
Received February 24, 2020, accepted March 30, 2020, date of publication April 6, 2020, date of current version April 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2985909

An Area-Efficient Hybrid Polar Decoder
With Pipelined Architecture
YU WANG , (Student Member, IEEE), QINGLIN WANG, YANG ZHANG ,
SHIKAI QIU, AND ZUOCHENG XING, (Member, IEEE)
National Laboratory for Parallel and Distributed Processing, National University of Defense Technology, Changsha 410073, China

Corresponding author: Yu Wang (wangyu16@nudt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61804183.

ABSTRACT As the first kind of capacity-achieving forward error correction (FEC) codes, polar codes have
attractedmuch research interest recently. Comparedwith traditional FEC codes, polar codes show better error
correction performance when successive cancellation list (SCL) decoding with cyclic redundancy check is
adopted. However, its serial decoding nature and high complexity of list management lead to its low through-
put. Though the adaptive SCL decoding and hybrid decoding can improve the throughput, it comes at cost of
implementation area. In this paper, we propose a pipelined hybrid decoding procedure and the corresponding
hardware architecture to improve the area efficiency. In our design, the idle decoding cores are employed for
successive cancellation (SC) decoding when SCL decoding is not working. The SCL decoding will be acti-
vated when the SC decoding fails. Different decoding cores work according to their own operation sequences
and share one common processing array to improve the utilization ratio of processing elements. Constant
receiving interval is supportedwith the design of input buffer to store all received codewords. A software plat-
form is established to optimize the design parameters for each module of decoder. Moreover, the correspond-
ing architecture is implemented using 65nm technology. Experimental results show that the proposed decoder
can achieve a similar error correction performance with the SCL decoding with list size 16. Compared to the
state-of-the-art available hybrid decoder, our proposed pipelined hybrid decoder is 3.07×more area efficient.

INDEX TERMS Polar decoder, hybrid decoding, pipelined architecture, area-efficient.

I. INTRODUCTION
Polar codes, proposed by Arikan [1], have drawn much
research attention in the past ten years for their extraordi-
nary error correction performance and regular decoding algo-
rithm. Polar codes with successive cancellation (SC) decod-
ing can theoretically achieve channel capacity for symmetric
binary-input, discrete, memoryless channels (B-DMC) in the
asymptotic sense. However, for short to moderate practical
blocklengths, the performance of SC decoding is worse than
that of Turbo codes [2] or low-density parity-check (LDPC)
codes [3]. To improve the performance, SC list (SCL) decod-
ing [4] is proposed by keeping L codeword candidates in the
decoding procedure. Concatenated with cyclic redundancy
check (CRC) [5], the error correction performance of SCL
decoding can be further improved. It has been proved by the
results shown in [5], [6] that with a large list size (L ≥ 16),
CRC-aided SCL (CA-SCL) decoding can outperform LDPC

The associate editor coordinating the review of this manuscript and

approving it for publication was Qinghua Guo .

codes and Turbo codes, and hence polar codes with CA-SCL
decoding has been adopted for the control channel in the 5G
enhanced Mobile BroadBand (eMBB) scenario [7].

Although SCL decoding can significantly improve the
error correction performance of polar codes, it has a low
throughput and high area occupation when implemented in
hardware. Its long decoding latency comes from two aspects,
one of which is its inner sequential nature, while the other
is the list pruning and sorting. Continuous efforts have been
made to reduce the decoding latency. One approach is to
prune the SC decoding tree by decoding multi-bit sub-
codes at the same time so that fewer list management (LM)
operations are needed. Parallel decoded sub-codes can be
either general codes comprised of consecutive M = 2m

bits [8]–[10] or matching a special code pattern with variable
length [11]–[14]. The first kind decodes M bits simulta-
neously, where M is a fixed and predefined value. In this
method, the LM is executed at the leaf node of the decoding
tree withM bits. The second kind method runs simplified LM
algorithms for variable-length sub-codes. Especially, an extra

68068 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-0578-0443
https://orcid.org/0000-0001-5919-918X
https://orcid.org/0000-0002-5180-7854


Y. Wang et al.: Area-Efficient Hybrid Polar Decoder With Pipelined Architecture

structure needs to be designed to identify the code patterns
online [13], [14]. As another method to reduce latency,
the number of LM operations can be reduced by not splitting
at the reliable bits [15]. Besides, the sorting method itself can
be simplified to further reduce the latency of LM operation.
In recent researches, two kinds of metric sorting methods
are proposed to extract L paths with the smallest metrics
out of 2L paths. For the first kind, the sorting problem is
transposed into the calculation of themedian threshold [16] or
the double thresholds of the 2L metrics [17], while the second
kind extract L unsorted paths with the smallest metrics first,
and then sort the extracted metrics in parallel with other
decoding operations [18]. However, with the increase of list
size, the SCL decoding architecture still suffers from low
throughput.

The experimental results shown in [19] prove that most of
the codewords can be correctly decoded by the SCL algorithm
with a small list size, so an adaptive SCL (A-SCL) decoding
was proposed. In this algorithm, a codeword is first decoded
by a single SC decoding. If the decoded codeword fails to
pass CRC validation, the list size will continue to double
until it reaches the predefined maximum list size Lmax . The
A-SCL decoding with Lmax has an equivalent error correction
performance as that of SCL decoding with L = Lmax , while
the average list size L̄ is much smaller than the original one,
i.e. L̄ � Lmax . However, a directly-mapped A-SCL hardware
architecture needs to support multiple SCL decoders with
different list sizes, which inevitably leads to an increase in
area occupation and is unpractical. Simplified A-SCL decod-
ing was proposed in [20] with only one SC decoder and
one SCL decoder with Lmax . Whereas, its L̄ is much large
than the traditional A-SCL, which leads to the degradation
of throughput gain. Considering the hardware implementa-
tion, a hardware-friendly two-staged adaptive SCL decoding
algorithm is proposed in [21], which composes of one SCL
decoder with small list size and one SCL decoder with large
list size. The average list size L̄ is reduced due to most
codewords can be correctly decoded by the small list decoder.
Besides, in recent research, an asymmetric adaptive SCLwith
several SC decoders and one SCL decoder was proposed
in [22] to improve the utilization ratio of SCL decoder. In
this hybrid decoder, the difference between an SC decoder
and an SCL decoder in terms of computational complexity
and workload is considered.

The first hardware implementation of SCL decoding was
proposed in [23] by calculation log-likelihood (LL) values.
Then in [24], the basic hardware architecture of SCL decoder
using log-likelihood ratios (LLRs) was proposed to reduce
the computational complexity and memory usage. Based on
this design, the first fabricated hybrid polar decoder was pre-
sented in [25], in which one flexible decoder and one unrolled
decoder are integrated. The flexible decoder is used to support
SC, SC-flip (SCF) [26] and SCL decoding, while the unrolled
decoder is used to improve the throughput. However, these
two inner decoders are designed for different applications and
there is no load balancing between two decoders. To support

large list size and code length, another hybrid polar decoder
was proposed in [27] with three inner decoders: one SC
decoder for long code length, one SCL decoder with a flexible
list size and one ultra-reliable SCL decoder with list size
L = 32. Later, in [22], a load-balanced hybrid polar decoder
was proposed, considering the difference between the SC
decoder and the SCL decoder. However, in these designs,
they only made several optimization techniques for internal
LLRs message storage [28], [29], but not considered the
optimization for processing elements (PEs). The PEs also
occupy many areas in hardware implementation, and most of
time their utilization ratio is very low.

In this work, we focus on improving the area effi-
ciency of hybrid polar decoding by adopting a pipelined
architecture, which is similar to our previous work [30].
Here, the main contributions of this work are summarized
as follows:

• The decoding procedure of pipelined SC decoding
and hybrid decoding. Since the SCL decoding is an
SC-based decoding scheme, the idle decoding cores can
be employed for SC decoding when SCL decoding is not
working.

• A link-level simulation platform is established to select
the design parameters of each module in the decoder.

