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ABSTRACT Compared with von Neumann’s computer architecture, neuromorphic systems offer more
unique and novel solutions to the artificial intelligence discipline. Inspired by biology, this novel system
has implemented the theory of human brain modeling by connecting feigned neurons and synapses to
reveal the new neuroscience concepts. Many researchers have vastly invested in neuro-inspired models,
algorithms, learning approaches, operation systems for the exploration of the neuromorphic system and
have implemented many corresponding applications. Recently, some researchers have demonstrated the
capabilities of Hopfield algorithms in some large-scale notable hardware projects and seen significant
progression. This paper presents a comprehensive review and focuses extensively on theHopfield algorithm’s
model and its potential advancement in new research applications. Towards the end, we conclude with a
broad discussion and a viable plan for the latest application prospects to facilitate developers with a better
understanding of the aforementioned model in accordance to build their own artificial intelligence projects.

INDEX TERMS Neuromorphic computing, neuro-inspired model, Hopfield algorithm, artificial intelli-
gence.

I. INTRODUCTION
Nowadays, neuromorphic computing has become a popular
architecture of choice instead of von Neumann computing
architecture for applications such as cognitive processing.
Based on highly connected synthetic neurons and synapses
to build biologically inspired methods, which to achieve
theoretical neuroscientific models and challenging machine
learning techniques using. The von Neumann architecture is
the computing standard predominantly for machines. How-
ever, it has significant differences in organizational struc-
ture, power requirements, and processing capabilities relative
to the working model of the human brain [1]. Therefore,
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neuromorphic calculations have emerged in recent years as
an auxiliary architecture for the von Neumann system. Neu-
romorphic calculations are applied to create a programming
framework. The system can learn and create applications
from these computations to simulate neuromorphic functions.
These can be defined as neuro-inspired models, algorithms
and learning methods, hardware and equipment, support sys-
tems and applications [2].

Neuromorphic architectures have several significant and
special requirements, such as higher connection and par-
allelism, low power consumption, memory collocation and
processing [3]. Its strong ability to execute complex compu-
tational speeds compared to traditional von Neumann archi-
tectures, saving power and smaller size of the footprint. These
features are the bottleneck of the von Neumann architecture,
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so the neuromorphic architecture will be considered as an
appropriate choice for implementing machine learning algo-
rithms [4].

There are ten main motivations for using neuromorphic
architecture, including Real-time performance, Parallelism,
von Neumann Bottleneck, Scalability, Low power, Foot-
print, Fault Tolerance, Faster, Online Learning and Neu-
roscience [1]. Among them, real-time performance is the
main driving force of the neuromotor system. Through paral-
lelism and hardware-accelerated computing, these devices are
often able to perform neural network computing applications
faster than von Neumann architectures [5]. In recent years,
the more focused area for neuromorphic system develop-
ment has been low power consumption [5]–[7]. Biological
neural networks are fundamentally asynchronous [8], and
the brain’s efficient data-driven can be based on event-based
computational models [9]. However, managing the commu-
nication of asynchronous and event-based task in large sys-
tems is a challenging in the von Neumann architecture [10].
The hardware implementation of neuromorphic computing is
favourable to the large-scale parallel computing architecture
as it includes both processing memory and computation in
the neuron nodes and achieves ultra-low power consump-
tion in the data processing. Moreover, it is easy to obtain a
large-scale neural network based on the scalability. Because
of all aforementioned advantages, it is better to consider the
neuromorphic architecture than von Neuman for hardware
implementation [11].

The basic problem with neuromorphic calculations is
how to structure the neural network model. The compo-
sition of biological neurons is usually composed of cell
bodies, axon, and dendrites. The neuron models imple-
mented by each component of the specified model are
divided into five groups, based on the type of model
being distinguished by biologically and computationally
driven.

(1) Biologically Plausible [12]: Specifically simulate the
behaviour type present in the biological nervous system. Such
as a Hodgkin-Huxley model, the understanding of neuronal
activity from the perspective of ions entering and leaving the
neuron is based on a four-channel nonlinear differential equa-
tion [13]. Other one is Morris Lecar model, which depends
on a two-dimensional nonlinear equation for effective and
simple calculation and implementation [14]. Meanwhile,
a calcium-based model is a simplified biologically plau-
sible implementation, providing the link concept between
stimulation protocols, calcium transients, protein denoting
cascades and induced synaptic changes [15]. Finally, for a
Galves-Löcherbach model, it combines the spiking levels
with biological rationality, and a model with inherent ran-
domness [16].

