary code.

2) WEM (WINDOW ENTROPY MAP) FEATURE
Entropy has been used to detect malware by measuring the
degree of uncertainty from binary files [8], [11], [30]. The
maximum entropy appears when the probabilities for all sym-
bols are the same. On the contrary, if the bytes occur with high
probabilities, the entropy value will be smaller. Considering
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a binary file as hexadecimal time series data, the frequency
rate of each byte is mapped to the entropy value measuring
the degree of uncertainty. WEM generates a two-dimensional
entropy feature from malware.

A byte entropy histogram is computed through sliding a
byte window of size ω over hexadecimal sequences with
a step size of τ bytes. Let T be the total number of slid-
ing windows in M. Then, M is represented by M = <

W1,W2, · · · ,WT >, where Wk is the k th window. The
bin entropy is computed by the Shannon entropy, H(M) =
[hk,j]T×256, where hk,j is the jth bin entropy of Wk . The
window entropy map B = [bl,j]L×256 is presented through
level-wise variation of H(M) and L becomes a quantizing
resolution on entropy values. For Wk , the level index l of
bl,j is based on the accumulation ck−1,j of the jth bin, where
the entropy accumulation is C = [ck,j]T×256 and ck,j is the
sum of the jth bin entropy from W1,W2, · · · ,Wk−1. The bin
entropy hk,j is augmented to bl,j after index l is computed by
quantizing ck,j with the predefined1. Algorithm 1 is a pseudo
code for building the WEM from H(M).

Algorithm 1 Building the WEM Feature of H(M)
1: function BuildWEM(H,T ,L,1) F T ,L, and 1 are

constants.
2: Declare C = [ck,j]T×256 and B = [bl,j]L×256
3: ck,j = 0 for k = 1, · · · ,T and j = 1, · · · , 256
4: bl,j = 0 for l = 1, · · · ,L and j = 1, · · · , 256
5: c1,j = h1,j for j = 1, · · · ,T F Initialization
6: for k = 2, · · · ,T do F Accumulation
7: for j = 1, · · · , 256 do
8: ck,j = ck−1,j + hk,j
9: end for

10: end for
11: for k = 1, · · · ,T do F Construct WEM
12: for j = 1, · · · , 256 do
13: l = min(L, ceil( ck,j

1
))

14: bl,j = bl,j + hk,j
15: end for
16: end for
17: return B
18: end function

When L = 1, WEM is similar to the byte entropy fea-
ture [11] because B = [bj]256 is the aggregation of the jth bin
entropy over M. Other methods studied use feature vectors
that result in changes in entropy or generating hash values in
sliding windows of malware and benign [12], [41]. ButWEM
is focused on the bin entropy which takes advantage of a fixed
feature map and level-wise variation regardless of different
file size. In addition, as L increases, the quantization level
captures the scatter relation of the jth among sliding windows.
Figure 3 shows the 2-dimensional grayscale images

(32 × 16) of WEM for selected malware and benign (ω =
1024, τ = 256, L = 2, 1 = 0.2). Figure 3 (a) to (d) are
the examples of malware, such as Downloader, Packed, Tro-
jware, andRansomware, while (e) are the examples of benign.

FIGURE 3. Examples of WEMs.

The variants of Downloaders, Trojware, or Ransomware are
shown with their own patterns are shown with their own
pattern, so the visualization of WEM can be used to identify
the members within the same malware family. The examples
of Packed malware are liable to change but have their own
patterns. The examples of benign also have their own patterns
that slightly differ among them.

3) API FEATURES
The analysis of API call sequences provides the information
on how malware codes will run or what they will do. Mal-
ware or benign are classified by the simple statistics of the
frequency of the called APIs. The static analysis is applied
to extract API names from PE section and constitute API
sequences. The extracted APIs are included within Microsoft
Windows DLLs (Dynamic-Link Libraries) or user defined
DLLs. API sequences follow the order in which API func-
tions appear in disassembly code.

From the collected database, the number of unique APIs is
147,200: 49,158 for malware and 121,023 for benign. The
number of APIs occurring in both malware and benign is
18,056. The API feature of a single binary file must have
18,056 dimensions if all API functions are included.