• Each module in the decoder is redesigned to adapt
pipelined decoding. An input buffer buffering all
received codewords is designed to support the constant
receiving interval. Different decoding cores share one
common processing array to improve the utilization ratio
of PEs.

• Experimental results show that our decoder achieves a
similar error correction performance as an SCL decoder
with list size L = 16 and that the hardware implemen-
tation is about 3.1× more area-efficient than that of the
state-of-the-art hybrid architecture [21].

The rest of this paper is organized as follows. In Section II,
an overview of polar codes and SC decoding are presented,
together with the SCL decoding. In Section III, the algo-
rithm of pipelined SC decoding and hybrid decoding will
be introduced. The hardware architecture of the pipelined
hybrid decoder will be introduced in Section IV. Besides,
the design and the selection of parameters of each decod-
ing module will be described. The simulation and imple-
mentation results of the proposed pipelined hybrid decoder
will be presented in Section V. Conclusions will be drawn
in Section VI.

II. PRELIMINARIES
A. CONSTRUCTION OF POLAR CODES
Polar codes characterized by (N ,K ,A) can achieve channel
capacity via the phenomenon of channel polarization [1].
As the channel polarization theorem states, a completely
polarized subchannel becomes either a noiseless channel
or a pure noisy channel when the blocklength N goes to
infinity, meaning the error probability of which is close to

VOLUME 8, 2020 68069



Y. Wang et al.: Area-Efficient Hybrid Polar Decoder With Pipelined Architecture

0.5 or 0 respectively. Without loss of generality, we assume
the code length N = 2n in this work, where n is an integer.
By transmitting information bits over the noiseless subchan-
nels and transmitting frozen bits which are known by both
transmitter and receiver over the noisy subchannels, polar
codes can achieve the channel capacity. Hence, constructing
a polar code is equivalent to find the K most reliable sub-
channels over which the information bits are transmitted, and
an information set A indicating these subchannel positions.
The complement of A is defined as the frozen set Ac, in
which the bits are called the frozen bits and are always
set to 0. Many construction methods [31]–[33] have been
proposed to calculate the reliability of subchannels. In this
paper, we adopt the construction method proposed in [33] to
reduce the computational complexity of the relative reliabil-
ities. Besides, as for CRC-aided polar codes, an r-bit CRC
code is encoded using the last r information bits, which check
the other K − r information bits, and the effective code rate
changes to R = K−r

N .
After the selection of information subchannels, the encod-

ing process of a polar code can be represented with a matrix
multiplication like

xN = uNGN , GN = B
[
1 0
1 1

]⊗n
, (1)

where vector uN , holding the information bits and the frozen
bits, denotes the source codeword to be encoded, while vec-
tor xN denotes the encoded codeword. GN is the generator
matrix, and B is a bit-reversal permutation matrix, while ⊗
denotes the Kronecker product. More information about this
encoding process can refer to [1].

B. SUCCESSIVE CANCELLATION DECODING
In successive cancellation decoding, we denote by y the data
received from the channel detection and use them as the
inputs of decoder. The outputs of SC decoder are denoted by
vector ûN1 , where ûi is the estimation of the bit ui by hard
decision. This hard decision is made according to its corre-

sponding log likelihood ratio (LLR) Li = log(
Pr(y,ûi−11 )|ui=0

Pr(y,ûi−11 )|ui=1
)

and the function h:

ûi = h(Li) =

0 if i ∈ Ac

1− sgn(Li)
2

if i ∈ A,
(2)

where sgn(Li) = ±1. For the SC decoding method, the i-th
LLRs at different decoding stage l can be computed iteratively
by following functions:

Ll,i =

f (Ll+1,i;Ll+1,i+2l ) if
i
2l

is even

g(usl,i−2l ;Ll+1,i−2l ;Ll+1,i) otherwise
(3)

And in the LLR domain, the function f and g perform the
following calculations by giving inputs LLRs La and Lb:

f (La,Lb) = log(
eLa+Lb + 1
eLa + eLb

) (4)

FIGURE 1. The successive cancellation decoding tree for polar code
(16, 8).

g(La,Lb, us) = (−1)usLa + Lb (5)

In the (3) and (5), the us denotes the partial sums of
decoded bits ûi−11 , which are the bits that have been decoded
previously. For g function at stage l, its partial sums us are
obtained by[

ulj+1, . . . , u
l
j+2l

]
=
[
ûj−2s+1, . . . , ûj

]
·

[
1 0
1 1

]⊗s
(6)

Since the encoding procedure of us and its crucial role in the
g function, the SC decoder has to decode serially. As depicted
in Fig.1, the decoding process of SC decoding can be seen as
a depth-first traversal of the decoding tree.

C. SUCCESSIVE CANCELLATION LIST DECODING
In order to improve the error correction performance, the SCL
decoding employs L SC decoders in parallel, where L is a
power of two. As shown in Fig.2, every time an informa-
tion bit ûIi needs to be estimated, instead of (2), the SCL
decoding creates two paths corresponding to the decision
ûIi = 0 and ûIi = 1 and the decoding paths are doubled.
When the number of decoding paths comes to list size L,
a list management (LM) operation is executed at each new
bit to keep the number of survival paths to L. In order to
measure the reliability of each path, a path metric (PM) is
associated to each path and updated at every new estimation.
This PM can be treated as a cost function, and the L paths
with the lowest PM are allowed to survive. In the LLR-based
formulation of SCL [24], the PM can be computed
as

PMip =

i∑
j=0

ln(1+ e−(1−2ûjp)Ljp ) (7)

where p is the path index, ûjp is the estimate of bit j at path
p, Ljp is the decision LLR. A hardware-friendly formulation
of (7) can be treated as

PMip =

PMi−1p , if ûip=
1
2

(
1−sgn

(
Lip
))

PMi−1p +
∣∣Lip ∣∣ , otherwise

(8)

=
1
2

i∑
j=0

sgn
(
Ljp
)
Ljp −

(
1− 2ûjp

)
Ljp (9)

As for the frozen bit ûF in the decoding procedure, the PM
of each path also needs to be updated and sorted to reduce

68070 VOLUME 8, 2020



Y. Wang et al.: Area-Efficient Hybrid Polar Decoder With Pipelined Architecture

FIGURE 2. The decoding scheme of successive cancellation list decoding.

FIGURE 3. The utilization ratio of PEs for semi-parallel architecture with
different code length.

the complexity of sorting at the next information bit, which
is detailed in [24].

Eventually, the SCL decoder outputs a list of L codeword
candidates. When a polar code is concatenated with a CRC,
the CRC for each of the L candidates is checked after the
decoding. The most reliable candidate out of all candidates
that pass the CRC is selected as the decoded codeword. If all
candidates fail the CRC, the pathwith the lowest PM is picked
as the decoded codeword.

III. PIPELINED DECODING ALGORITHM
In current hybrid polar decoders, each inner SC decoding core
in the SCL decoder has its own independent PEs. Though the
semi-parallel architecture proposed in [34] can improve the
utilization ratio of processing elements, the utilization ratio
is still very low, especially when calculating the LLRs at the
lower stages of the SC decoding tree. As shown in Fig.3,
for SC decoding core with 64 PEs, the average utilization
ratio is lower than 10%. The utilization ratio increases as the
number of PEs decrease, while it inevitably leads to much
increased decoding latency. In [35] and [36], an overlapped
decoding approach is proposed to improve utilization. How-
ever, it needs the codewords received cycle by cycle, which
is unpractical. In this work, we propose a pipelined decod-
ing procedure for hybrid polar decoder, in which different
decoding cores only hold its own internal LLRs and share
one common processing array. In this section, we will first

Procedure 1 Pipelined SC With Multi-Core

1: procedure PIPELINED SC DECODER(yN1 ,A
c)

2: if CouldWrite(pwr ) == 1 then
3: InputBuffer(pwr ) = yN1 ,NeedDecode = 1
4: else Drop the yN1
5: end if
6: if NeedDecode==1&&CorePrepared==1 then
7: ChannelSource(corei) = pwr
8: ProcessFIFO(pwr ) = corei
9: CoreState(corei) = 1, IssueState(corei) = 1

