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ABSTRACT Visual localization is an accurate and low-cost indoor localization solution. A bottleneck for
visual localization is the computation efficiency of continuous image searching and matching. In this paper,
an indoor visual localization method is proposed to realize continuous and accurate indoor localization based
on image matching. This method uses smartphones to collect multi-sensor data, including video frames and
inertial readings. To improve the computation efficiency of the proposed visual localization method, a spatial
model is developed to optimize the spatial organization of geo-tagged images in a dataset. Several spatial
constraint-based image searching strategies are also designed to further reduce the computation time. Based
on the spatial model and spatial constraint-based strategies, a visual localization algorithm is proposed. The
experimental results show that the localization errors of the image querying, continuous offline localization
and online localization of this method are approximately 0.4 m, 0.7 m and 0.9 m, respectively. This method
can achieve an accuracy of 1.3 m, even under a random camera opening condition. The average computation
time (i.e.. the average time needed to provide a location estimation result) is approximately 0.59 s. The
results indicate that the proposed method can realize efficient and continuous indoor localization with high
localization accuracy.

INDEX TERMS Indoor positioning, visual localization, image matching, spatial model.

I. INTRODUCTION
The localization of people in large indoor environments,
such as shopping malls, office buildings or large parking
garages, has become a common issue for many industry
and commercial applications. Due to the shielding effect
caused by obstacles (e.g., buildings), it is difficult to obtain
accurate localization results from GPS in indoor spaces.
During the past decade, various indoor localization tech-
nologies, such as Wi-Fi [1], Bluetooth [2], ultrasonic [3],
radio frequency (RFID) [4], ultra-wideband (UWB) [5], and
magnetic fields [6], have been developed. Currently, some

The associate editor coordinating the review of this manuscript and
approving it for publication was Ghufran Ahmed.

technologies, for example, UWB or Bluetooth, can achieve
good localization performance in indoor spaces. However,
the requirement of extra devices and infrastructures limits
the large-scale application of these systems. Among various
indoor localization technologies, visual localization is an
accurate and low-cost indoor localization solution. It uses
a camera (e.g., from a smartphone) to collect video frames
from the environment. The collected video frames can either
be used to achieve a relative localization based on an SFM
(structure from motion) scheme [7] or be compared with
geo-tagged data in a database to find the best matching
result [8]. Thus, visual localization systems can be easily
deployed in various indoor or outdoor environments and do
not rely on extra infrastructures or devices.

69800 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-2447-1408
https://orcid.org/0000-0002-2438-6046
https://orcid.org/0000-0003-2183-8366
https://orcid.org/0000-0003-1651-878X


X. Zhang et al.: Continuous Indoor Visual Localization Using a Spatial Model and Constraint

Image matching-based location is mostly used in visual
place recognition. The aim of visual place recognition is to
decide whether or not an image of a place has already been
seen by a human or robot [9]. Usually, an image will be
visually compared with database images (with known place
names or locations) to find the best matching result. Image
matching methods use image feature descriptors, such as
SIFT, SURF or Gist [10]–[12], to visually describe the scene
of the image. Different methods, such as machine learning
or visual words [13], measure the likelihood or confidence
that the current visual input matches database images and
then find the best matching result. However, these studies
mainly focus on the outdoor environment and large-scale
place recognition. It has not been considered whether the
required computation time for visual place recognition can
support continuous localization or navigation. Some stud-
ies include three-dimensional information from LIDAR or
R-GBD [14], [15] cameras to improve the accuracy of place
recognition. However, this will also increase the device
requirements and costs of a localization system.

For indoor environments, some studies [16]–[18] used
smartphone cameras to detect visual features from the
environment and match the detected data with previously
geo-tagged features to realize indoor localization. For exam-
ple, in [19], an indoor positioning system was designed that
uses common static objects, e.g., doors or windows, to locate
users. A smartphone-based visual positioning method was
also proposed in [20]. This method uses a mobile mapping
system to generate a high-precision 3D photorealistic map of
an indoor space and then matches the smartphone image with
the generated map to obtain the position of the smartphone.
These methods perform well in indoor environments with
high location accuracy. However, the localization results of
some studies are separate query locations and not contin-
uous trajectories. In [21], an image-based indoor trajectory
estimation method was proposed, which recovered the pose
of the camera from the 2D-3D correspondences between the
2D image positions and the 3D points of the scenemodel. The
3D scene model was previously constructed by using a SFM
pipeline. The computation time is another bottleneck of visual
feature matching-based methods. Generally, the localization
accuracy of visual feature (e.g., geo-tagged image) matching
can be improved if the spatial density of the visual features
increases. The reason for this improvement is that the location
error can be corrected more frequently if there are more
geo-tagged visual features. However, a higher spatial density
of visual features also means that the required computation
time for feature matching will greatly increase. It is difficult
to balance the relation between the spatial density of visual
features and localization accuracy.

As awell-known imaging technology, the SFMmethod can
be used to recover the relative camera pose and 3D structure
from a set of camera images. Previous studies have utilized
the SFM method to recover the geometry of trajectories in
indoor spaces [22], [23]. An advantage of the SFMmethod is
that the heading estimation error of the SFM is significantly

smaller than that of the PDR-based estimation (from the gyro-
scope). However, the location error of the SFM-basedmethod
will accumulate continuously as the walking time increases.
In addition, the initial location of a trajectory is still required
for an SFM-based method, which limits its application in
wayfinding and navigation.

The present study proposes a visual-based method that
can realize continuous indoor localization. We first collected
a geo-tagged image dataset of an indoor environment. The
spatial density of the images in this dataset is relatively high
(approximately 2 m). To reduce the required computation
time of imagematching, a spatial model of geo-tagged images
is proposed. This model optimizes the spatial organization of
geo-tagged image data considering the relationship between
image similarity and spatial distance. A visual localization
algorithm is also developed in this study. Several spatial
constraint-based visual search strategies are defined to further
increase the efficiency of the localization algorithm. To real-
ize continuous indoor localization, an SFM-based method
is employed in this algorithm. The image matching and
SFM location results are fused to increase the accuracy and
frequency of the indoor localization algorithm. The relation-
ship between the spatial density of geo-tagged images and
localization accuracy is also studied in this work.

