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ABSTRACT Face frontalization can boost the performance of face recognition methods and has made
significant progress with the development of Generative Adversarial Networks (GANs). However, many
GAN-based face frontalization methods still perform relatively weak on face recognition tasks under large
face poses. In this paper, we propose Feature-Improving GAN (FI-GAN) for face frontalization, which aims
to improve the recognition performance under large face poses. We assume that there is an inherent mapping
between the frontal face and profile face, and their discrepancy in deep representation space can be estimated.
The generation module of FI-GAN has a compact module named Feature-Mapping Block that helps to map
the features of profile face images to the frontal space. Moreover, we produce a feature discriminator that
can distinguish the features of profile face images from those of ground true frontal face images, which
guide the generation module to provide high-quality features of profile faces. We conduct experiments on
the MultiPIE, Labeled Faces in the Wild (LFW), and Celebrities in Frontal-Profile (CFP) databases. Our
method is comparable to state-of-the-art methods under small poses and outperforms them on large pose
face recognition.

INDEX TERMS Face frontalization, face recognition, generative adversarial network.

I. INTRODUCTION
Face frontalization is an interesting problem in both human
and machine facial processing and recognition. It is dedi-
cated to addressing pose variations, which are regarded as
bottlenecks on face recognition tasks. The methods for face
frontalization try to recover frontal face images from profile
face images, and then use the recovered face images for
recognition.

Earlier efforts [1]–[4] for face frontalization usually uti-
lize 3D geometrical transformations to recover a frontal
face image from a profile face image. Their results suf-
fer from deformation under large poses due to severe
texture loss. Recently, many face frontalization methods
[5]–[9] based on Generative Adverisal Networks (GANs)
are proposed. These methods mainly consist of a genera-
tor and a discriminator. The generator usually adopts the
encoder-decoder architecture, while the discriminator is used
for guiding the generator to learn photo-realistic face frontal-
ization. Along with sophisticated loss functions, pairs of face
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images (frontal and profile) from MultiPIE database [10]
are used for training. Although these methods can produce
photo-realistic face images under large poses, their perfor-
mance on face recognition tasks decreases severely when
the pose degree achieves 75◦. Observing that most methods
perform better under smaller poses, we consider that the
performance under large poses can be improved by mapping
the intermediate features to frontal space in the generative
process.

To address the above problem, we propose a face frontal-
ization method named Feature-Mapping Generative Adver-
sarial Network (FI-GAN). There are mainly two differences
between the FI-GAN and other GAN-based methods. Firstly,
the generation module of FI-GAN has a Feature-Mapping
Block, which is similar to DREAM-Block [11]. It can eval-
uate the discrepancy between the features of profile faces
and those of frontal faces. What’s more, the discrimination
module of our FI-GAN contains a feature discriminator,
which competes against the generation module. The former
aims to distinguish the intermediate features of profile faces
from those of ground true frontal faces, which enforces the
latter to produce the high-quality features of profile faces.
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By mapping the intermediate features of profile faces to
frontal space, FI-GAN performs relatively well under large
poses.

This paper makes the following contributions:

• We propose the FI-GAN for face frontalization, which
aims to achieve state-of-the-art face recognition perfor-
mance under large poses.

• The generation module of FI-GAN contains a
Feature-Mapping Block, which helps tomap the features
of profile face images to the frontal space.

• A feature discriminator is proposed to improve the fea-
tures produced by our Feature-Mapping Block further.

The remainder of this paper is organized as follows.
In section II, we briefly review some relatedworks. The archi-
tecture and details of the FI-GAN are explained in section III.
Experimental results and analysis are reported in section IV.
In section V, we conclude this paper.

II. RELATED WORK
A. POSE-INVARIANT REPRESENTATION LEARNING
Extracting pose-invariant features is one of the ways to
address pose problems on face recognition tasks. Many
typical face recognition methods like Light CNN-29 [12]
suffer from large poses because their training databases
have long-tailed pose distributions. Conventional approaches
often leverage metric learning [13] and robust descrip-
tors [14] to tackle pose variance. In contrast, deep learn-
ing methods usually handle pose variance by enlarging
the training databases [15] or designing special architec-
tures [11], [16]. For example, Wang et al. [15] provide
a new database named IMDb-Face, which contains more
face images under large poses than others. The IMDb-Face
empowers them to train strong convolutional networks that
can produce pose-invariant features. Cao et al. [11] propose a
pose-specific module named DREAM-Block, which tries to
map the features of profile face images to the frontal space.