The frequency of an API is computed by checking whether
the feature is selected or not. An API is selected as a final
feature if the entropy of the frequency rate is more than
6× 10−6. Therefore, the number of selected APIs is 122 for
our database. Vyas et al. selected 92 APIs extracted from
PE section of 1,100 malicious files (i.e., Virus, Backdoor,
Worm, and Trojan) and 2,600 benign files [42]. Inforsec
Institute reported 131 APIs that were commonly encountered
by malware analysis [43]. Table 4 shows the list of APIs
frequently used in malware. From three studies, we choose
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TABLE 4. Comparison of frequent APIs.

TABLE 5. Categorical comparison of frequent API functions.

the 195 unique APIs as the final API feature. The selected
APIs are analyzed with the API categories as in Table 5.

In the collected dataset of 122,963 files, the number of
distinct DLLs is 4,244, consisting of 1,276 malware files and
3,415 benign files. Thus, the number of DLLs imported for
malware is less than that of the benign. The high dimension
of API or DLL features is reduced by selecting the features
which are frequently used in malware.

A dynamic link library (DLL) in Microsoft Windows
operating system calls functions by importing other DLL
files. For example, malicious codes utilize some functions in
kernel32.dll that handles memory, process, and thread.
Window executable files are not necessary to call functions
in ntdll.dll directly because kernel32.dll imports
ntdll.dll. Malicious codes often include DLL func-
tions implemented by developers. However, DLL files imple-
mented by developers are excluded because common APIs
provided by system software are only considered to detect
malware.

Table 6 shows the top 20 DLLs with more than 0.2%
in frequency. Based on the selected DLLs whose fre-
quency is above 0.3%, we transform their functions defined
within DLLs into feature vectors. For the collected database,
the number of DLLs is 2,054 and the number of distinct DLL
APIs is 3,842. Therefore, the dimension of DLL API features
consists of 3,842 DLL APIs.

C. EVALUATION METHOD
Our malware detection system was evaluated with a confu-
sion matrix as shown in Table 7. Accuracy and error rates are
used to measure the performance of malware detection sys-
tems. However, they cannot give an overview of the range of
performance with varying thresholds. When a single thresh-
old divides test examples into malware or benign class, it is
not obvious how the right threshold value should be chosen.
Therefore, threshold-free measures, such as Receiver Operat-
ing Characteristic (ROC) and Precision Recall Curve (PRC)

plots [44], are selected when comparing the generalization
performance of malware detection system.

accuracy =
TP+ TN

TP+ FN + FP+ TN

precision =
TP

TP+ FP

recall =
TP

TP+ FN

ROC plots reveal a tradeoff between specificity and sen-
sitivity while PRC plots present a tradeoff between preci-
sion and recall [44], [45]. Recall is the fraction of correctly
predicted examples among malware predictions. An integral
score of the area under the ROC (AUC-ROC) represents the
performance of a classification model. Similarly, AUC-PRC
becomes a useful metric for comparing a classifier along with
precision and recall by shifting the decision threshold of the
classifier.

Class imbalance phenomenon appears in the collected
dataset whose ratio of benign to malware class is about 1 to 5.
For class imbalance problems, an estimate of the number of
wrong predictions among the positively classified instances
is of great importance [46]. The investigation of AUC-ROC
in an imbalance problem can be misleading in connection
with the reliability of malware detection analysis, owing to
a different interpretation on FPR [45]. From our point of
view, PRC is more appropriate than ROC because PRC plots
reflect the fraction of correctly classified examples among
ones predicted as malware. Therefore, the PRC analysis is
chosen as a direct and intuitive measure for our malware
detection system.

IV. EXPERIMENTS
The feature extraction methods and tree-based ensem-
ble models are implemented with Python and operate as
pipelined modules. Tree-based ensemble models are more
flexible, and less data-sensitive, than a single tree model [47].
The chosen ensemble algorithms are random forest [48],
AdaBoost [49], XGBoost [50], extra trees [51], and rotation
forest [52]. The decision tree algorithm is chosen as a base
classifier.

We consider the feature extraction an embarrassingly
parallel problem in which each feature type can be pro-
cessed independently for every file. Our malware detec-
tion system embeds the tree-based ensemble models of the
scikit-learn framework [53] and the modules of the
mentioned training features. The learnedmodels are analyzed
with performance measures such as accuracy, precision and
recall, and AUC-PRC.