The paper is structured as follows Section II reviews the
related work. Section III presents the spatial model of geo-
tagged images and the visual localization algorithm. The
experimental results and discussion are given inSections IV
and, respectively. Section VI concludes this wor.

II. RELATED WORK
Visual information is valuable for various positioning sys-
tems because it contains rich environmental information
around a camera and does not rely on any additional infras-
tructure. In outdoor environments, previous studies have
employed an image matching method to locate moving
objects or query images [24]–[29]. For example, in [24],
an image matching-based localization system was designed
that provides satisfactory localization performance with low
computational complexity. This system uses a key frame
selection method and a simple tree scheme to achieve fast
image search. In [25], a geo-registration approach that can
estimate and geo-tag the location of query images (e.g.,
images of famous landmarks) by matching the images with
geo-located aerial images was proposed. The localization
method presented in [26] can topologically localize a vehicle
on a previously travelled road by using image feature match-
ing. There are also studies that have localized a vehicle or
device by estimating camera pose from images [27]–[29].
For example, the method presented in [28] can localize
and track mobile devices in urban outdoor environments.
This method estimates the absolute camera orientation from
straight line segments and the camera translation bymatching
a semantic segmentation of an image with a city map model.
In [29], a deep learning architecture was developed to achieve
image-based localization of a camera or an autonomous
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system. This approach combines a CNN with LSTM units
for camera pose regression, which leads to better localization
performance.

In indoor environments, visual feature matching has been
used in many indoor localization methods [30]–[37]. These
studies mainly used cameras to collect query images in indoor
environments and match them with a previously built image
database. The location of the ‘‘closest’’ image is treated as
the localization result of a query image. Some studies used
a trained CNN to match the query images taken by the
cameras to estimate the location of mobile devices [30]–[33].
In [34], an alternative approach was proposed that lever-
ages environmental reference objects, for example, store
logos, for indoor localization. An image matching algorithm
was designed to automatically identify the chosen reference
objects in photographs. In [35], a sparse 2.5D georefer-
enced image database was generated using an ambulatory
backpack-mounted system. The query images can bematched
against the image database to retrieve the best-matching
database image for indoor localization. However, most of
these methods are not designed for continuous indoor local-
ization. In addition, whether or not the required computation
time can support continuous indoor localization and navi-
gation has not been considered yet. Efforts have also been
devoted to improving the efficiency of visual localization.
In [8], a sorting hat approach was proposed to filter out uncor-
related feature pairs of images to improve the efficiency of
image matching. The improved RANSAC method proposed
in [36] can reduce the iterations and running time for indoor
visual-based localization. However, it remains unclear how
to improve the efficiency of high-accuracy continuous indoor
visual localization.

Considering the required computation time, it is difficult
to realize continuous indoor localization using the image
matching method alone. A way to increase the frequency of
visual localization is to include a pedestrian dead reckon-
ing (PDR) method in the system. PDR techniques take advan-
tage of the measurements from a micro-electro-mechanical
system (MEMS) to calculate one’s current location by adding
the estimated displacement to the previously determined
location. However, due to the drift noise of the MEMS,
the location error accumulates as time goes on. Numerous
studies have been presented to reduce the accumulative error
of PDR. For example, in [37], several algorithms, includ-
ing robust step detection algorithms, adaptive stride length
estimation algorithms and heading estimation algorithms,
were presented to reduce the sensor drift error of PDR.
The system proposed in [38] utilized modified Kalman fil-
tering to fuse acceleration, angular rate and magnetic field
sensor data to provide a long-term stable orientation solu-
tion. This system also uses zero velocity updating and body
movement monitoring to reduce localization error. There
also have been studies that use inertial information to detect
pedestrian activity [39], [40]. The detected activities are
used as landmarks to reduce the accumulative error of PDR.
Other studies have employed different information sources,

e.g., Bluetooth, to correct the error of PDR [41], [42]. How-
ever, the requirement of extra devices also increases the dif-
ficulty of system deployment.

The SFM method is another way to realize continuous
visual localization. This method is often used to recover the
relative camera pose and 3D structure from a set of cam-
era images. In [43], a structure-from-motion framework was
designed to handle ‘‘generalized’’ cameras and works at an
unprecedented scale by exploiting a good relative pose along
vehicle paths. The SFMmethod has been used in photogram-
metric measurements to solve for the camera pose and scene
geometry simultaneously [44], [45]. In [46], iMoon built a
3D model of an indoor environment by using SFM technol-
ogy that supports image-based localization. Reference [23]
employed an SFMmethod to estimate the trajectory of amov-
ing camera in an indoor environment. However, a problem
is that the initial location of a camera should be given as an
input for SFM-based trajectory recovery. In addition, the error
of heading estimation accumulates as time passes, which
significantly affects the accuracy of indoor localization.

In summary, visual information has the potential to
improve the performance of indoor localization. However,
there are still some problems with image-based indoor local-
ization, such as the accumulative error, computation time,
and continuity of estimated trajectory. In this study, a visual
localization method is proposed to realize continuous indoor
localization. A spatial constraint-based localization algorithm
is designed based on the integration of image matching and
the SFM method. A spatial model of geo-tagged images is
also developed in this study and can significantly reduce the
computation time of the proposed algorithm.

III. METHODOLOGY
Figure 1 shows a block diagram of the proposed method.
This method uses the built-in sensors of a smartphone to
collect sensor data, including video frames and inertial read-
ings. During the offline phase, we use a multi-constrained
image matching method to extract and describe the visual
features from collected geo-tagged images. A spatial model
is developed to optimize the spatial organization of the
geo-tagged images. During the online phase, several spa-
tial constraint-based image search strategies are designed to
increase the efficiency of image matching. A visual local-
ization algorithm is proposed to realize continuous indoor
localization by integrating both image matching and the SFM
method.