10: end if
11: for each corei in ProcessFIFO do
12: if IssueState(corei) == 1 then
13: Prepare LLRcorei ,PScorei ,OPcorei
14: IssueFIFO(pwr ) = corei
15: end if
16: end for
17: for each corei in IssueFIFO do
18: Push(PreLLRbuf ,LLRcorei )
19: Push(PSbuf ,PScorei )
20: Push(OPbuf ,OPcorei )
21: end for
22: LLRresult = Process(PreLLRbuf ,PSbuf ,OPbuf )
23: Push(PostLLRbuf ,LLRresult )
24: for each corei in IssueFIFO do
25: if Addrcorei + 2stagecorei ≤ NPE then
26: IssueState(corei) = 1
27: else IssueState(corei) = 0
28: end if
29: end for
30: for each corei in ProcessFIFO do
31: if stagecorei == 0 then
32: ûi = h(LLRcorei ,Ac)
33: psumcorei = PartialSum(ûi0)
34: end if
35: if BitIndexcorei ≥ N/2 then
36: CouldWrite(ChannelSource(corei)) = 1
37: end if
38: if BitIndexcorei == N then
39: Output = (ûN1 )corei
40: end if
41: end for
42: end procedure

introduce the procedure of pipelined SC decoding, and then
introduce the pipelined hybrid decoding.

A. PROCEDURE OF PIPELINED SC DECODING
The pipelined SC decoding procedure is performed based
on the pipelined architecture, whose block diagram is shown
in Fig.4. As a whole, it composes of six parts: Input Buffer,
Core Management, Issue Management, Operation Generator,
Processing Array, and List Management.

In pipelined SC decoding, the channel LLRs of each
received codeword are first stored in the Input Buffer

VOLUME 8, 2020 68071



Y. Wang et al.: Area-Efficient Hybrid Polar Decoder With Pipelined Architecture

FIGURE 4. The pipelined architecture of hybrid polar decoder.

InputBuffer(pwr ) = yN1 when there is free space
CouldWrite(pwr ) == 1. Then if there is an idle decod-
ing core CorePrepared == 1 in Core Management,
the address of input codeword will be dispatched to the core
ChannelSource(corei) = pwr . When a decoding core enters
the working state CoreState(corei) = 1, it is pushed into the
Process FIFO ProcessFIFO(pwr )=corei. The decoding core
starts to decode the input codeword according to its operating
sequences and read the channel LLRs from the corresponding
Input Buffer. The decoding operation and the data scale to
be processed for each cycle are stored in its own Operation
Memory and Stage Memory. These operations are generated
by the Operation Generator based on the code length and
the index of first information bit. According to the Stage
Memory, the decoding core reads the LLRs from the Input
Buffer or its own Internal LLRs memory. Each core in the
working state prepares its own unprocessed LLRs LLRcorei
and partial sum vector PScorei for corresponding decoding
operation.

If the current operation of one decoding core can be issued
IssueState(corei) == 1, the core will be pushed into the
Issue FIFO IssueFIFO(pwr )= corei. According to the Issue
FIFO, the LLRs to be processed of different decoding cores
are fetched to Pre-process Buffer Push(PreLLRbuf ,LLRcorei ).
Correspondingly, the partial sum vector of each core are
fetched to the Partial Sum Buffer Push(PSbuf ,PScorei ), when
the operation is G function. As for the F function, the same
scale of 0 are sent to the Partial Sum Buffer. The Pro-
cessing Array with NPE processing elements read the LLRs
from Pre-process Buffer and Partial Sum Buffer, and execute
the corresponding operation for each processing element.
After the calculation, the processed results are sent to the
Post-process Buffer Push(PostLLRbuf ,LLRresult ). Each core

in the Issue FIFO reads the results to extract its own results
to Internal LLRs memory. When an operation is not com-
pletely executed in current cycle, the corresponding decod-
ing core will not issue a new operation in the next cycle
IssueState(corei) = 0 until all LLRs of one operation have
been processed. When the decoding comes to the stage of
hard decision, the decision is made based on the frozen bit
using (2). Then, the estimated bit will be stored in the Path
Memory and used to calculate the partial sum.

After execution of each operation, the operation pointer
plus one, and after one bit estimation, the bit pointer of frozen
bit memory plus one. When the decoding core works in SC
decoding mode, the corresponding Input Buffer no longer
needs to store the LLRs when half of the codeword have been
decoded BitIndexcorei ≥ N/2. Then the newly received code-
word can be written to the buffer. The decoding of one code-
word ends when all operations are executed BitIndexcorei ==
N and the corresponding decoded codeword is output from
the path memory. The detail of pipelined SC decoding is
shown in the Procedure.1.

B. PROCEDURE OF PIPELINED HYBRID DECODING
Based on the procedure of pipelined SC decoding, the List
Management module is introduced to enable the SCL decod-
ing. In pipelined hybrid decoding, the serial CRC unit is
added to each decoding core to check the decoded bits.
If the codeword decoded by SC decoding cannot pass the
CRC CRC(ûN0 ) == fail, the SCL decoding is activated. L
SC decoding cores, which are working in SCL mode, are
united to perform SCL decoding, while the rest decoding
cores in Core Management are still working in SC mode. The
procedure of pipelined hybrid decoding is modified based on

68072 VOLUME 8, 2020



Y. Wang et al.: Area-Efficient Hybrid Polar Decoder With Pipelined Architecture

Procedure 2 Pipelined Hybrid Decoding With Multi-Core

1: procedure PIPELINED HYBRID DECODER(yN1 ,A
c)

2: if CRC(ûN0 ) == fail then
3: SCL_decoding = 1
4: end if
5: if (CoreState(corei) == 0) then
6: Push(CoreforList, corei)
7: ProcessFIFO(pwr ) = corei
8: CoreState(corei) = 1, IssueState(corei) = 1
9: else Hang up SCL decoding

10: end if
11: for each corei in ProcessFIFO do
12: if IssueState(corei) == 1 then
13: PrepareLLRcorei ,PScorei ,OPcorei
14: IssueFIFO(pwr ) = corei
15: end if
16: end for
17: for each corei in IssueFIFO do
18: Push(PreLLRbuf ,LLRcorei )
19: Push(PSbuf ,PScorei )
20: Push(OPbuf ,OPcorei )
21: end for
22: LLRresult = Process(PreLLRbuf ,PSbuf ,OPbuf )
23: Push(PostLLRbuf ,LLRresult )
24: for each corei in IssueFIFO do
25: if Addrcorei + 2stagecorei ≤ NPE then
26: IssueState(corei) = 1
27: else IssueState(corei) = 0
28: end if
29: end for
30: for each corei in CoreforList do
31: if stagecorei == 0 then
32: if j ∈ Ac then
33: ûj = 0,Update(PMcorei )
34: else
35: Do List Management
36: end if
37: SerialCRC(ûj)
38: end if
39: if BitIndexcorei == N then
40: coreout= argmin

corei∈PassCRC
(PMcorei )

41: Output = (ûN1 )coreout
42: end if
43: end for
44: end procedure

the procedure of pipelined SC decoding, and the details of the
changes are shown in Procedure.2.

When the SCL decoding starts, there is only one decoding
core working for SCL decoding. When meeting an informa-
tion bit that needs to be estimated, double cores are needed
to continue decoding. If there are not enough idle cores for
path duplicating, the SCL decoding will be hung up. When
a decoding core is available, it is preferred as the decoding

core of SCL decoding over SC decoding. This doubling
procedure will continue until the number of decoding paths
reaches L. Then the decoding procedure will be executed
as the traditional SCL decoding. All cores working for SCL
decoding will be added to the Core-For-List set for easier path
management Push(CoreforList, corei).