A. DATA PREPARATION
A parallel processing platform based on Hadoop Distributed
File System (HDFS) consists of 10 computers. These com-
puters are low cost and uses less memory than the latest high-
end personal computers. All the nodes run on Linux Mint
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TABLE 6. List of the 20 most frequent DLLs.

TABLE 7. Confusion matrix.

18.2 Sonya. The master node works as a slave node at the
same time. The tested feature vectors are as follows:

1) 2-gram is a sequence vector in hexadecimal.
2) 2-gramM is a gram matrix made of frequent opcodes

from disassembly files.
3) API-DLL is prepared from frequent Windows APIs

within imported DLL files.
4) API is made up of frequent Windows APIs in assem-

bled codes.
5) WEM is a two-dimensional matrix with binary entropy

values in a binary file (L = 2).
Figure 4 compares the number of distinct APIs along

with the number of files. The number of APIs (ALL-API)
increases rapidly up to 20,000 files, and the number of APIs
is about 14,000. Later, as the number of files increases,
the number of APIs grows slowly. From the collected dataset,
the dimension size of ALL-API is approximately 18,056.
This high dimensionality is reduced by the frequency anal-
ysis, so the API-DLL dimension is 3,842 and the API dimen-
sion is 195. If the number of files exceeds 100,000, the change
in feature dimension for the API and API-DLLs is much
smaller than for ALL-API. This result provides the insight
on how many malware and benign files are collected for a
malware detection system.

Figure 5 compares the processing time with the number
of workers on a log scale for the y-axis. Processing time is
reduced quickly by 4 workers. However, there is little change
in the processing time hereafter. The processing time ofWEM
requiring a lot of entropy calculations is the longest, and the
preparation time of 2-gramM, API-DLL, and API is about
4.4 times faster. We observed that the processing time was not

FIGURE 4. Comparison of the number of files versus feature dimension.

FIGURE 5. Compare of processing time.

improvedwithmore than 6working nodes. It is the processing
latency that causes communication overhead in the cluster.

Table 8 compares feature extraction time as the number
of cluster nodes increases. The 2-gram is represented by
61,952 dimensions but its feature vector is highly sparse. The
proposed feature analysis decreases the dimensionality of
2-gramM, 2-gramAPI, API-DLL, and API except WEM.
While bothWEMandAPI have about 500 or less dimensions,
API-DLL has about 3,800 dimensions.
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TABLE 8. Time comparison for feature extraction.

FIGURE 6. Comparison of space complexity.

Figure 6 compares the space complexity with the number
of files. The storage size grows linearly as the number of files
increases. The 2-gram feature requires the highest storage
amount while the API feature needs the smallest amount.

B. PREDICTION ANALYSIS BY PROXIMITY MEASURE
After learning the ensemble model for the training dataset,
we compare the similarity or similarity by calculating the
proximity between two instances [54], [55]. The proximity
measure of two instances is the ratio of the number of iden-
tical terminal nodes to the total number of terminal nodes
within the ensemble. As the proximity value closes to 1,
their classes are predicted at the same terminal node and the
classification of the trained model is similar. However, if it is
close to zero, the terminal nodes reached by the two instances
are different.

Proximity measurements depend on the depth and number
of trees in the ensemble. Proximity is used to analyze the
results of tree-based ensembles inwhich instances are trained,
even if the instance dimensions are larger [55]. The proximity
matrix can be visualized by projecting each instance into
d-dimensional space where the proximity value between any
pair of instances is considered their distance. Proximity for
the entire training instance constitutes 2-dimensional matrix,
and Multidimensional Scaling (MDS) visualizes the dataset
by orthogonally transforming the proximity matrix onto two
eigenvectors with the highest eigenvalues [56].

Figure 7 shows an example of a proximity plot for the
WEM feature. The plot was generated by using the MDS
implementation of scikit-learn. The dataset consists
of 2,000 instances per class and the proximity value is pro-
jected onto 2-dimensional space after a random forest model.

FIGURE 7. Proximity plot for the prepared dataset presented by WEM.