A. MULTI-CONSTRAINED IMAGE MATCHING
The basic idea of the visual localization method is to match a
sequence of video frames (collected by a smartphone camera)
to the geo-tagged images in an indoor environment. The
location of a matched geo-tagged image will be used to
provide a localization result for a query image. In this study,
a multi-constrained image matching method is used to find
the correspondence between a query image and a geo-tagged
image on the pixel scale. The best fitting image from the

69802 VOLUME 8, 2020



X. Zhang et al.: Continuous Indoor Visual Localization Using a Spatial Model and Constraint

FIGURE 1. Block diagram of the proposed method.

FIGURE 2. Matching result of two images. (a) matching result of the SIFT method; (b) matching result of the improved method.

geo-tagged database will be selected as the matching result
of a query image. This approach uses a scale-invariant fea-
ture transform (SIFT) [47] algorithm to detect and describe
local features from images, which are important for establish-
ing the correspondence among pixels. The SIFT algorithm
applies the Gaussian differential function shown below to
select key locations at maxima and minima in scale space:

g (x) =
1

√
2πσ

e−x
2/2σ 2 (1)

where σ is the standard deviation of the normal distribution,
which is equal to

√
2, and x is the fuzzy radius, which refers

to the distance from the template element to the centre of the
template. Each point is used to generate a feature vector that
describes the local image region sampled relative to its scale-
space coordinate frame. The features achieve partial invari-
ance to local variations, such as affine or 3D projections,
by blurring image gradient locations.

As shown in Figure 2 (a), during image matching, many
incorrectly matched keypoint pairs may exist if using only the
SIFT algorithm. To improve the accuracy of image matching,
two different constraints are employed to reduce the incor-
rectly matched keypoint pairs:

• Symmetry constrain. When a keypoint from image a has
been matched with multiple keypoints from image b,
the redundant matches should be removed from the
results. In this case, the two images are matched to each
other two times: (1) from a to b and (2) from b to a. The
common parts of the two matchesare used as the final
matching result.

• Ratio constraint. For a keypoint from image a, it best
matching keypoint from image b can be calculated as the
Euclidean distance d between feature vectors of the two
keypoints. A matched keypoint pair is not treated as a
successful matchwhen the ratio of the smallest distance
d1 to the second smallest distance d2 is higher than a
threshol r.

Based on these two constraints, a RANSAC algorithm [48]
is employed to further improve the matching result. It can cal-
culate mathematical model parameters from data and obtain
effective sample data according to a set of sample data con-
taining abnormal data. In this study, this algorithm randomly
extracts four sample data points from the matching result
of keypoint pairs and calculates a homography matrix. The
outliers can be removed by iterating the RANSAC algorithm
until the maximum number of inliers of the homography
matrix has been obtained. As shown in Figure 2 (b), most of
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FIGURE 3. Subdivision of an indoor space for image matching.

the incorrectly matched keypoint pairs have been removed by
using the RANSAC algorithm and the two constraints.

B. SPATIAL MODEL OF INDOOR GEO-TAGGED IMAGES
For a large indoor environment, image matching-based visual
localization is quite time-consuming because a query image
should be matched with each image in the environment to
find the best fitting result. To improve the efficiency of visual
localization, a spatial model of geo-tagged images is pro-
posed in this study. In this model, a whole indoor space is
divided into many sub-spaces. For example, a room or a cor-
ridor can be treated as a sub-space. A sub-space may contain
a series of geo-tagged images that fall into its spatial extent.
When searching for the spatial location of a query image,
this model will first estimate the possible sub-space that may
contain the query image and then match the query image with
the geo-tagged images belonging to these sub-spaces (but not
all the geo-tagged images in the whole space). For exam-
ple, as shown in Figure 3, the whole space consists of four
sub-spaces. Each sub-space includes a series of geo-tagged
images (black dots). If a query image (red triangle) is located
in sub-space B, the geo-tagged images from sub-space B will
be treated as the matching candidates of the query image.

By subdividing a whole indoor space, spatial indexing can
be generated for geo-tagged images. As shown in Figure 4,
an indoor space consists of a series of sub-spaces with corre-
sponding sub-space IDs. Each sub-space is associated with a
list of geo-tagged image IDs that fall into its spatial extent.
Each geo-tagged image can only belong to one sub-space.
The attributes of a geo-tagged image include its coordinates,
direction, visual features and sub-space ID.

In the spatial model, a graph G(S, E) is defined to represent
the spatial adjacency relationship of sub-spaces in an indoor
environment. G(S, E) includes a node set S along with an
edge set E. Each node in S refers to a sub-space, and an
edge between two nodes represents that the two nodes are
spatially adjacent. As shown in Figure 5 (a), the whole space
consists of five different sub-spaces. The spatial adjacency
relationship of these sub-spaces can be represented as the
graph in Figure 5 (b).

The attribute of a node in G(S, E) includes the sub-space
ID, its neighbouring nodes, and the transfer image IDs. Here,
transfer images represent the images located at the border of
a sub-space. From one node to its neighbouring node, at least
one transfer image will be passed through. The aim of defin-
ing the transfer image is to accurately determine the current
sub-space of a moving smartphone. The current sub-space
will not be changed to its neighbours until the current query
image (from the smartphone) has been matched with a trans-
fer image of the sub-space. For example, as shown in Figure 6,
sub-space A and B are two spatially adjacent nodes. Each
sub-space contains three transfer images located on its bor-
der. When the current image (from the smartphone camera)
has been successfully matched with a transfer image from
sub-space A, the following camera image will be matched
with all geo-tagged images from sub-space A and B. The
transformation (from A to B) will not be conducted until the
current image has been matched with a non-transfer image
from sub-space B. In this way, the determination of sub-space
transformation can be more accuracy for indoor localization.

Spatial subdivision is a key issue in spatial modelling
of geo-tagged images. Typically, a room or a corridor can
be treated as a sub-space. However, for large buildings
(e.g., shopping malls, museums or supermarkets), a contin-
uous open space should also be divided into sub-spaces to
reduce the time required for image searching and matching.
Generally, if the sub-space ID of a query image is known,
the efficiency of image matching will be increased when the
spatial size of the sub-space is smaller. However, considering
the localization error, it will be difficult to accurately deter-
mine the sub-space of a query image if the sub-spaces is too
small. Therefore, it is important to determine a suitable spatial
size for subdivision. A basic principle of spatial subdivision is
to increase the visual similarity of geo-tagged images within
the same sub-spaces. In this study, we tested the relationship
between image similarity and spatial distance. The similarity
of two images is defined as the number of matched feature
point pairs:

VS (i, j) =
{
N (i, j) if N (i, j) > N0
0 if N (i, j) < N0

(2)

where VS (i, j) is the image similarity between images i and j,
N (i, j) is the number of matched feature point pairs between
images i and j, and N0 is a threshold. The two images are
more similar to each other when they have a higher VS value.
If N (i, j) is smaller than N0, the two images are not similar.
In this study, N0 is set to 20 according to the result of image
matching testing.