The PM for each candidate decoding path is stored in the
Metric Memory. At the decision stage, when the estimation is
a frozen bit, the estimated bit is set to 0 and the PM is updated
according to 9. As for the estimation of an information bit,
the decoding procedure will enter the list management stage.
The List Management module sorts and selects L paths with
the lowest metric as the surviving paths. The details of list
management stage will be shown in Section IV-E. Besides,
to avoid the duplication of internal LLRs, the PointerMemory
is instantiated to hold the data source of each decoding path,
as described in [4]. On the basis of SC decoding, the decoded
bits ûj are also sent to the Serial CRC module to do CRC
check. When the decoding is finished, the one with the small-
est PM of all CRC verified results will be output as the final
decoding codeword.

IV. HARDWARE ARCHITECTURE OF PIPELINED HYBRID
DECODER
A. OVERALL ARCHITECTURE
An overview of the pipelined hybrid polar decoder is pre-
sented in Fig.4. This hybrid decoder supports SC decoding
and SCL decoding simultaneously. Its error correction per-
formance is guaranteed by SCL decoding, while the through-
put is much improved by SC decoding. As shown in Fig.4,
Ncore = 20 decoding cores are instantiated, 16 of which
can be used for SCL decoding. The received channel LLRs
yN1 are first stored in the Input Buffer. Then the codeword is
dispatched to one idle decoding core to perform SC decoding.
When the SC decoding finishes, the CRC is checked. If the
decoded codeword cannot pass CRC, the SCL decoding is
activated with list size L = 16.
In order to select the design parameters for each module of

our decoder, a link-level simulation platform in MATLAB is
established. In the simulations, a random bit stream of length
K is generated with interval Tinterval . Then the CRC bits are
inserted and the frozen bits are set to zero according to the
frozen pattern. After that, the pre-coded bits are fed into the
polar encoder. Then, the encoded polar codes are modulated
by binary phase-shift keying (BPSK) modulator and trans-
mitted through the additive white Gaussian noise (AWGN)
channel. After the transmission, the received codewords are
sent to the pipelined hybrid decoder. In the simulation chain,
the random codewords are generated with constant interval
continuously. With different design parameters, the through-
put and utilization ratio are analyzed to get a high throughput
and area-efficient architecture.

B. INPUT BUFFER
In our decoder, we use an Input Buffer with depth Dinput to
store the received channel LLRs yN1 for all decoding cores.

VOLUME 8, 2020 68073



Y. Wang et al.: Area-Efficient Hybrid Polar Decoder With Pipelined Architecture

FIGURE 5. The schematic diagram of input buffer.

FIGURE 6. The memory usage of input buffer vs received codewords in SC
mode.

The register CouldWrite is used to indicate whether the cor-
responding storage space is writable currently. If there is free
space to store the received codeword, the LLRs yN1 will be
stored at the location indicated by the pointer pointerwr and
the corresponding bit in register CouldWrite will be set to
0. Besides, the corresponding bit in register Need_SC will
be set to 1 to indicate that a new codeword needs to be
decoded. Then, the bit will be reset to 0 when there is an idle
decoding core. Its storing address indicated by pointerrd will
be dispatched to the core. In the decoding progress, the cor-
responding storage space will be released when half of the
codeword have been decoded, and the bit CouldWrite[corei]
will be reset to 1. This memory release strategy is performed
when the decoding core is working in SC mode. In the SCL
decoding mode, the corresponding storage space can only
be released if the decoded codeword passes the CRC, other-
wise it will continue to be stored and the bit in Need_SCL
will be set to 1. In the Input Buffer, the pointer pointerscl
indicates the codeword that currently needs to be decoded
by SCL decoding. The maximum number of codewords
that can be stored in the Input Buffer for SCL decoding
is Dlist . If there are more than Dlist codewords need to be
decoded by SCL decoding, the new failed codeword will be
discarded. When half of the codeword have been decoded
by SCL, the corresponding storage in Input Buffer will be
released. The schematic diagram of Input Buffer is shown
in Fig.5.

TABLE 1. The minimum sending interval Tinterval that can balance the
codeword producer and consumer for different number of cores.

Since all received channel LLRs are first stored in Input
Buffer, our design supports constant receiving interval like
that does in [21]. In the design of Input Buffer, the memory
depth Dinput is a critical parameter, which is affected by the
interval Tinterval , the number of decoding cores Ncore, and
the maximum processing capability Dlist of SCL decoding.
Besides, the release strategy of different decoding modes
also affects the reuse of memory space. In order to minimize
the memory depth Dinput , we need to know its maximum
usage. The design of Dinput is a classic Producer-Consumer
problem. When data processing gets a dynamic balance
with the data generating, the usage of memory will reach
a steady state. For simplicity, we first simulate with all
decoding cores working in SC mode. The bit stream gener-
ator generates the codeword with different interval Tinterval .
In the simulations, we instantiate 20 decoding cores and
256 PEs. The encoder generates 500 codewords of polar
codes (512, 256) with interval Tinterval in one test. As shown
in Fig.6, when the processing capability of cores is less
than the supply of codewords, the memory usage increases
with the number of received codewords. When the sending
interval is Tinterval = 44, a dynamic balance reaches between
the codeword producer and consumer. As the sending interval
increases further, the maximum usage of memory decreases.

Theminimum sending interval Tinterval that can balance the
codeword producer and consumer for the different number
of cores are shown in Table 1 with corresponding maximum
memory size. It could be observed that as the number of
cores decreases, the minimum sending interval increases and
the memory required to achieve dynamic balance decreases.
Compared with traditional design, in which each decoding
core has its individual channel LLRs memory, the design
of Input Buffer module can reduce about 50∼60% memory
space.

Then we make simulations in hybrid mode with different
interval Tinterval . In order to guarantee the excellent decoding
performance, an SCL decoding with list size L = 16 is
adopted in hybrid mode. As proposed in [22], an asymmet-
ric hybrid decoder can balance the workload between SC
decoder and SCL decoder. Hence, we instantiate more cores
than the list size in our design so that the rest decoding cores
can be used for SC decoding while SCL decoding. Consid-
ering the difference of workloads at the different channel
conditions, we assume that the codewords are transmitted
with the same condition Eb

/
N0 = 1.5dB in the simulations.

We will introduce more details about the asymmetric deploy-
ment in Section IV-D. With the fixed PEs, the introduction of
SCL decoding will inevitably lead to an increase in decoding

68074 VOLUME 8, 2020



Y. Wang et al.: Area-Efficient Hybrid Polar Decoder With Pipelined Architecture

FIGURE 7. The memory usage of Input Buffer vs received codewords in
hybrid mode.

latency and memory usage of Input Buffer. Besides, due
to memory release strategy of SCL decoding, the balanced
minimum memory usage grows further. As shown in Fig.7,
the hybrid decoder with Ncore = 20 decoding cores can reach
decoding balance when the interval is Tinterval = 240 which
is much greater than that in SC mode. The maximum usage
of memory increases from 8 to 10.

The impact of different deployments on Input Buffer is
also shown in Fig.7. For the deployment with Ncore = 20
decoding cores, one SCL(L = 16) decoder with four SC
decoders is instantiated. In compared deployment, one more
decoding core is instantiated. It can be observed that with the
increase of decoding core, the balanced interval decreases to
Tinterval = 200, while the maximum usage of Input Buffer
decreases from 10 to 9.

C. OPERATION GENERATOR
In the pipelined decoder, the Operation Generator is responsi-
ble for generating the calculation operations of each decoding
stage, which control the PEs to perform different calculations.
Furthermore, the decoding stages, which indicate the scale
of the internal LLRs to be calculated, are also generated by
Operation Generator. The operations and stages are generated
based on the code length and the index of the first information
bit. In order to reduce the decoding latency, the decoding
starts from the first information bit as [25] in our design.
The state machine inside the Operation Generator generates
the first several operations based on the binary representa-
tion of first information bit until its decision stage. After
the decision of the first information bit, the state machine
works in a depth-first path search mode like traditional
SC decoding.