Benign instances have a distribution in which clusters are
clearly concentrated in the center region. Malware instances
appear in a distribution that surrounds benign clusters, with
some instances intermingled. It is appropriate to set a high
tree depth for decision trees for benign instance classification
in intermingled regions. In general, higher tree depths in deci-
sion trees are more likely to result in overfitting. Therefore,
the ensemble learning model is more suitable than the single
decision tree model for this malware detection problem.

C. PERFORMANCE COMPARISON
The experiments were conducted with 10 separate 5-fold
cross-validations. For each validation, we randomly split the
data into five equally sized sets; four sets were for training
and the other set was held out for testing. Each dataset was
tested 50 times and evaluated on average.

The hyperparameters of decision tree model were
monitored with the pre-selected 40,000 training exam-
ples(20,000 per class). In learning a decision tree, themeasure
to split a node is the Shannon entropy, the maximum depth
of a decision tree is 15, the minimum number of instances
to split at an internal node is 2, and the minimum number of
instances at a terminal node is 2. The number of decision trees
is 50 for learning ensemble models.

Table 9 compares the performance of the selected fea-
tures in terms of dimension, accuracy, and training time.
The ensemble models are higher than the decision tree in
training and testing accuracy. We rank the performance of
the ensemble models against feature types and calculate the
average rank. This compares the functional efficiency and
robustness among malware features.

Table 9 and Figure 8 show the training and test perfor-
mance comparison. The ensemble model outperforms the
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FIGURE 8. Comparison of ensemble algorithms and features.

TABLE 9. Accuracy comparison of tree-based ensemble per feature.

decision tree. In comparison of learning accuracy, AdaBoost
is the best compared to other ensembles, but the extra trees
is the lowest. AdaBoost has a training accuracy of 0.985 and
the extra trees of 0.939. The learning evaluation of XGBoost
is 0.978, the second highest after AdaBoost. The next higher
order is rotation forest, random forest, decision tree, and extra
trees.

In the test performance comparison, XGBoost and random
forest show the classification rate of more than 0.925. Except
for rotation forest, the test performance of all ensemble mod-
els is over 0.92. The accuracy of rotation forest is 0.9, which
is similar to that of decision tree.

WEM is the best in the performance comparison among
feature types. Next, it shows the low performance with API-
DLL, 2-gram, 2-gramM, and API features. However, WEM
shows the best results in training and test performance when
compared to other features. API and API-DLL, which con-
sist of functions that are frequently used in malware, are
represented by lower dimensional vectors than 2-grams, but

do not show much difference in time and performance. The
test performance of the WEM of the ensemble model is
more than 0.967. In particular, XGBoost is highest with
0.97 classification.

Our results suggest that XGBoost is superior to all algo-
rithms. AdaBoost performs best in the experiment of API
feature, and both the decision tree and XGBoost are almost
equal for API-DLL. In the performance analysis, the differ-
ence between training data and training data based on feature
extraction is not significant. Both 2-gram andWEMare better
than 2-gramM, API, and API-DLL. However, the fastest
ensemble algorithm is extra trees followed by random forest,
XGBoost, AdaBoost, and rotation forest in order.

In comparison of training time, the training time of rota-
tion forest runs longest than other ensembles due to PCA
(Principle Component Analysis) computation. It is analyzed
that the training time of the ensemble model is appro-
priate, but it requires tens times more training time than
decision tree. The PCA compuation for 2-gram with more
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FIGURE 9. Performance comparison with AUC-PRC.

than 60,000 dimensions was not possible, so we selected
4,201 attributes through the random forest feature selection.
Therefore, the 2-gram training time (176.73 sec) of rotation
tree is not a proper comparison with the training time of other
ensembles. In other words, when training high-dimensional

features in rotation tree, it is difficult to transform
them by PCA.

Table 10 and Figure 9 compare precision, recall, and
AUC-PRC score to assess the effect of malware fea-
tures versus ensemble models. The AUC-PRC scores differ
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TABLE 10. AUC-PRC comparison of tree-based ensembles.

significantly between decision tree and ensemble algorithm.
The decision tree show AUC-PRC scores higher than about
0.9 for API-DLL andAPI features, but low forWEM, 2-gram,
and 2-gramM. However, the AUC-PRC score of other ensem-
bles is a higher AUC-PRC score than the decision tree for all
feature types.