B. FACE FRONTALIZATION
Face frontalization is very challenging due to self-occlusion.
Existing methods for face frontalization can be divided
into three categories: 3D-based methods [1]–[4], statistical
methods [17], and deep-learning-based methods [18]–[22].
3D-based methods usually utilize 3D geometrical transfor-
mations to render a frontal face with a mean 3D face model
[1], [2] or an identity specific 3D model [3], [4]. These meth-
ods performwell under small poses, but their results get much
worse under large poses due to severe texture loss. Statistical
methods, like [17], use a statistical model for joint frontal
view reconstruction and landmark localization by solving a
constrained low-rank minimization problem. However, these
methods also suffer from poor generalizability under large
poses. Deep learning methods usually apply CNNs [18],
RNNs [21] or auto-encoders [22] in early time. Yim et al. [18]
use locally connected convolutional layers for feature extrac-
tion and fully connected layer for synthesis. Though these

methods get high recognition rates, their synthesized images
may lack fine details and tend to be blurry under large poses.
Intermediate features instead of synthesized images are used
in face recognition tasks. In recent years, some methods
based on GANs [5]–[9] are proposed, which are effective in
recovering both photo-realistic and identity-preserving face
images even under large poses.

In summary, GAN-based methods provide superior per-
formance for face frontalization and recognition under
large poses. In this paper, we combine the typical
GAN-based model and modules that contribute to providing
pose-invariant intermediate features. Our FI-GAN contains
the Feature-Mapping Block, which is similar to DREAM-
Block. It can map the intermediate features of profile face
images to the frontal space. To improve the intermediate
features further, we propose a feature discriminator. Our
method is explained in section III in detail.

III. PROPOSED APPROACH
The overall framework of the Feature-Improving Generative
Adversarial Network (FI-GAN) is described in Fig. 1, which
mainly consists of the generation module G and the discrim-
ination module D. G aims to synthesize a photo-realistic and
identity-preserving frontal view image xs from a profile face
image xp. It contains an encoderGenc, a pose estimatorGpose,
a Feature-Mapping Block Gfm, and a decoder Gdec. Genc can
transform face images into intermediate features. The fea-
tures of profile face and those of ground true face are denoted
as fp and fg, respectively.Gpose aims to calculate the yaw angle
α of the profile face. The Gfm is used for mapping fp to the
frontal space alongwith pose degreeα. The features produced
by Gfm are denoted as fp

′

. Gdec can transform the features fp
′

into the frontal face image xs. Discrimination module D aims
to guide the generation module G to produce high-quality
results. D contains a feature discriminator Df and an image
discriminator Di. Df aims to distinguish the features fp

′

from
fg, which enforces Gfm to reduce the discrepancy between
fp
′

and fg. The image discriminator distinguishes synthesized
image xs from ground true image xg, which encourages the
generation module to produce photo-realistic results. Similar
to the conventional GAN, our G and D improve each other
by competing against each other. D tries to estimate the
probability that a sample is produced byG. At the same time,
G aims to produce high-quality samples that can confuse D.
We use the loss functions introduced in subsection III-B to
train ourG,Df , andDi by turns. In the following subsections,
we first introduce the architectures of our G and those of D.
Then, we detail all the training loss functions.

A. ARCHITECTURE
1) GENERATION MODULE
The task of the generation moduleG is synthesizing a frontal-
view, photo-realistic, and identity-preserving face image xs

from a profile face image xp. In the following subsection,
we introduce the components of G, including the encoder

VOLUME 8, 2020 68843



C. Rong et al.: Feature-Improving GAN for Face Frontalization

FIGURE 1. The overall framework of FI-GAN. Our FI-GAN mainly consists of the generation module and the discrimination module.