For codewords with the same frozen pattern, they have the
same decoding schedule. Their decoding procedure can be
controlled by the same set of operations and stages. However,
multiple accesses to the samememory space in the same cycle
are impractical for hardware implementation. The number of
accesses to the operation memory at different cycles is shown
in Fig.8. In these simulations, 50 codewords are transmitted
with the constant interval Tinterval . For decoders with 5 or

FIGURE 8. The number of accesses in the same cycle in decoding
procedure with different number of cores.

FIGURE 9. The diagram of operation generator.

10 cores, the maximum number of concurrent access is equiv-
alent to the number of cores. As the number of decoding cores
increasing, the number of concurrent accesses becomes less
than the number of cores. This is due to the limited processing
capability of decoding cores. In addition, the increase in
sending interval also leads to a decrease in the number of
concurrent accesses. Due to the concurrent access, we need to
instantiate the operation memory and stage memory in each
decoding core to realize immediate access to the operations
and stages, which is shown in Fig.9.

D. CORE MANAGEMENT
For SC-based decoding algorithms, they have a similar
decoding procedure. Therefore, when the SCL decoding is
not working, the idle decoding cores in our hybrid decoder
can be used for SC decoding to improve the throughput. In
the Core Management module, Ncore decoding cores are used
to store the internal LLRs for one SC decoding codeword or
one SCL decoding path. The register Core_State is used to
indicate whether the decoding core is in working state. When
a received codeword is dispatched to one idle decoding core,
the register LLR_Source will record the source of channel
LLRs.

Inside each core, the corresponding LLRs and partial sum
are prepared according to current operation at each stage
of decoding. The register Issue_State is used to determine
whether a new operation should be issued. When a new
operation is issued, the Issue Management reads LLRs from
the corresponding core. At the decision stage, the hard deci-

VOLUME 8, 2020 68075



Y. Wang et al.: Area-Efficient Hybrid Polar Decoder With Pipelined Architecture

TABLE 2. The average decoding latency of SC decoding and SCL decoding
of polar code (512, 256) for different deployments.

sion will be made by (2) inside each core. Similar to the
Operation Memory, at each decision stage, there are multiple
concurrent accesses to the Frozen Bit Memory, so the mem-
ory needs to be instantiated for each core. Then, the deci-
sion result is sent to the Path Memory and the Partial Sum
Network (PSN) to calculate the partial sum. In SCL mode,
the decision LLRs will be sent to the List Management to
make list pruning and sorting. Moreover, the decision results
of each path are sent to the Serial CRC module to make
CRC check.

For the design of Core Management, the workload bal-
ancing of asymmetric deployment must be considered. The
difference of decoding latency and error-correction perfor-
mance between SC decoding and SCL decoding should be
taken into account. However, different from the method pro-
posed in [22], the decoding latency varies with different
deployments, as the SC decoding and SCL decoding share
the common PEs. That is to say, the speed gain β of SC
decoding relative to SCL decoding is not a fixed value.
The average decoding latency and speed gain of different
deployments are shown in Table 2. In these simulations,
the decoding latency is measured when SC decoding and
SCL decoding are performed simultaneously. The codewords
of polar code (512,256) transmitted with constant interval
Tinterval are decoded by 256 PEs. It can be observed that the
SCL decoding has a consistent decoding latency, while the
SC decoding latency decreases with the increase of decod-
ing cores. In order to reduce the decoding latency of SCL
decoding, the cores for SCL decoding has the priority in the
operation issue stage, that is, the LLRs of the corresponding
core are read first. With this optimization, the speed gain
decreases with the same deployment, which are also shown
in Table 2.

As for the error correction performance, the performance
of SC decoding at interest Eb

/
N0 regime is shown in Fig.10.

For polar codes with different code lengths at the worst
channel condition Eb

/
N0 = 1.5dB, they have similar

error-correction performance, BLER = 0.25∼0.33. Consid-
ering that the performance will improve at the better channel
conditions, the workload balancing can be achieved with the
workload ratio 4 : 1 under the worst condition. Hence, con-
sidering the speed gain of decoding latency, the deployment
η = 2 : 1 with 18 decoding cores is selected, where η
represents the ratio of the number of SC decoders to the
number of SCL decoders.

TABLE 3. The error probability of SC decoding during one SCL decoding
and the drop probability due to memory overflow.

FIGURE 10. The BLER performance of SC decoding with different polar
codes.

Based on the asymmetric deployment, we need to set ratio-
nal upper bound of SCL processing capability Dlist , in case
that many SC decoders generate failed codewords at the same
time. However, a large upper bound will result in an increase
in the Input Buffer size. So we need to make a tradeoff
between memory area and performance. The probability that
the SC decoders have failed fe codewords during one SCL
decoding is calculated by

P(fe) =
(
ft
fe

)
× BLERfe × (1− BLER)ft−fe , (10)

where ft = CoreSC ∗ β is the total number of codewords
decoded by the SC decoding cores during one SCL decoding.
When there are more than Dlist failed SC decoding code-
words, the failed codewords will be dropped by the SCL
decoding and output directly. The drop probability of SCL
decoding with predefined Dlist is calculated by

P(dropu) = 1−
u∑
e=0

P(fe). (11)

The error probabilities of different number of failed code-
words during one SCL decoding are shown in Table 3, with
their drop probabilities. In the table, the BLER is obtained
by transmitting polar codes (128,64) at Eb

/
N0 = 1.5dB.

According to the table, by setting the upper bound Dlist = 3,
98.8% of failed codewords can be buffered for subsequent
SCL decoding.

E. LIST MANAGEMENT
Different from the sorters proposed in recent researches [18],
[37], [38], which are designed to reduce the sorting stage
or area occupation, in our design, more attention should be
paid to the release order of different decoding paths to reduce

68076 VOLUME 8, 2020



Y. Wang et al.: Area-Efficient Hybrid Polar Decoder With Pipelined Architecture

FIGURE 11. The simplified bubble sorter at the estimation of information
bit with list size L = 8. Vertical lines represent comparisons, boxes
represent stages.

the size of the Pre-process Buffer. In SCL mode, when the
decoding process of one core reaches the decision stage,
the issue of operations will be suspended. Then the sorter
sorts the decoding paths according to their PMs and outputs
the survival paths. The survival paths that have been ranked
can continue to issue new operations. If multiple decoding
paths are released simultaneously after passing through the
sorter module, the following operation with the same data
scale may lead to the overflow of Pre-process Buffer. Con-
sidering this, we adopt the simplified bubble sorter proposed
in [37] as the path sorter in our design.

As shown in Fig.11, the paths to be sorted are input from
the left side of the sorter, while the sorted paths are released
at different sorting stages from the right side. Each vertical
line represents a compare-and-select (CAS) unit that has two
endpoints of the line as inputs. For each node in the struc-
ture, there are two registers to store the core index and PM,
respectively. Besides, there is one state register for each node
to indicate whether the current PM is ready for comparison.
When the two endpoints of one vertical line are both ready,
the comparison is executed, and the state register of the next
stage is updated.

At the sorting stage of information bit, different paths
enter the sorter module according to their previous ranking.
The path with small PM enters the sorter from the upper
horizontal line. The sub-paths of each path are input to two
adjacent horizontal lines, where the upper one has a smaller
PM than the lower one. At the other side of the sorter, the
survival paths are released from the upper 8 lines, while
other paths are dropped from lower 8 ones. A 4-bits reg-
ister is added to each entering path to indicate whether its
two sub-paths are survival. When both sub-paths are sur-
vival, the operation issuing of the lower path will be sus-
pended until one sorted path, whose both sub-paths of that
path are dropped, appears. Then the decoding state of path
with large PM is copied to the dropped path for subsequent
decoding.

FIGURE 12. The full bubble sorter at the estimation of frozen bit with list
size L = 4.

As for the sorting of frozen bit, the sorter is a little bit
different from the simplified one, since all the paths need to
be ranked. By using the method proposed in [24], we can
use a triangular structure to realize full sort of all decoding
paths, as shown in Fig.12a. In this structure, the CAS units
in red dotted lines can be removed due to the relations of
two endpoints are already known. Then we get the structure
shown in Fig.12b. By using this structure, all decoding paths
at the decision stage of the frozen bit can be ranked and
released at different sorting stages. In this sorter, the path that
arrives first enters from the upper horizontal line.