The ensemble algorithms in Figure 9 do not show much
difference according to the type of malware feature. In most
ensemble algorithms, WEM’s AUC-PRC scores higher than
others. Therefore, it is analyzed that AUC-PRC of WEM is
more suitable for classification than other types of malware
feature. The ensemble model in API-DLL and API has lower
precision than recall. On the other hand, the experimental
results of the ensemble model in 2-gram, 2-gramM, and
WEM show that the recall is lower than the precision. The
decision tree has similar precision in all malware features.
From the experimental results, the application of the ensem-
ble algorithm for a malware detection system requires a
precision-recall tradeoff analysis.

D. COMPARISON WITH OTHER WORKS
It is difficult to compare our result with the previous stud-
ies because there is not enough information about the used
datasets, feature information and machine learning algo-
rithms. Also, most experimental results are not comparable
because PRC-based analysis is not presented, and some stud-
ies are related to in-depth learning approaches and ensemble
applications based on both static and dynamic features.

The proposed API and WEM features are compared to the
previous dimension reduction studies and the entropy repre-
sentation in association with malware detection. The train-
ing data consists of 40,000 instances, with 20,000 instances
selected for each class. The comparison algorithms are SVM,
deep neural network (DNN), and random forest of the
relevant work.

The API reduction method is compared to both Rushabh
et al. [42] and Infosec [43] ones that are referred in Table 4.
SVM chose RBF kernel (γ = 5, C = 10.0), and random
forest was set to the parameter adopted in Subsection IV-C.
In Table 11, the proposed API feature shows high perfor-
mance regardless of the learning algorithms. Random forest

TABLE 11. Comparison of reduced API features.

TABLE 12. Comparison of byte entropy and WEM.

can learn hundreds of times faster than SVM and exhibit
high performance. However, it is difficult to analyze API
dimension reductionmethods for efficient malware detection,
because the time of data collection and the dimension of
feature vectors are very different.

The proposed WEM feature is compared with the byte
entropy [11], and the learning algorithm is SVM, DNN, and
random forest. The DNN architecture consists of 4 layers
(256 × 256 × 128 × 2) including an input layer. The DNN
structure was modified from the architecture that tested the
byte entropy feature. The dropout regularization was applied
between layer 2 and 3 by dropping 10% of connections.
The activation function of the hidden layer units is PReLU
(parametric rectified linear unit) and that of the output units
is sigmoid. The learning algorithm is Adam with the learning
rate of 0.001 and the total of 3,000 epochs. Table 12 is the
performance comparison between byte entropy and WEM.
WEM has 512 dimensions and byte entropy expresses the
characteristics of malicious code in 256 dimensions. The
WEM feature is superior to the byte entropy feature in all
learning algorithms. However, SVM and DNN require much
higher training time than random forest. The experimental
result of SVM is expected to be overfitted in WEM and byte
entropy, so additional experiments are required according to
various parameter settings. The learning time of SVM and
DNN is expected to increase in proportion to the number of
learning data.

The advantage of our approach is that the use of purely
static features allows rapid analysis for a malware detec-
tion system in terms of feature reduction, fast computa-
tion and generalization performance. Therefore, the proposed
approach will be very applicable and effective when applying
to EDR (Endpoint Detection & Response) systems.
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V. CONCLUSION
This paper analyzed malware features for static analysis and
compares tree-based ensemble algorithms. A modified mal-
ware feature representation has been proposed to minimize
the drawbacks such as variable length, high-dimensional rep-
resentation and high storage usage in commonly used mal-
ware feature representations. The proposed malware features
showed better generalization of ensemble algorithms in terms
of training time and performance than the original training
features. The modified malware features take advantage of
frequently used functions, expertise knowledge, or entropy
discretization. Therefore, the malware features do not require
fixed length selection or padding that appears when training
data is prepared in a manner appropriate to feature vectoriza-
tion for machine learning.

The experimental analysis indicates that the tree-based
ensemble model is effective and efficient for malware classi-
fication in relation to training time and generalization perfor-
mance. In addition, our approach can quickly analyze a large
amount of malware in terms of low-dimensional features
and fast learning. The low-dimensional feature representation
usingWEM,API, and API-DLL can be an alternative to guar-
antee high generalization performance when static analysis
is applied for malware detection. Further studies that provide
the evidence of ensemble model prediction and the learning
algorithm for combined malware features are required.
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