To test the relationship between image similarity and spa-
tial distance, fifteen sets of image sequences were collected in
different types of indoor spaces, including a room, a corridor
and an indoor open space. Each type of space has five sets
of image sequences. The image sequences were collected in
different areas in a building by a participant walking and
using a smartphone. For each image sequence, the first image
is matched with the following images on the sequence one by
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FIGURE 4. An example of spatial indexing for geo-tagged images.

FIGURE 5. The spatial adjacency relationship of sub-spaces: (a) five
sub-spaces in an indoor space; (b) spatial adjacency relationship of the
sub-spaces.

FIGURE 6. Transfer images of two adjacent sub-spaces.

one. Figure 7 shows an example of the relationship between
image similarity and spatial distance under each condition.
Figure 7 reveals a similar decreasing trend among the three
types of spaces: a short spatial distance leads to an extremely
large VS value; when distance increases, the VS value drops
quickly and ultimately approaches zero. The rate of decrease
varies in different environments. In addition, the VS value of
the corridor is obviously smaller than those of the open space
and room, possibly due to the relatively poor texture of the
corridor area. According to the observations, in this study,
some strategies have been designed for spatial subdivision
and sub-space construction:

• The average length of the sub-space is set to 6 m
for the corridor and 8 m for the other spaces in this
study.

• The length of the sub-space can be appropriately
increased (or reduced) for spaces with rich (or poor)
texture.

• Separate space (e.g., a small room) can be given higher
priority for sub-space construction.

• The common boundary of two adjacent sub-spaces
should be as short as possible for better sub-space deter-
mination during indoor localization.

C. CONTINUOUS INDOOR VISUAL LOCALIZATION
1) SPATIAL CONSTRAINT-BASED IMAGE SEARCH
STRATEGIES
This study intends to realize continuous visual localization
when a person is walking indoors. The frequency of image
matching-based visual localization depends on the spatial
distribution density of geo-tagged images in an environ-
ment. This approach can provide high-frequency localization
results when the spatial density of geo-tagged images is high
(e.g., 0.5 or 1 m). However, for environments with a low spa-
tial density of geo-tagged images (e.g., 10 m), the frequency
of visual localization is insufficient to achieve continuous
indoor localization. To increase the commonality, both visual
and inertial data collected by smartphones are integrated in
this algorithm to achieve continuous indoor localization. The
location estimation results from visual and inertial sensors are
termed the visual estimation and inertial estimation, respec-
tively. An inertial estimation can be calculated continuously
by using a PDR method. A visual estimation can be obtained
whenever the current image is successfully matched with a
geo-tagged image. In most cases, considering the accumula-
tive error of PDR, a visual estimation is more reliable than
an inertial estimation. Therefore, visual estimations can be
used as landmarks to correct the accumulative error of PDR.
However, the error of an inertial estimation will rapidly
accumulate when image matching fails or the spatial density
of geo-tagged images is low. The accumulative error will
obviously reduce the accuracy of continuous indoor localiza-
tion. To further improve the performance of this method, an
SFM-basedmethod is employed to estimate the heading angle
of the PDR when a visual estimation cannot be obtained.

It is necessary to consider both the accuracy and efficiency
of the imagematching-based visual localization method. This
method can achieve a high accuracy of localization results
when image matching is successful. However, it may require
a long time to match each video frame image collected by a
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FIGURE 7. The relationship between the distance and spatial similarity in the three scenes: (a) corridor; (b) open space; (c) room.

smartphone camera (when one is walking) with geo-tagged
images in the environment. In other words, the computing
speed of image matching may be much higher than the walk-
ing speed of a person. To solve this problem, this method
utilizes spatial constraint information to reduce the search
space of imagematching. Themain idea is that the geo-tagged
images spatially closer to the current image will be given
higher priority during image matching. Two different image
searching strategies are defined, including global search and
local search.

Local search is used when the distance between the current
location and the location of the last visual observation is
smaller than a threshold D0, which is set to 5 m considering
the size of the sub-space. It is not necessary to match the
current image to all geo-tagged images in the environment.
The geo-tagged images from the current sub-space that the
person is in will be first used as candidates to implement a
local search. These candidates are sorted by a variable C(i),
which can be calculated as follows:

C (i) =
|Ac − Ai|

180
+
Di
D0

(3)

where C(i) represents the spatial difference between the cur-
rent image and geo-tagged image i, Ac is the azimuth of the
current image, Ai is the azimuth of the geo-tagged image i,
and Di is the distance between the current location and the
location of the geo-tagged image i. Images with highC(i) will
be given low priority during the local search.

Global search is used when the current location is unknown
or the distance between the current location and the location
of the last visual observation is higher than the threshold D0.
For example, when the localization algorithm begins (the ini-
tial location is assumed to be unknown) or when local search
fails, it is necessary to match the current image (collected by
camera) with images from all the sub-spaces in the environ-
ment. As shown in Figure 8 (a), the current image is first
matched with one geo-tagged image from each sub-space to
find the most possible sub-space of the current image. Then,
the current image is matched with all geo-tagged images from
this sub-space to find the best-fitting image. Specifically,
when the local search fails, the global search begins from the

FIGURE 8. Spatial constraint-based visual search strategies: (a) global
search; (b) local search.

neighbouring sub-spaces of the current sub-space according
to graph G and then turn to their neighbouring subs-paces
until a successful match is found (as shown in Figure 8 (b)).