Genc, the pose estimator Gpose, the Feature-Mapping Block
Gfm, and the decoder Gdec.
Genc aims to extract the features of input images. It is

a typical convolutional neural network (CNN), the network
structure of which is shown in Table 1. The size of the input
images is fixed as 128 × 128 × 3. Our Genc outputs feature
vectors with 256 dimensions. In our Genc, each convolution
layer is followed by one residual block [23] and activated by
Rectified Linear Unit (ReLU) [24]. The fully connected layer
fc1 is activated by maxout [25].
Gpose aims to calculate the yaw angle α of the profile face

image xp. The output α can be served as the prior knowl-
edge, which helps to estimate the discrepancy between the
profile faces and frontal faces. Ignoring the discrete camera
label of the profile face images from the MultiPIE database,
we employ the off-the-shelf method introduced in [26] to
obtain the yaw angle. We fix the parameters of our pose
estimator in our experiments. To simplify the process of

training our generation module, we can precalculate the yaw
angle of all images in the training set and flip the face images
horizontally when the yaw angle is negative.
Gfm aims to map the features of profile faces to the frontal

space. Since most face frontalization methods perform better
under smaller poses, we consider that the performance under
large poses can be improved bymapping the intermediate fea-
tures to frontal space. Cao et al. propose the DREAM-Block
[11] to estimate the discrepancy between features of profile
faces and those of frontal faces, which helps to evaluate
pose-robust features. Inspired by their work, we propose a
similar module named Feature-Mapping Block (Gfm), whose
working process is shown in Fig.2. The features of the profile
face produced by the encoderGenc are denoted as fp. The yaw
angle of the profile face estimated by the pose estimator is
denoted as α. In order tomap fp to the frontal space, we design
another two branches. The first additional branch contains a
compact neural network FC, which has two fully-connected
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FIGURE 2. The working process of the Feature-Mapping Block. fp and α

refer to features of the profile face and pose degree of profile face,
respectively. FC and T refer to a fully-connected network and a
trigonometric function. FC aims to evaluate the residuals of fp while T can
provide the coefficient of the residuals. The output fp + T(α) × FC(fp)
refers to the features produced by our Feature-Mapping Block.

FIGURE 3. The rotation process of the line segment. The length of the line
segment is set to 1.0. After the line segment rotates α degree, the length
of its projection on the horizontal line decreases 1.0 − cos(α).

layers with Parametric Rectified Linear Unit (PReLU) [27]
as the activation function. It aims to evaluate the residuals
of the features fp. The output of this branch, denoted as the
FC(fp), is a 256-dims vector, the size of which is the same
as fp. The second additional branch contains a function T.
The input α refers to the yaw angle of the face images.
The output T(α) is defined as the coefficient of the residuals
FC(fp) evaluated by the first branch. Cao et al. set the function
T to sigmoid(α/45 − 1.0), which is a monotonous nonlinear
function that maps the input to a positive value within the
range of (0, 1). In this paper, we propose a more suitable
function, which is defined as follows:

T (α) = 1.0− cos(α) (1)

Since the yaw angle of most face images ranges from 0◦

to 90◦, function T can map it to a positive value within the
range of [0, 1]. When α is equal to 0◦, the coefficient T(α)
is zero, which means our Gfm does not affect the features of
frontal faces. When the pose degree increases, the coefficient
T(α) also increases, which means our Gfm has more effects
on features fp. The reason why we adopt this trigonometric
function is that it can describe the rotation roughly. In Fig.3,
the length of the line segment is set to 1.0, then the length
of its projection on the horizontal line is equal to 1.0. After
the line segment rotates α degree, the length of its projection
decreases T(α). As we all know, frontal faces contain most

TABLE 1. The network structure of the encoder Genc .