When the SCL decoder is in the path expansion state,
the working cores for SCL decoding are less than the list
size L. At this state, the path sorting can be finished by using
only a portion of the entire sorter, which are circled by the
red dotted trapezoid in Fig.11 and the red dotted triangle
in Fig.12b.

Since the sorted paths are released at different stages,
the decoding process of different paths are not synchronous.
The path with a small PM can issue more operations before
other paths are released, which leads to the path go into the
sorting stage of the next bit. Hence, in our design, we instan-
tiate two sets of sorter modules. One set is used for the
current decoding bit, while another one is used for the next bit.
When all paths are released by current sorter, another sorter
becomes the current one and the current sorter is reset for
the sorting of next bit, as shown in Fig.13. Especially when
the latter bit in the consecutive two bits is an information bit,
the operation issuing of the released path will be suspended in
the next sorter until the previous sorter releases all decoding
paths.

F. ISSUE FIFO AND PRE-PROCESS BUFFER
Since different decoding cores share the common process-
ing array in our design, a Pre-process buffer is needed to
collect the LLRs. At each cycle, the working core deter-
mines whether issue a new operation, according to the
state of register Issue_State. When the corresponding bit is
Issue_State[Corei] = 1, the core index will be pushed into
the Issue FIFO, and the unprocessed LLRs will be writ-
ten into the Pre-process Buffer. For the Pre-process Buffer,
the write address Addri of each core is calculated based on
the Issue_State and the data scale of the previous cores. In
addition, when there are unprocessed LLRs of previous cycle
remained in the Pre-process Buffer, an offset address Addrbias

VOLUME 8, 2020 68077



Y. Wang et al.: Area-Efficient Hybrid Polar Decoder With Pipelined Architecture

FIGURE 13. The sorters of adjacent two bits for SCL decoding with list
size L = 4.

FIGURE 14. The writing scheme of Pre-process Buffer.

is added to obtain the final write address. Based on this,
the write address of each issuing core can be calculated by

Addri=
i−1∑
c=0

(Issue_State[c]&&(1�stagec))+pbias, (12)

where 1 � stagec represents the scale of LLRs to be
processed. As shown in Fig.14, the unprocessed LLRs are
written into the Pre-process Buffer based on their respective
write address Addri. The front NPE LLRs in the buffer are
fetched out for calculation. After the calculation, the LLRs
that cannot be processed in the current cycle will be shifted
to the front-end of the buffer and processed in the next cycle.
At the same time, the offset pointer Addrbias will move to the
end of unprocessed LLRs.

To avoid buffer overflow, the length of Pre-process Buffer
Lpre must be large enough to cache all unprocessed LLRs
in one cycle. In the design of Pre-process Buffer, we make
simulations to obtain the maximum usage of buffer in the
hybrid decoding. 100 codewords of polar codes (512,256)
are transmitted with different sending interval Tinterval at
Eb
/
N0 = 2.5dB, and there are Ncore = 18 decoding cores

in the decoder. In the simulations, the length of Pre-process
Buffer Lpre is large enough to cache all LLRs to be processed
at one cycle and the maximum usage of the buffer is recorded.

FIGURE 15. The maximum usage of pre-process buffer with different
number of PEs.

As shown in Fig.15, with the increasing of sending interval,
the maximum usage of buffer decreases. However, at some
sending interval points, there are still surges of maximum
usage.

In addition to the sending interval, the number of PEs NPE
also affects the design of Pre-process Buffer. The numberNPE
represents the processing capability of the decoder. By instan-
tiating different numbers of PEs, the maximum usage of the
buffer varies. However, as depicted in Fig.15, the maximum
usages of different NPE have the similar overall trend. Hence,
in our design, NPE is set equally to the half of code length
N/2 to meet the maximum processing requirement of one
decoding core in one cycle. Besides, it can be observed from
Fig.15 that for polar codes (512,256) by adopting the length
Lpre = 2.5 ∗ (N/2) = 640, the buffer can meet the maximum
usage with different sending interval.

G. POST-PROCESS BUFFER
The calculated results of PEs are cached in the Post-process
Buffer. Then the LLRs will be broadcast to every core,
as shown in Fig.16. Each working core reads the respective
results according to the same address Addri calculated in
Issue FIFO and checks the integrity of calculated LLRs.
For each issuing core, the integrity is checked by whether
Addri + (1 � stagec) is smaller than NPE . When only a
portion of the prepared LLRs are calculated in the current
cycle, the decoding progress of the corresponding core will
be hung up and wait for the rest results. In the next cycle,
the rest of the calculated LLRs of this core will be read
first and combined with the previous LLRs. In the decoding,
only the cores that have all prepared LLRs be processed
can be removed from Issue FIFO. Besides, when the reading
address Addri is large than NPE , it can be inferred that the
LLRs to be processed have not been calculated in current
cycle. Therefore, the corresponding core should not issue new
operation in the next cycle either. Moreover, in each decoding
core, the calculated LLRs will be shifted to the front-end
of the buffer before they are finally stored into the Internal
LLR memory for facilitating the reading in the subsequent
decoding.

68078 VOLUME 8, 2020



Y. Wang et al.: Area-Efficient Hybrid Polar Decoder With Pipelined Architecture

FIGURE 16. The reading scheme of post-process buffer.

FIGURE 17. BLER performance of our decoder with different SCL
decoding capability Dlist .

V. EXPERIMENTAL RESULTS
A. ERROR CORRECTION PERFORMANCE OF THE
PROPOSED DECODING PROCEDURE
To evaluate the error correction performance of the proposed
hybrid polar decoder, we make simulations with polar codes
(512,256). In these simulations, we instantiate Ncore = 18
decoding cores in the decoder, 16 of which can be used
for SCL decoding. When the decoder gets a dynamic bal-
ance with the codewords generating, the performance of our
decoder mainly depends on the upper bound of the SCL
processing capability Dlist . The larger Dlist , the more error
codewords of SC decoding will be cached for later SCL
decoding, which will lead to the improvement of performance
at the cost of throughput degradation. As shown in Fig.17,
with the increase of Dlist , the error correction performance is
improved at a low SNR regime. At the high SNR regime, our
proposed decoder has the same performance as SCL decoder
with L = 16, even with a small Dlist . Therefore, for some
applications that only need to work at a high SNR regime,
we can use Dlist = 1 to reduce the size of Input Buffer and
improve the throughput. In addition, due to the decrease of
BLER of SC decoding at a high SNR regime, the ratio η
can be increased, i.e. Ncore = 20, to further improve the
throughput.

B. DECODING LATENCY AND UTILIZATION RATIO OF PEs
In the current design of hybrid polar decoder [21], [22], most
of the time the utilization ratio of PEs is very low. Hence,
in our design, different decoding cores share one common
processing array to improve the utilization ratio. This design

FIGURE 18. The utilization ratio and decoding latency of hybrid polar
decoder with different numbers of PEs and sending interval.

will inevitably lead to the increase of decoding latency for
one single codeword. However, by adopting the pipelined
architecture, the overall throughput and area efficiency of the
hybrid polar decoder can be much improved.

The utilization ratio of PEs depends on the number of code-
words decoded simultaneously, the sending interval Tinterval
and the number of PEs NPE . With the same sending interval,
the more decoding cores, the more codewords are processed
by the PEs simultaneously. The increase of processed code-
words leads to the increase of utilization ratio. As shown
in Fig.18a, the decoder with Ncore = 20 has higher utilization
ratio than that withNcore = 18 at Tinterval = 45, 49. However,
when the receiving interval increases further, the utilization
ratio of these two deployments becomes equivalent, since
the numbers of working cores become the same. Besides,
this is the reason why the utilization ratio decreases as the
receiving interval increases for a given deployment. It can be
observed fromFig.18a that the utilization ratio is also affected
by the number of PEs NPE . With a certain receiving interval,
the smaller the number NPE , the higher the utilization ratio.
However, with the same number of working cores, the reduc-
tion in the number of PEs means that large Pre-process Buffer
is needed to cache the unprocessed LLRs, and the decoding
latency will increase accordingly.