2) CONTINUOUS VISUAL LOCALIZATION ALGORITHM
This algorithm integrates both visual and inertial estimations
to achieve continuous indoor localization. Visual estimations
can be obtained by using image matching based on the pro-
posed image search strategies. A PDR method is utilized
to calculate the inertial estimations that can increase the
frequency of the localization algorithm. To improve the head-
ing estimation performance of this algorithm, an SFM-based
method is employed to estimate the PDR heading angle using
video frames. A schematic diagram of the SFM-basedmethod
is shown in Figure 9. The grey and white blocks represent
two matched geo-tagged images and a series of video frames,
respectively. The smartphone camera is calibrated using the
Matlab Camera Calibrator to estimate the parameters of the
intrinsic matrix. The fundamental matrix F of adjacent frames
can be calculated by the keypoint pairs computed before:

[
u′i, v

′
i, 1
] f11 f12 f13

f21 f22 f23
f31 f32 f33

 uivi
1

 = 0 (4)

where mi(ui, vi, 1)T and m′i(u
′
i, v
′
i, 1) are the homogeneous

keypoints of thematched keypoint set
{
mi,m′i|i = 1, 2, . . . n

}
.

Given eight or more pairs of matched keypoints, it is possible
to linearly solve matrix F . After obtaining the fundamental
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FIGURE 9. Details of the SFM-based heading angle estimation.

matrix, the essential matrix E can be calculated and decom-
posed to estimate the pose of the camera. The relationship
between the fundamental matrix and the essential matrix can
be described as follows:

E = KTFK (5)

whereK is the intrinsic matrix of the camera of a smartphone.
By utilizing singular value decomposition (SVD) of E, the
rotation matrix R and translation vector T can be calcu-
lated. According to the rotation matrix R of the two adjacent
images, the heading angle change can be expressed by:

R =

 cos1θ 0 sin1θ
sin1ϑsin1θ cos1ϑ −sin1ϑcos1θ
−cos1ϑsin1θ sin1ϑ cos1ϑcos1θ

 (6)

where 1θ is the heading angle change of the smartphone at
instant t and1ϑ is the pitch angle change of the smartphone
at instant t . If the initial heading angle is θ0, the heading angle
of the smartphone at instant t can be calculated as:

θt = θ0 +
∑t

i=1
1θ i (7)

where θt is the heading angle of the smartphone at instant t .
Although the SFM-based method can improve the heading

estimation performance of PDR, the heading error still accu-
mulates as the walking time increases. To solve this problem,
this algorithm also uses geo-tagged images to eliminate the
accumulation error of the heading angle. Once a video frame
is successfully matched with a geo-tagged image, the heading
angle of the geo-tagged image can be used to correct the
heading angle of the smartphone:

θt =

{
θt−1 +1θ (t − 1, t) if no match
θg(t)−1θg (t) if match success

(8)

where θt is the heading angle of smartphone at instant t ,
θt−1 is the heading angle at instant t − 1, 1θ (t − 1, t) is the
heading angle change from instant t − 1 to t , and θg(t) is the
heading angle of a successfully matched geo-tagged image
at instant t . 1θg (t) is the heading angle change between
the image at instant t and the geo-tagged image, which can
be estimated by calculating the rotation matrix R of the two
images.

Based on the heading estimation results, a PDRmethod can
be used to continuously estimate the location of a smartphone.
To improve the practicability of this approach, the initial
location is assumed to be unknown for the PDR method.
Thus, the estimation result of the PDR is the relative coordi-
nates of a smartphone until a video frame has been success-
fully matched with a geo-tagged image. The location of the
geo-tagged image can provide the absolute coordinates for a
smartphone: xt = xg (t)+

∑t

i=k
di · cos θi

yt = yg (t)+
∑t

i=k
di · sin θi

(9)

where (xt , yt ) are the coordinates of the smartphone at
instant t , (xg (t), yg (t)) represents the coordinates of the latest
matched geo-tagged image until instant t , θi is the heading
angle of the smartphone at instant i, and di is the distance
between instant t-1 and t . Therefore, the coordinates of the
smartphone will be corrected whenever a video frame image
is successfully matched with a geo-tagged image. The accu-
mulative error of PDR can be reduced continuously by using
image matching. A peak detection algorithm is used for step
detection. It compares the detected peak of the acceleration
value with the preset threshold value. If the acceleration value
is greater than the threshold value, the user is judged to have
taken a step. A linear model is utilized to calculate step length
Lk according to the variation in step frequency while walking,
which is calculated as follows:

Lk = A+ B ∗ SFk (10)

where Lk is the length of the kth step of a trajectory, SFk is
the step frequency, and A and B are the parameters.

An algorithm has been developed to achieve continuous
indoor localization, and the details of the algorithm are
described as follows:

The input of the algorithm includes geo-tagged image
dataset D, Graph G, the collected video frames and inertial
data (from smartphone). Graph G represents the spatial adja-
cency relationship of sub-spaces. The collected video frames
are matched with the geo-tagged images in dataset D based
on the image searching strategies (described in Section III C).
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Algorithm 1
input: Indoor geo-tagged image dataset: D (L, A, V, P),
the four variables represent location, direction, image id and
sub-space id attributes of geo-tagged image
input: The collected video frame up to current time t: f1:t
input: The collected inertial sensor data up to current time t:
s1:t
input: Graph G(S, E) which represents the spatial adjacency
relationship of sub-spaces
output: The location of each step
definition: Emn = the Euclidean distance between the loca-
tion m and n
definition: Z = the set of image id of geo-tagged images in
global search
for fa in f1:t do
R, T= findEssentialMat(fa, fa−1)
st(fa) = Update Heading Angle Through R
for imgi in D (L, A, V, P) do

if V(imgi) /∈ Z || (fa−1 matched with normal image
& P(fa−1) 6= Pimgi )||st(fa)−A(imgi) > Threshold || (fa−1
matched with transfer image & P(fa−1) not in S)

then continue
end if
if fa is matched with imgi
L(fa) = L(imgi)
break

end if
end for

end for
Loriginal = L(fa)-Lt(fa)_pdr (start from the origin point)
L0:t(fa)_pdr = Update Position Through Loriginal
for fb in fb:t do
R, T= findEssentialMat(fb, fb−1)
st(fb) = Update Heading Angle Through R
for imgj in D (L, A, V, P) do

if (fb−1 matched with normal image & P(fb−1) 6=
Pimgj )||st(b)−A(imgj) > Threshold || (fb−1 matched with
transfer image & P(fb−1) not in S)||E

L
(
imgj

)
Lt(fk )_pdr

> d(1t)

then continue
end if
if fb is matched with imgj
L(fb)← L(imgj)
La:t(fb)_pdr = Update Position Through L(fb)

end if
end for

end for

The heading angle is calculated by using inertial readings and
is further corrected by an SFM method. A PDR method is
used to estimate the location of the smartphone. The location
of the smartphone will be frequently corrected whenever a
successful image matching result has been found. By using
geo-tagged images along the path, the accumulative error can
be reduced continuously, and the location accuracy can be
improved.