TABLE 2. The network structure of the decoder Gdec . The symbol fp
′

refers to features produced by Gfm.

identity information, which gradually loses with the faces
rotate. The coefficient of the residuals FC(fp) is set to T(α).
Above all, one branch ofGfm produces the residualsFC(fp),

while another branch evaluates the coefficient of FC(fp). The
outputs of the above two branches are multiplied and added
to the features of profile images. The features produced by
Gfm are denoted as fp

′

, which equal to fp + T(α) × FC(fp).
In subsection IV-D, we compare our Feature-Mapping Block
with DREAM-Block on face frontalization and recognition
tasks.
Gdec aims to recover frontal-view, photo-realistic,

identity-preserving face images xs from features produced
byGfm. The network structure of ourGdec is shown in Table 2.
Note that the input features named fp

′

are the output of
our Gfm. Our decoder consists of three parts. The first part is
a simple deconvolution structure to upsample the features fp

′

.
The second part consists of deconvolution layers stacked for
reconstruction, and each of them is followed by one residual
block. The third part involves some convolution layers for
recovering the frontal face images. In ourGdec, the final layer
conv7 is activated by the hyperbolic tangent function (tanh),
while other layers are activated by ReLU.

2) DISCRIMINATION MODULE
Our discriminationmoduleD is used for guidingG to produce
high-quality results. D consists of a feature discriminator Df
and an image discriminator Di.
Df can guide the generation module to produce

high-quality intermediate features. We denote the features of
profile face mapped by Feature-Mapping Block Gfm and fea-
tures of ground true frontal face produced by the encoderGenc
as fp

′

and fg, respectively. Df tries to distinguish fp
′

from fg.
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It competes with G which tries to produce high-quality fp
′

to
confuse Df . With Df being more powerful, G is enforced to
minimize the discrepancy between fp

′

and fg. By guiding Gfm
to map fp

′

to frontal space, Df can improve the performance
of our method. Df has two fully-connected layers with Para-
metric Rectified Linear Unit (PReLU) [27] as the activation
function.
Di can guide the generation module G to produce

photo-realistic face images. It tries to distinguish the synthe-
sized frontal face image xs from the ground truth frontal face
image xg. Note that in our work, all frontal face images in
training set are regarded as real samples, whereas all syn-
thesized images are considered as fake samples. Moreover,
we limit real faces to frontal views only, which encourages the
generation module to produce frontal face images. By com-
peting with each other, the generation module G and image
discriminator Di are both improved. With Di being more
powerful, G is enforced to produce more photo-realistic face
images to confuse G. With G being more powerful, Di is
enforced to improve its ability to distinguish generated face
images from real face images. In the early stages, when
synthesized faces may be profile, Di makes the real or fake
decision based on pose, which guides G to synthesize frontal
face images. In the later stages, when most of the synthesized
faces are frontal, Di focuses on subtle details, which helps
G to produce more photo-realistic face images. The network
structure of Di is shown in Table 3. Each layer in our Di is
activated by ReLU.

TABLE 3. The network structure of the image discriminator.

In summary, D and G improve each other by competing
with each other. The training details are described in subsec-
tion IV-A.

B. TRAINING LOSS FUNCTIONS
In this subsection, we introduce the training losses, includ-
ing the feature loss Lfeature, the pixel-wise loss Lpixel , the
symmetry loss Lsym, the identity-preserving loss Lip, and the
adversarial losses Ladv1 and Ladv2.
We employ the feature loss Lfeature to improve the features

produced by Feature-Mapping Block,

Lfeature = ‖Gfm(Genc(xp), α)− f g‖2 (2)

where xp and α represent the profile face image and its yaw
angle, respectively. Gfm(Genc(xp), α) refers to features of xp

and is evaluated by our Gfm. fg refers to the features of cor-
responding ground true frontal face image and evaluated by
our encoder. Lfeature aims to minimize the Euclidean distance
between features Gfm(Genc(xp), α) and fg.

We adopt the pixel-wise loss,

Lpixel =
1

W × H × C

W∑
i=1

H∑
j=1

C∑
k=1

|G(xp)i,j,k − x
g
i,j,k | (3)

where W and H represent the width and height of image,
respectively. C is the number of image channels. G and xp

refer to our generation module and profile image, respec-
tively. G(xp) and xg refer to synthesized image and ground
truth image. Lpixel aims to reconstruct the ground truth with
minimal error.