The comparison of decoding latency with different num-
ber of PEs is shown in Fig.18b. With the same workload,
the decoder with fewer cores has higher decoding latency. In
our design, the multibit decision decoding [8] is not adopted,
which makes the decoding latency of single codeword longer.
However, this does not affect the throughput of our pipelined
decoder, which is determined by the receiving interval of
codewords. Though decoders with different numbers of PEs

VOLUME 8, 2020 68079



Y. Wang et al.: Area-Efficient Hybrid Polar Decoder With Pipelined Architecture

TABLE 4. Implementation results for proposed hybrid polar decoder against equivalent state-of-the-art hybrid decoder or flexible decoder with polar
codes(1024, 512).

have the same throughput when the workload is low, they
have a different upper bound of throughput. When the work-
load increases, the throughput of decoders with more PEs
will increases further, while the overflow of Input Buffer will
incur in the decoders with fewer PEs.

C. IMPLEMENTATION RESULTS OF THE PROPOSED
ARCHITECTURE
To compare with the implementations of other hybrid
decoders, the proposed pipelined architecture with different
deployments is implemented for polar codeswith (N ,K , r) =
(1024, 512, 24). They are synthesized using a 65nm tech-
nology node. For a fair comparison, the same quantization
schemes in [21], i.e. Qi = 6,Qc = 5,QPM = 8, are used in
our implementation. The reported throughputs are measured
by coded bits and the reported total area composes of both
cell and net area.

The synthesis results of our hybrid polar decoders with two
different deployments, i.e. Ncore = 18 and Ncore = 20, are
shown in Table 4. For decoder with 18 cores, it is designed
for working at a low SNR regime with Dinput = 8 and
Dlist = 3 to achieve high error correction performance. As for
the decoder with 20 cores, it is implemented withDinput = 12
and Dlist = 1 to improve the throughput for the applications
that only need to work at a high SNR regime. They both have
512 PEs and adopt the design proposed in [39] to improve the
hardware efficiency. Compared with the decoder Ncore = 18,
the critical path delay of the decoder with Ncore = 20 is
longer, since its issue management needs more operations to
prepare the unprocessed LLRs. As for the area occupation,
the increased area comes mainly from the decoding cores and
the Input Buffer. Since more cores can work simultaneously,
the decoder with Ncore = 20 has higher throughput, which
results in a higher area efficiency when the area of other
modules does not increase much.

In current hardware implementations, there are only two
implementations of hybrid decoder [21], [22]. However,
the design in [22] implements on FPGA platform, so we

only compare the ASIC implementation results of the design
proposed in [21]. Different from the designs in [21], [22], our
hybrid decoder uses the idle decoding cores for SC decoding
when there is no codeword need SCL decoding, which leads
to a higher throughput with deployment Ncore = 20. In the
design [21], there are one SCL decoder with list L = 32
and one with list L = 2, which is equally 34 decoding cores.
For fair comparison, we only compare the area efficiency. As
shown in Table 4, the proposed decoder withNcore = 18 cores
is 1.2× more area efficiency, while the decoder with Ncore =
20 is up to 3.1× more area efficiency when compared to
the design in [21]. In addition, the flexible decoder proposed
in [25], [27] can also perform both SC and SCL decoding
in different application scenarios. Therefore, they can also be
regarded as multi-core hybrid decoders. Compared with these
two flexible decoders, our decoder with Ncore = 20 is up to
41.4× and 37.8× more area efficiency.

VI. CONCLUSION
In this work, a pipelined hybrid decoding procedure with cor-
responding hardware architecture is proposed. In our decoder,
the SC decoding and the SCL decoding use the common
decoding cores to improve the utilization ratio. Constant
receiving interval is supported by adopting the design of
Input Buffer. A link-level simulation platform is established
to optimize the parameters for each module in the decoder.
Each module in the decoder is redesigned to adapt pipelined
decoding and to improve hardware efficiency. Experimental
results show that our proposed pipelined hybrid decoder is
at least 3.1× more area-efficient than the existing hybrid
decoder and flexible decoder.

REFERENCES
[1] E. Arikan, ‘‘Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,’’ IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[2] C. Berrou, ‘‘Near-Shannon limit error-correcting coding and decoding
: Turbo codes,’’ in Proc. Int. Conf. Commun., Geneva, Switzerland,
May 1993, pp. 1064–1070.

68080 VOLUME 8, 2020



Y. Wang et al.: Area-Efficient Hybrid Polar Decoder With Pipelined Architecture

[3] R. Gallager, ‘‘Low-density parity-check codes,’’ IRE Trans. Inf. Theory,
vol. 8, no. 1, pp. 3–26, 2008.

[4] I. Tal and A. Vardy, ‘‘List decoding of polar codes,’’ IEEE Trans. Inf.
Theory, vol. 61, no. 5, pp. 2213–2226, Jun. 2012.

[5] K. Niu and K. Chen, ‘‘CRC-aided decoding of polar codes,’’ IEEE Com-
mun. Lett., vol. 16, no. 10, pp. 1668–1671, Oct. 2012.

[6] K. Niu, K. Chen, and J.-R. Lin, ‘‘Beyond turbo codes: Rate-compatible
punctured polar codes,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2013, pp. 3423–3427.

[7] Final Report of 3GPP TSG RAN WG1 #87 v1.0.0, 3rd Generation Partner-
ship Project (3GPP), Reno, NV, USA, Nov. 2016.

[8] B. Yuan and K. K. Parhi, ‘‘Low-latency successive-cancellation list
decoders for polar codes with multibit decision,’’ IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 23, no. 10, pp. 2268–2280, Oct. 2015.

[9] C. Xiong, J. Lin, and Z. Yan, ‘‘Symbol-decision successive cancellation
list decoder for polar codes,’’ IEEE Trans. Signal Process., vol. 64, no. 3,
pp. 675–687, Feb. 2016.

[10] C. Xia, J. Chen, Y. Fan, C.-Y. Tsui, J. Jin, H. Shen, and B. Li,
‘‘A high-throughput architecture of list successive cancellation polar codes
decoder with large list size,’’ IEEE Trans. Signal Process., vol. 66, no. 14,
pp. 3859–3874, Jul. 2018.

[11] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, ‘‘Fast polar
decoders: Algorithm and implementation,’’ IEEE J. Sel. Areas Commun.,
vol. 32, no. 5, pp. 946–957, May 2014.

[12] S. A. Hashemi, C. Condo, and W. J. Gross, ‘‘Fast and flexible successive-
cancellation list decoders for polar codes,’’ IEEE Trans. Signal Process.,
vol. 65, no. 21, pp. 5756–5769, Nov. 2017.

[13] S. A. Hashemi, C. Condo, M. Mondelli, and W. J. Gross, ‘‘Rate-flexible
fast polar decoders,’’ IEEE Trans. Signal Process., vol. 67, no. 22,
pp. 5689–5701, Nov. 2019.

[14] F. Ercan, T. Tonnellier, and W. J. Gross, ‘‘Energy-efficient hardware archi-
tectures for fast polar decoders,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 67, no. 1, pp. 322–335, Jan. 2020.

[15] Z. Zhang, L. Zhang, X. Wang, C. Zhong, and H. V. Poor, ‘‘A split-reduced
successive cancellation list decoder for polar codes,’’ IEEE J. Sel. Areas
Commun., vol. 34, no. 2, pp. 292–302, Feb. 2016.

[16] J. Lin and Z. Yan, ‘‘An efficient list decoder architecture for polar codes,’’
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 11,
pp. 2508–2518, Nov. 2015.

[17] Y. Fan, J. Chen, C. Xia, C.-Y. Tsui, J. Jin, H. Shen, and B. Li, ‘‘Low-
latency list decoding of polar codes with double thresholding,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2015,
pp. 1042–1046.