FIGURE 10. The floor plan of the experimental environment.

IV. EVALUATION
In this section, we evaluate the performance of the proposed
visual localization method employing sensor data and video
frames collected by smartphones.

A. EXPERIMENT SETUP
Two experiments were conducted in an office building with
a floorplan of 52.5 m × 40 m, as shown in Figure 10.
We collected a geo-tagged image dataset in the experimen-
tal area. The average spacing of image sampling points is
approximately 2 m. At each sampling point, several images
in different directions (interval of 90◦) were collected and
geo-tagged. There are 484 geo-tagged images in this dataset.
As shown in Figure 10, the red dots represent the positions
of geo-tagged images in the experiment area. The resolution
of the all the geo-tagged images was resized to 640 × 480.
The visual features of the geo-tagged images were
extracted by using the multi-constrained image match-
ing method. The geo-tagged images were organized
and indexed according to the defined spatial model.
The subdividing result of the experiment area is shown
in Figure 11(a). There are 35 sub-spaces in the environment.
Figure 11(b) shows the spatial adjacency relationship of the
sub-spaces.

During the experiments, a smartphone (Xiaomi 8) was
used to collect sensor data as a participant walked along
three representative routes. The distance of the three testing
trajectories are 55 m, 79 m and 80 m, respectively. The
smartphone was held in front of the participant (keeping the
camera forward facing), who walked at a normal pace. The
collected video frames were also resized to 640 × 480 to
increase the computation efficiency. The initial location of
each route was assumed to be unknown for the localization
algorithm. We set some markers at known coordinates along
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FIGURE 11. The spatial adjacency relationship of sub-spaces: (a) the sub-spaces in the experimental environment;
(b) the spatial adjacency relationship of the sub-spaces.

the routes to collect the ground truth data. The collected
data include video frames, acceleration data and gyroscope
readings. The sampling frequencies of inertial and visual
data are 100 Hz and 30 FPS, respectively. The localization
experiments were performed on a laptop with an i7 9750H
CPU (2.6 GHz).

The first experiment evaluated the effect of the proposed
spatial model on reducing computation time. In the exper-
iment, the collected video frames were matched with the
images in the generated dataset to find the best-fitting results.
The locations of successfully matched geo-tagged images
were used as the localization outputs. The PDR and SFM
methods were not employed in this experiment. We evalu-
ated the localization accuracy and computation time of the
image matching method using the proposed spatial model.
The second experiment tested the performance of the con-
tinuous localization algorithm under two conditions: offline
localization and online localization. During offline localiza-
tion, the three trajectories were spatially recovered by the
proposed algorithm. A SFM-based PDR method is employed
to estimate the continuous location of the smartphone. The
collected video frames were matched with the images in
the dataset. All the successfully matched geo-tagged images
were used as landmarks to correct the PDR location error.
The online localization experiment is similar to the offline
localization experiment. A main difference is that the suc-
cessfully matched geo-tagged images can be used only to
correct the current location of a smartphone and cannot be
used to correct the previous localization result of a trip.
The localization result was provided in an online man-
ner. In this experiment, we also tested the influence of the
spatial density of geo-tagged images on the localization
performance.

B. PERFORMANCE OF THE SPATIAL MODEL OF
GEO-TAGGED IMAGES
Computation time is a key consideration of visual local-
ization. In this experiment, we tested the efficiency of the
spatial model proposed in section III. Considering the high
frequency of the smartphone camera (30 FPS), key frames
(extracted from every 30 normal frames) were used as query
images and were matched with the geo-tagged image dataset.
The image matching efficiency of this model is compared to
that of a normal image matching strategy and a Perceptual
Hash algorithm (Phash) [49] based image matching strategy.
The normal image matching strategy matches a query image
to all geo-tagged images to find the best-fitting result. The
Phash method generate a fingerprint string for each image
by calculating the mean hash based on low frequency using
Discrete Cosine Transform (DCT). The similarity between
images can be determined by comparing the strings. The
images judged to be dissimilar will not be matched with a
query image.

The matching efficiency is evaluated by using the average
computation time of each successfully matched query image
from a trajectory. As shown in Figure 12, each dot repre-
sents the image matching time of the corresponding query
image (key frame). The average computation times (of each
query image) of the three trajectories are 32.6 s, 36.65 s
and 42.54 s using a normal matching strategy. When using
the Phash-based matching strategy, the average computation
times of the three trajectories is 8.91 s, 8.84 s, 7.90 s, respec-
tively. When using the proposed spatial model, the average
computation times of the three trajectories decrease to 1.86 s,
1.69 s and 1.59 s, respectively. Thematching efficiency can be
significantly improved by optimizing the spatial organization
of geo-tagged images.
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FIGURE 12. The computation time of each query image from three
trajectories. Each dot represents the image matching time of a query
image. Blue dot is the calculated matching time by using the spatial
model. Red dot is the calculated matching time by using a normal
matching strategy. Green dot is the calculated matching time by using a
Phash-based matching strategy.