Based on the prior knowledge that most human faces are
bilateral symmetry, we impose a symmetry loss function to
minimize the Manhattan distince between synthesized image
and its symmetry image.

Lsym =
1

W/2× H × C

W/2∑
i=1

H∑
j=1

C∑
k=1

|G(xp)i,j,k−G(xp)W−i,j,k |

(4)

where W and H represent the width and height of image,
respectively.C is the number of image channels. Imposing the
symmetric constraint on the synthesized images contributes
to alleviating the self-occlusion problems. So we can improve
performance under large poses by using the symmetry loss.
For recognition via generation framework, preserving

identity is an essential task.We adopt the idea from perceptual
loss [28] to design the identity-preserving loss based on the
activations of the last two layers of a pre-trained face expert
network F:

Lip =
2∑

n=1

1
Wn × Hn × Cn

Wn∑
i=1

Hn∑
j=1

Cn∑
k=1

|F(G(xp))ni,j,k

−F(xg)ni,j,k | (5)

where Wn and Hn denote the width and height of the feature
maps in the last nth layer, respectively. Cn is the number
of channels in the last nth layer. The G(xp) and xg denote
synthesized image and ground true image, respectively. The
identity-preserving loss enforces the synthesized image to
have a small distance with the ground truth face image in the
deep feature space. We employ the Light CNN-29 [12] as our
face expert network.

We propose two adversarial loss functions named Ladv1 and
Ladv2, respectively. Ladv1 is defined as follows:

Ladv1 = logDf (f g)+ log(1.0− Df (Gfm(Genc(xp)))) (6)

where the fg andGfm(Gen(xp)) refer to features of ground true
face and those of profile face, respectively. When training the
generation moduleG, we minimize this loss function to guide
our G to produce high-quality intermediate features to con-
fuse Df . When training Df , we maximize this loss function
to improve the ability to distinguish features of profile face
from those of ground true face. The Ladv2 is formulated as
follows:

Ladv2 = logDi(xg)+ log(1.0− Di(G(xp)) (7)
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where the xg and G(xp) refer to ground true image and syn-
thesized image, respectively. When training the generation
module G, we minimize this loss function to guide our G to
produce a visually pleasing synthesized image to confuse Di.
When training Di, we maximize this loss function to improve
the ability to distinguish synthesized image from ground true
image.

The total loss is a weighted sum of the above losses. The
generation module G, feature discriminator Df and image
discriminatorDi are trained by turns to optimize the following
min-max problem:

max
θDf ,θDi

min
θG

Ltotal = Lpixel + λ1Lsym + λ2Lip

+λ3Ladv1 + λ4Ladv2 + λ5Lfeature (8)

where θDf , θDi , and θG refer to parameters of Df , Di, and G,
respectively. The λ1, λ2, λ3, λ4, λ5 are the weights of each
loss function. Inspired by similar work [6], we empirically
set λ1 = 0.2, λ2 = 0.003, λ3 = 0.001, λ4 = 0.001, and
λ5 = 0.00005.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
The FI-GAN aims to recover photo-realistic and identity-
preserving frontal view face images from the input face
images. In this section, we evaluate the FI-GAN from two
aspects, including visual quality and identity-preserving abil-
ity. For the former, the face images synthesized by FI-GAN
are shown. For the latter, we calculate Rank-1 recogni-
tion rates on synthesized images. The databases we used
for evaluating are the MultiPIE database [10], the Labeled
Faces in theWild (LFW) database [29], and the Celebrities
in Frontal-Profile (CFP) database [30]. In subsection IV-A,
we introduce databases and implementation details. In sub-
section IV-B, we compare visualized results produced by the
FI-GAN with those produced by state-of-the-art methods.
In subsection IV-C, we quantitatively evaluate face recog-
nition performance on our frontalized images, compared to
other frontalizationmethods. In subsection IV-D, we compare
FI-GAN with its variants, which proves the effectiveness of
our proposed modules and that of our loss functions.