[18] V. Bioglio, F. Gabry, L. Godard, and I. Land, ‘‘Two-step metric sorting
for parallel successive cancellation list decoding of polar codes,’’ IEEE
Commun. Lett., vol. 21, no. 3, pp. 456–459, Mar. 2017.

[19] B. Li, H. Shen, and D. Tse, ‘‘An adaptive successive cancellation list
decoder for polar codes with cyclic redundancy check,’’ IEEE Commun.
Lett., vol. 16, no. 12, pp. 2044–2047, Dec. 2012.

[20] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, ‘‘Fast list
decoders for polar codes,’’ IEEE J. Sel. Areas Commun., vol. 34, no. 2,
pp. 318–328, Feb. 2016.

[21] C. Xia, Y. Fan, and C.-Y. Tsui, ‘‘A two-staged adaptive successive can-
cellation list decoding for polar codes,’’ in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May 2019, pp. 1–5.

[22] J. Tong, H. Zhang, L. Huang, X. Liu, and J. Wang, ‘‘An asymmetric
adaptive SCL decoder hardware for Ultra-Low-Error-Rate polar codes,’’
in Proc. 16th Int. Symp. Wireless Commun. Syst. (ISWCS), Aug. 2019,
pp. 532–536.

[23] A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross, and A. Burg,
‘‘Hardware architecture for list successive cancellation decoding of polar
codes,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 8,
pp. 609–613, Aug. 2014.

[24] A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg, ‘‘LLR-based
successive cancellation list decoding of polar codes,’’ IEEE Trans. Signal
Process., vol. 63, no. 19, pp. 5165–5179, Oct. 2015.

[25] P. Giard, A. Balatsoukas-Stimming, T. C. Muller, A. Bonetti, C. Thibeault,
W. J. Gross, P. Flatresse, and A. Burg, ‘‘PolarBear: A 28-nm FD-SOI ASIC
for decoding of polar codes,’’ IEEE J. Emerg. Sel. Topics Circuits Syst.,
vol. 7, no. 4, pp. 616–629, Dec. 2017.

[26] O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, ‘‘A low-complexity
improved successive cancellation decoder for polar codes,’’ in Proc. 48th
Asilomar Conf. Signals, Syst. Comput., Nov. 2014, pp. 2116–2120.

[27] X. Liu, Q. Zhang, P. Qiu, J. Tong, H. Zhang, C. Zhao, and J. Wang,
‘‘A 5.16 Gbps decoder ASIC for polar code in 16nm FinFET,’’ in Proc.
15th Int. Symp. Wireless Commun. Syst. (ISWCS), Aug. 2018, pp. 1–5.

[28] S. Ali Hashemi, C. Condo, F. Ercan, and W. J. Gross, ‘‘Memory-efficient
polar decoders,’’ IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 7, no. 4,
pp. 604–615, Dec. 2017.

[29] S. A. Hashemi, M. Mondelli, S. H. Hassani, C. Condo, R. L. Urbanke,
and W. J. Gross, ‘‘Decoder partitioning: Towards practical list decoding
of polar codes,’’ IEEE Trans. Commun., vol. 66, no. 9, pp. 3749–3759,
Sep. 2018.

[30] Y. Wang, L. Chen, Q. Wang, Y. Zhang, and Z. Xing, ‘‘Algorithm and
architecture for path metric aided bit-flipping decoding of polar codes,’’ in
Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2019, pp. 1–6.

[31] I. Tal and A. Vardy, ‘‘How to construct polar codes,’’ IEEE Trans. Inf.
Theory, vol. 59, no. 10, pp. 6562–6582, Oct. 2013.

[32] P. Trifonov, ‘‘Efficient design and decoding of polar codes,’’ IEEE Trans.
Commun., vol. 60, no. 11, pp. 3221–3227, Nov. 2012.

[33] G. He, J.-C. Belfiore, I. Land, G. Yang, X. Liu, Y. Chen, R. Li, J. Wang,
Y. Ge, R. Zhang, and W. Tong, ‘‘Beta-expansion: A theoretical framework
for fast and recursive construction of polar codes,’’ in Proc. IEEE Global
Commun. Conf., Dec. 2017, pp. 1–6.

[34] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, ‘‘A semi-parallel
successive-cancellation decoder for polar codes,’’ IEEE Trans. Signal Pro-
cess., vol. 61, no. 2, pp. 289–299, Jan. 2013.

[35] C. Zhang and K. K. Parhi, ‘‘Low-latency sequential and overlapped archi-
tectures for successive cancellation polar decoder,’’ IEEE Trans. Signal
Process., vol. 61, no. 10, pp. 2429–2441, May 2013.

[36] T. Che, J. Xu, and G. Choi, ‘‘Overlapped list successive cancellation
approach for hardware efficient polar code decoder,’’ in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), May 2016, pp. 2463–2466.

[37] A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg, ‘‘On metric
sorting for successive cancellation list decoding of polar codes,’’ in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), May 2015, pp. 1993–1996.

[38] H. Li, ‘‘Enhanced metric sorting for successive cancellation list decod-
ing of polar codes,’’ IEEE Commun. Lett., vol. 22, no. 4, pp. 664–667,
Apr. 2018.

[39] R. Shrestha and A. Sahoo, ‘‘High-speed and hardware-efficient successive
cancellation polar-decoder,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 66, no. 7, pp. 1144–1148, Jul. 2019.

YU WANG (Student Member, IEEE) received
the B.S. and M.S. degrees in electrical engi-
neering from Air Force Engineering University,
Xi’an, China, in 2013 and 2016, respectively.
He is currently pursuing the Ph.D. degree in
electrical engineering with the High-Performance
Microprocessor Research Group, National Uni-
versity of Defense Technology, Changsha,
China.

His current research interests include
error-correction codes, hardware architecture optimization, and VLSI archi-
tecture design for digital signal processing and communication systems.

QINGLIN WANG born in 1987. He received
the B.S. degree in mechanical engineering from
Tsinghua University, China, in 2009, and the
M.S. and Ph.D. degrees in electrical science
and Technology from the National University
of Defense Technology, China, in 2016. He has
been a Research Assistant with the Science and
Technology on Parallel and Distributed Process-
ing Laboratory, National University of Defense
Technology, since 2016. His research interests

include high-performance computing, VLSI signal processing, and machine
learning.

VOLUME 8, 2020 68081



Y. Wang et al.: Area-Efficient Hybrid Polar Decoder With Pipelined Architecture

YANG ZHANG received the B.S. degree in
electronic engineering and science technology
from Xian Jiao Tong University, in 2011, and
the M.S. degree in electrical engineering from
the National University of Defense Technology,
in 2013. He is currently an Assistant Professor
with the High-Performance DSP Research Group,
National University of Defense Technology. His
research interests include the next-generation mul-
ticore architecture design, optimization of parallel

programs on GPGPU, and high-efficient DSP design.

SHIKAI QIU received the B.S. degree in electrical
engineering from Shanghai Jiao Tong University,
Shanghai, China, in 2017. He is currently pursu-
ing the master’s degree in electronic science and
technology with National University of Defense
Technology, Hunan, China. His current research
interests include 5G, microprocessor technology,
and VLSI signal processing.

ZUOCHENG XING (Member, IEEE) received the
B.S. degree from the Guilin University of Elec-
tronic and Technology, in 1987, and the M.S.
and Ph.D. degrees from the National Univer-
sity of Defense Technology, in 1990 and 2001,
respectively.

He was a Professor with the School of Com-
puter, National University of Defense Technology,
one of the academic leader of high-performance
computer architecture and micro-electronics, and

solid electronics and doctoral tutor. He has been engaged in teaching and
research on computer science for over twenty years, and responsible or take
part in over 20 important projects, including Galaxy and TH-1/1A/2 series
high-performance supercomputers design and FT series high-performance
general-purpose CPU design, the National Natural Science Foundation,
National Defense Pre-research funds, and so on. His research interests
include microprocessor architecture design, 5G wireless communications
and VLSI architecture design for communication.

68082 VOLUME 8, 2020