In addition to computation efficiency, we also evaluated
the matching accuracy of the proposed model by using two
indexes: matching accuracy and location error. Matching
accuracy refers to the probability of correct matching, which
can be calculated as follows:

Matching accuracy =
M
N
· 100% (11)

where M is the number of correctly matched query images
and N is the total number of query images from a trajectory.
Here, the location error refers to the mean localization error
of all query images from a trajectory. As shown in Table 1
(condition 1), thematching accuracies of the three trajectories
are 73.33%, 82.92% and 64.44%. The location errors of the
three trajectories are 0.40 m, 0.30 m and 0.35 m, respectively.
The results indicate that the incorrect cases (query images)
have beenmatched to the geo-tagged images that are spatially
adjacent to the ground truth image. Although the matching
accuracy may be affected by the visual similarity of adjacent

TABLE 1. Evaluation result of the image matching method based on the
spatial model.

geo-tagged images, this method can still achieve a high local-
ization performance accuracy.

To further test whether the diversity of mobile devices
affects the localization accuracy, another type of smartphone
(ZUKZ1)was used to collect the video frames along the same
three routes. The results are shown in Table 1 (condition 2).
The matching accuracies of the three trajectories are 76.67%,
73.17% and 62.22%, and the location errors are 0.47 m,
0.35 m and 0.43 m, respectively. The results showed that
the matching and localization performance was not obviously
affected when using another type of smartphone. The influ-
ence of device diversity on localization accuracy is relatively
small for visual positioning.

C. PERFORMANCE OF CONTINUOUS VISUAL
LOCALIZATION
In Section IV B, we tested the accuracy of the image
matching-based method. However, the localization result of
image matching is not continuous. The frequency of the
localization result is affected by the spacing or density of the
geo-tagged images. In this section, we tested the performance
of the continuous visual localization method proposed in
Section III C. The same three trajectories were used as experi-
mental data. The performance of this methodwas evaluated in
two manners: offline localization and online localization. For
offline localization, the localization result is provided after a
whole trip is finished. All successfully matched geo-tagged
images can be used to correct the localization error of a
trajectory. For online localization, a successfully matched
geo-tagged image can only be used to correct the current
location of a smartphone but not the location error of the
previous trip.

1) OFFLINE LOCALIZATION PERFORMANCE
The offline localization performance is shown in Figure 13.
The average offline localization error of all the trajectories
is approximately 0.73 m. As shown in Figure 13, the local-
ization errors of trajectories 1, 2 and 3 are 0.84 m, 0.54 m
and 0.83 m, respectively. These errors are slightly higher than
the results shown in Table 1 (image matching-based method).
The reason for this difference is that an SFM-based PDR
method (defined in Section III C) is employed to estimate the
continuous location of the smartphone. Although the accu-
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FIGURE 13. The estimation results of three trajectories.

FIGURE 14. Examples of image matching along the three trajectories.

racy is slightly reduced, this method can achieve a continuous
localization result but not separate query locations. The aver-
age spacing of sampling points from the trajectories decreases
from 2 m to 0.5 m by using this method. The estimated
trajectories can be seen from Figure 13. The locations of the
three estimated trajectories are very close to the ground truth
data.

Figure 14 shows some examples of image matching along
the trajectories. Most of the query images from the trajecto-
ries have been successfully matched to the correct geo-tagged
images. The six pairs of query and geo-tagged images are
visually similar. The location of the matched geo-tagged
images was used to correct the location of the query images
from the smartphone. A small location error arose because
the location of a query might not be completely the same
as the matched geo-tagged image. The error was mainly
determined by the spatial density of the geo-tagged images.
Here, the error was considered and included in the mean
location accuracy.

2) ONLINE LOCALIZATION PERFORMANCE
The performance of online localization was evaluated under
four different conditions: (1) the PDR method using map

constraint information; (2) visual localization using PDR;
(3) visual localization using SFM-based PDR; (4) visual
localization using SFM-based PDR under a random cam-
era opening condition. In the first condition, a normal PDR
method was used to estimate the location of the smartphone
using inertial reading from the gyroscope and accelerometer.
The initial location of the smartphone was assumed to be
already known for this condition. In addition, map informa-
tion was employed to correct the location error of PDR. In the
section condition, the proposed visual localization method
(without the SFM-based PDR method) was used. A normal
PDR method was also conducted to realize continuous local-
izationwhen visual estimationswere not obtained. In the third
condition, the proposed visual localization method (with the
SFM-based PDR method) was used. In the fourth condition,
the proposed visual localization method was used under a
random camera opening condition. It was assumed that the
smartphone camera might not remain open all the time; users
may open smartphone cameras to start a localization process
and close the camera when they have obtained enough loca-
tion information. This condition was used to simulate a more
practical situation in which a user might randomly open or
close the smartphone camera. When the camera was opened,
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FIGURE 15. The localization errors of three trajectories under different conditions. In the bar below, black means the camera is open, and
white means the camera is closed.

the SFM-based visual localization method was used to realize
continuous localization. When the camera was closed, a PDR
method was employed to estimate the location of the smart-
phone (from the last visual estimation) until the camera was
opened again.

Figure 15 shows the performance of online localization
under different conditions. Generally, the average location
error (of three trajectories) under each condition is 12.05 m,
1.35 m, 0.95 m and 1.31 m, respectively. The errors under
conditions 2-4 are clearly smaller than the error under condi-
tion 1. This indicates that the accumulative error of image
matching-based visual localization is considerably smaller
than that of the PDR method. The error of condition 3 is
smaller than that of condition 2, showing that the employed
SFM-based PDR method can further improve the heading
estimation error of PDR. In addition, condition 4 achieves
a relatively high location accuracy, even under a random
camera opening condition.

In this experiment, the location results are provided in an
online manner. The image matching and SFM-based PDR
methodswere performed continuously. The total computation
times of the three trajectories (i.e., condition 3) are 95.89 s,
82.11 s and 72.24 s, respectively, which are shorter than the
corresponding walking times of the trajectories (98 s, 136 s
and 132 s). To further evaluate the efficiency of this algo-
rithm, we calculated the average computation time needed
to provide each location estimation (e.g., a step) during a
trip. The average computation time of three trajectories is
0.59 s. The average computation time of successful image
matching-based estimation was also considered and referred
to the average time needed to provide a location result from
successful image matches. A shorter image matching time
means that the location of the geo-tagged images can be
used to correct the cumulative error of PDR more frequently.
In this experiment, the average times for (successful) image
matching for the three trajectories are 3.46 s, 2.52 s and 2.35 s,
respectively. This indicates that the smartphone location error
can be frequently corrected by geo-tagged images.