A. DATABASES AND IMPLEMENTATION DETAILS
1) DATABASES AND TESTING PROTOCOLS
TheMultiPIE database is one of the largest databases for eval-
uating face frontalization and pose-invariant face recognition
in the controlled setting. It consists of about 750,000 images
from 337 subjects under pose, illumination and expression
changes. Inspired by testing protocols in [6], we utilize two
settings to evaluate the methods. In Setting1 [16], we use the
face images in Session1, which contains faces of 250 subjects.
We only consider the face images with neutral expression
under 13 poses and 20 illuminations. Therefore, 65000 face
images are chosen (250 * 13 * 20= 65000). The face images
of the first 150 subjects are used for training whereas the rest
are used for testing. In Setting2 [18], we use the face images
in all four sessions, which contain faces of 337 subjects.

We include images with neutral expression under 20 illumi-
nations and 13 poses within± 90◦. The first 200 subjects are
used for training, and the rest are used for testing. Note that,
in both settings, there are not overlap subjects between the
training and testing sets. For each testing subject, one frontal
face image with normal illumination is added to the gallery
set whereas the rest images are added to the probe set. In the
testing process, firstly, we apply FI-GAN for frontalizing the
face images with arbitrary poses in the testing set. Then we
use a face recognition network named Light CNN-29 [12]
to extract the identity features of synthesized face images.
Finally, we calculate the rank-1 recognition rates.

The LFW database is one of the most popular databases
for face verification in the uncontrolled setting. It consists
of 13,233 images of 5,749 subjects. Since the face images
are collected from the Internet and under various expres-
sion, pose, illumination changes, conducting face frontaliza-
tion experiments on the LFW database is challenging work.
In the verification protocol [29], the face images on the LFW
database are divided into ten parts, each with 300 same-
person pairs and 300 different-person pairs. For each pair,
we need to judge whether two face images come from
the same person. In this experiment, firstly, we trained our
FI-GAN on the MultiPIE database following Setting2. Then,
we frontalize the face images and evaluate face verification
performance on the LFW database.

The CFP database is another database for face verifica-
tion in the uncontrolled setting. It consists of 7,000 images
of 500 subjects, where each subject has ten frontal and four
profile face images. The verification protocol [30] includes
frontal-frontal (FF) and frontal-profile (FP) face verification,
each having 3500 same-person pairs and 3500 different-
person pairs. In this experiment, firstly, we trained our
FI-GAN on the MultiPIE database following Setting2. Then,
we frontalize the face images and evaluate face verification
performance on the CFP database.

2) IMPLEMENTATION DETAILS
To pre-process the face images, we apply the algorithm
introduced in [31] for face alignment. The size of all face
images is fixed as 128 × 128 × 3. Before training, we apply
our pose estimator to precalculate the yaw angle α of face
images in the training set. The FI-GAN is implemented with
Tensorflow [32]. We train the FI-GAN empirically, with the
batch size set to 12 and the learning rate set to 0.0008. All
training weights are initialized from a zero-centered normal
distribution with a standard deviation of 0.02. We use the loss
function Ltotal which is defined in (8) to train the genera-
tion module G, the feature discriminator Df , and the image
discriminator Di by turns, e.g., one step for optimizing G,
one for Di and one for Df . When the value of each loss
function remains relatively stable, we can stop the training.
Our encoder Genc, decoder Gdec, and Df , which contain
conventional layers, have about 0.3, 0.8, 0.05 billion FLOPs,
respectively. The graphic processing unit of the computer
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FIGURE 4. Comparison with state-of-the-art synthesis methods on the MultiPIE database under the pose of 45◦ (first two rows) and 30◦ (last row).

used for training is NVIDIA GeForce GTX 1080 TI. The
training of our method lasts for about half-day.

B. VISUAL QUALITY
In this subsection, we compare the frontalized face images of
the FI-GAN with those of other methods. Face images in the
training set of Setting2 from the MultiPIE database are used
for training.

For the experiment in the controlled setting, we frontalize
the face images in the test set of Setting2 from the MultiPIE
database. Since most of the face frontalization methods can
only deal with the face images under small poses, we firstly
display the frontalized images of different methods, includ-
ing our FI-GAN, CAPG-GAN [5], TP-GAN [6], CPF [18],
HPEN [4], and Hassner et al. [2], under the pose of 30◦ and
45◦ in Fig. 4. The synthesized face images of our methods
look better than those of many techniques in terms of both
global structure and local texture. In the last two years, some
GAN-based methods, which can address face frontalization
problem under large poses, have been proposed. We compare
the synthesized images of the FI-GAN with those of state-
of-the-art GAN-based methods, including CAPG-GAN [5],
and TP-GAN [6], under the pose of 75◦ and 90◦ in Fig. 5.
We observe that all methods perform well under large poses.
The face images produced by our FI-GAN are photo-realistic
and comparable to those of state-of-the-art models.

To further prove the effectiveness of our FI-GAN in
the uncontrolled setting, we show synthesized images of
compared methods, including PIM [9], TP-GAN [6], and
Hassner et al. [2], on the LFW database in Fig. 6. Note
that all GAN-based methods are only trained on the Mul-
tiPIE database; Obtaining good visual results on the LFW
database is challenging since the LFW contains other vari-
ations, such as low resolution and occlusion. As is shown
in Fig. 6, the synthesized images of [2] deviate from original

FIGURE 5. Comparison with state-of-the-art synthesis methods on the
MultiPIE database under the pose of 75◦ (first two rows) and 90◦
(last two rows).

appearance seriously. The recovered face images of TP-GAN
[6] are severely blurry. Comparatively, our FI-GAN obtains
relatively well visual results. Not only global face shapes but
also local details are well recovered.

Fig. 7 shows our synthesized images on the CFP database
in challenging cases. Our FI-GAN can preserve observed
face attributes in the original input image in most cases, e.g.,
eyeglasses, expression, and black skin (there are few blacks
on our training database). More importantly, the synthesized
face images of our FI-GAN are photo-realistic.

C. IDENTITY-PRESERVING PROPERTY
In order to quantitatively evaluate the identity-preserving
ability of different methods, we conduct face recognition
on the MultiPIE database and face verification on the LFW
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FIGURE 6. Comparison with state-of-the-art synthesis methods on the
LFW database.

FIGURE 7. The synthesized results of our FI-GAN on the CFP database in
challenging cases. Here, facial attributes include eyeglasses, expression,
and black skin (there are few blacks in the training database). Moreover,
the input faces in odd columns are frontal, whereas those in even
columns are profile.

TABLE 4. Benchmark comparison of identification rate (%) across poses
on the MultiPIE database under Setting1.

database. In both experiments, we apply our face expert
network named Light CNN-29 [12] to extract the identity
features of our frontalized face images. Then we evaluate the
face recognition performance with a cosine distance metric.

Table 4 shows the rank-1 accuracy rates of different
methods under Setting1 [16] of MultiPIE. The results of
Light CNN-29 [12] serve as our baseline. We compare
FI-GANwith Hassner et al. [2], HPN [1], c-CNN Forest [16],

TABLE 5. Benchmark comparison of identification rate (%) across poses
on the MultiPIE database under Setting2.

TABLE 6. Face verification accuracy (ACC) and area-under-curve (AUC)
results on the LFW database.

TP-GAN [6], and CAPG-GAN [5]. The performance of all
methods gets worse when the pose degree increases because
more facial information gets lost. However, the rank-1 accu-
racy rates of our approach decrease slower than those of
competitors. We think the reason is that our Feature-Mapping
Block maps the features of the profile face images to
the frontal space, so our FI-GAN performs relatively well
under large poses. Besides, when the yaw angle of the
face images is small, the coefficient of residual produced
by Feature-Mapping Block is relatively small. Then our
Feature-Mapping Block has limited effects on immediate
features, so the synthesized results of our FI-GAN are similar
to other GAN-based methods under small poses.

Table 5 shows the rank-1 accuracy rates of different
methods under Setting2 [18] of MultiPIE. Compared with
Setting1, Setting2 is more difficult because the number of
test subjects increases. Once more, the results of the Light
CNN-29 [12] serve as our baseline. We compare our FI-GAN
with some state-of-the-art methods, including DR-GAN [7],
FF-GAN [8], TP-GAN [6], CAPG-GAN [5]. As is shown
in Table 5, our method greatly improves the performance of
Light CNN-29, especially under large poses. Moreover, our
method outperforms other frontalization methods under most
of the poses, which proves that our synthesized images are
identity-preserving.