FIGURE 16. A geo-tagged image dataset with a low spatial density.

The spatial density of geo-tagged images is another fac-
tor that may affect the performance of visual localiza-
tion. A higher density of geo-tagged images may improve
the accuracy of visual localization. However, it will also
increase the workload for image collection. In this experi-
ment, we also tested the influence of the spatial density of
geo-tagged images on localization performance. As shown
in Figure 16, some geo-tagged images have been removed
from the original image dataset. There are 218 images in
the new low-density dataset. The spatial density of the
geo-tagged images is calculated as the mean number of
images per square metre. The spatial density results of the
images in the original and low-density datasets are 0.23 and
0.10, respectively. We tested both the online and offline
localization performance by using the low-density dataset.
As shown in Table 2, the online localization errors of the
three trajectories are 1.84 m, 1.24 m and 1.20 m, slightly
higher than the errors of the original dataset (1.36 m, 0.61 m,
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TABLE 2. The online and offline localization performance of two datasets.

0.89 m). Similarly, the offline localization error of the low-
density dataset is also slightly higher than that of the original
dataset. The results revealed that a higher spatial density
of geo-tagged images can improve the localization accu-
racy of the proposed visual localization method. However,
the localization accuracy of the low-density datasets is still
acceptable for many indoor localization applications. For
large indoor spaces, it is practical to reduce the spatial density
of geo-tagged images for fast system deployment.

V. DISCUSSION
This study proposes a continuous visual localization
approach that can realize accurate indoor localization. The
localization errors of image querying, continuous offline
localization and online localization are approximately 0.4 m,
0.7 m and 0.9 m, respectively. This approach can achieve
an accuracy of 1.3 m, even under a random camera opening
condition. An advantage of this method is that successfully
matching geo-tagged images can frequently reduce the accu-
mulative error of PDR. In other words, each a matched
geo-tagged image can serve as a landmark in indoor envi-
ronments. Compared to common indoor landmarks (e.g.,
elevators, stairs or intersections), geo-tagged images can
be taken from most positions in an indoor environment,
which greatly increases the number of available landmarks
for accurate indoor localization. In addition, this method
can provide a continuous localization result with a relatively
short computation time (the average time for a location result
is approximately 0.59 s), which makes it more suitable for
wayfinding or navigation applications.

The computation efficiency is an essential bottleneck for
image matching-based visual localization. Higher frequency
image matching requires more computation time, which
reduces the practicality of visual localization. This study
proposes a spatial model to optimize the spatial organiza-
tion of geo-tagged images. Several spatial constraint-based
image searching strategies have also been designed to further
reduce the computation time for continuous visual localiza-
tion. According to the experimental results (experiment B),
the average computation time of each successfully matched
frame is approximately 1.8 s, which is obviously smaller than
that of a normal matching strategy (approximately 40 s). For
online localization (experiment C), the average computation
time of each trajectory is shorter than the correspondingwalk-
ing time. This demonstrates that the spatial organization of

geo-tagged images and image searching strategies are impor-
tant for improving the efficiency of image matching-based
visual localization.

The average computation time of online localization has
also been considered in this study. The average computation
time (i.e., the average time needed to provide a location
estimation result) is approximately 0.59 s according to the
experimental results (experiment C). This is clearly a shorter
time than the average time needed for successful image
matching-based location estimation (approximately 2.78 s).
Consequently, this approach employs an SFM-based PDR
method to reduce the average computation time of image
matching-based localization. A considerable part of the cal-
culation process of the SFM-based method (e.g., keypoint
extraction) is included in the process of the image matching-
based algorithm. Thus, including the SFM method will not
obviously increase the computation time but can improve
both the computation efficiency and accuracy of the local-
ization algorithm.

A limitation of visual localization is that it requires the
camera to remain open. Compared to other indoor localiza-
tion solutions (e.g., Wi-Fi localization), it increases the usage
requirement of an extra device (e.g., a user’s smartphone).
However, considering the relatively high accuracy of visual
localization, it is more suitable for localization applications
that require stable localization accuracy (navigation services
for visually impaired people) than for those that do not have
such a requirement. The visual localization results can also be
integrated with an augmented reality (AR) application to pro-
vide visually augmented localization and navigation guides,
especially helpful for people with a poor sense of direction.
In addition, both the PDR and SFM methods are integrated
into the algorithm. The experimental results showed that the
algorithm can achieve a relatively high accuracy (approxi-
mately 1.3 m), even with a camera that randomly closed.
When the camera was closed, the PDR method continuously
estimated the location of the smartphone. After the cam-
era was opened again, the successfully matched geo-tagged
images served as landmarks to correct the accumulative error
of PDR. In addition, visual localization does not require extra
environmental infrastructure, which reduces the difficulty of
system deployment. Another limitation of the proposed visual
localization method is that it requires a collected geo-tagged
image dataset. In further work, we intend to develop an
efficient image collecting and geo-tagging method for visual
localization based on our previous work [22], which pro-
poses a crowdsourcing-based approach to geo-tag collected
data (Wi-Fi, image, noise, PM 2.5, etc.) in indoor spaces.
In this way, the visual localization method can be efficiently
deployed in various indoor environments.

VI. CONCLUSION
In this paper, we proposed an efficient visual localization
method that can achieve continuous indoor localization with-
out auxiliary infrastructure or previous knowledge of the
initial location. The experimental results showed that the
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matching of geo-tagged images can continuously correct the
accumulative error of PDR. To reduce the computation time
required for frequent image matching, a spatial model was
designed to optimize the spatial organization of geo-tagged
images. We also developed a spatial constraint-based visual
localization algorithm. The experimental results showed that
the computation time of image matching and continuous
visual localization can be considerably reduced by adopting
a spatial model and spatial constraint-based image searching
strategies. The offline and online localization experiments
revealed a relatively high location accuracy (approximately
0.7 m and 0.9 m, respectively). In future work, we intend to
develop an efficient indoor image collecting and geo-tagging
method to reduce the system deployment workload of visual
localization.
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