Table 6 shows the face verification accuracy and area-
under-curve results on the LFW database. We compare
our FI-GAN with some state-of-the-art methods, including
Hassner et al. [2], HPEN [4], FF-GAN [8], and DR-GAN [7].
Although FI-GAN is not trained on the LFW database,
it achieves high verification rates. Since most of the testing
face images on this database have small poses, our proposed
Feature-Mapping Block has limited effects on intermediate
features. The results of our methods are not very different
from those of others.

Table 7 shows the face verification accuracy and area-
under-curve results on the CFP database. We compare

VOLUME 8, 2020 68849



C. Rong et al.: Feature-Improving GAN for Face Frontalization

FIGURE 8. Synthesized images of FI-GAN and its variants on the MultiPIE database under the pose of 30◦ (first row), 60◦ (second row), and 90◦
(third row).

TABLE 7. Face verification accuracy (ACC) and area-under-curve (AUC)
results on the CFP database.

our FI-GAN with some state-of-the-art methods, includ-
ing Sengupta et al. [30], DR-GAN [7], and PIM [9]. Our
FI-GAN achieves comparable performance as its competi-
tors under the frontal-frontal setting. Moreover, our FI-GAN
consistently outperforms other state-of-the-art under more
challenging frontal-profile setting, which proves that our
Feature-Mapping Block has more effects on synthesized
results under large poses. The experimental results on
this database suggest the identity-preserving ability of the
FI-GAN in the uncontrolled environment.

D. ABLATION STUDY
In this subsection, we go over different architectures and loss
function combinations to gain insight into their respective
roles in face frontalization. We train seven partial variants of
our FI-GAN, e.g., w/o Lsym (Lsym is removed), w/o Lip, w/o
Ladv1, w/o Lfeature, w/oGfm, w/oDf (Df or Ladv2 is removed),
FI-GAN (DB) (Gfm is replaced by DREAM-Block [11]).
We report both qualitative visualization and quantitative
recognition results.

Fig. 8 illustrates the perceptual performance of these vari-
ants. The synthesized images of our FI-GAN look more like
ground true images than those of partial variants, especially
under large poses. As expected, inference results without Lip,
Lfeature, orGfm deviate from the true appearance seriously, and
those without Ladv1 tend to be blurry. The synthesized results
of other partial variants look similar to those of our FI-GAN.

The rank-1 recognition rates on MultiPIE under Set-
ting2 are reported in Table 8. We observe that our FI-GAN

TABLE 8. Model comparison: Rank-1 recognition rates (%) of our FI-GAN
and its variants on the MultiPIE database.

performs better than its variants under most poses. In partic-
ular, the accuracy decreases severely if Lip, Lfeature, or Gfm is
removed, especially under large poses. Although not as much
apparent, Lsym, Ladv1, andDf help to improve recognition per-
formance. Moreover, when we replace DREAM-Block with
our Feature-Mapping Block, the accuracy increases sightly,
which proves that Feature-Mapping Block is more suitable
for our FI-GAN than DREAM-Block.

Both visualization and recognition results prove that each
proposed component or loss function is essential for FI-GAN
during synthesis.

V. CONCLUSION
In this paper, we propose the Feature-Improving GAN
(FI-GAN) for face frontalization. FI-GAN uses the
Feature-Mapping Block for mapping the features of the pro-
file face images to the frontal space, which improves the face
recognition rates under large poses. To improve the features
of profile face images further, we propose a feature discrim-
inator which enforces the features of the profile faces to
have a small distance with those of ground true frontal faces.
Experimental results demonstrate that our approach can syn-
thesize photo-realistic and identity-preserving results, which
are comparable to those of the state-of-the-art. At present,
our FI-GAN only concentrates on the variation of yaw angle.
In the future, we will investigate how to deal with face images
with large pitch angle.
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