(2) Biologically-Inspired [17]: Ignore biological rational-
ity to replicate biological nervous system behavior. Such as
the Izhikevich model, has both simplicity and the ability
to replicate biologically precise behavior [18]. Other one
is Hindmarsh-Rose model, which satisfactorily explains the

dynamics of pulse firing, cluster firing, and chaotic behavior
of neurons [19].

(3) Neuron and other Biologically- Inspired Mecha-
nism [20]: Neuron models include other biologically inspired
components.

(4) Integrate and-Fire Neurons [21]: Biology-inspired
spike neuron model.

(5) McCulloch-Pitts Neurons [22]: The excitation function
of neurons is a strict threshold function on the neuron models.

Similarly, synaptic models can be divided into two cat-
egories. One of the synaptic models is bio-inspired synap-
tic implementations that include spike-based systems and
feed-forward neural networks [23]. For more complex synap-
tic models, another common approach is based on plasticity
mechanism that depends on the intensity or weight of a
neuron to change over time [24].

Different network topologies are required for neuro-
morphic systems. In network models, the more popular
implementations are feed-forward neural networks, such as
multilayer sensing, and other architectures include Recurrent
neural networks, Stochastic neural networks [25], spiking
neural networks [26], artificial neural network cellular neu-
ral networks [27] and pulse-coupled neural networks [28],
cellular automata [29], fuzzy neural networks [30]. Hop-
field network as the RNN network architecture is especially
common in the early implementation of neural morphology,
which is consistent with the neural network research trend,
there are more recently implementations now. Such as graph
partition [31], fault detection [32] and data classification [33],
etc.

For the algorithm, the learning method should match
each requirement differences on specific network topology,
neuron model or other features of network model. In the
algorithm learning process, supervised learning is gener-
ally not considered as an online method. The widely used
algorithm for programming neuromorphic systems is back-
propagation technique. In contrast, unsupervised learning is
based on self-organizing maps or self-organizing learning
rules.

Neuromorphic implementation based on high-level stan-
dards is to divide hardware implementation into three
categories: digital, analog, and hybrid analog/digital plat-
forms [17]. The analog system takes advantage of the phys-
ical characteristics on the electronic device to achieve the
computation process, while digital systems tend to rely on
logic gates to perform the computation process. In contrast,
the biological brain is an analog system that relies on phys-
ical properties for computation rather than Boolean logic.
Because the neural network can be resistant to noise and
faults, it is a good solution for analog implementation [34].
Two major categories of digital systems are processed to
neuromorphic implementation that are FPGA and ASIC.
The first one for FPGA, which has been used frequently
in neuromorphic systems [17]. Another one is custom or
application-specific integrated circuit (ASIC) chips, which is
also common neuromorphic implementations [35].
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For neuromorphic systems, custom analog integrated cir-
cuits have several universal features which make them suit-
able for each other. There are all properties that occur in
both analog circuits and biological systems, such as the con-
servation of charge, amplification, thresholding and integra-
tion [36]. Because of the analog circuits similar to biological
systems, widely used in hybrid analog/digital neuromorphic
systems for the implementation of neuronal and synaptic
components. Moreover, several problems with analog sys-
tems about unreliability can be addressed by using digital
components. Meanwhile, analog neuromorphic systems of
synaptic weights are often stored in digital memories. Neuro-
morphic system communication includes both intra-chip and
inter-chip communication [37].

One of the software tools on the neuromorphic system
includes custom hardware synthesis toolset. These synthesis
tools usually require a relatively high level of description
and conversion, which can be used to implement a low-level
representation of the neural circuits on the neuromorphic sys-
tem [38]. The second set of software tools for the neuromotor
system is a programming tool of neuromotor systems, which
include two functions: mapping and programming [39]. The
software simulator developed to test and verify the neu-
romotor system that is based on a software-based simula-
tor for hardware performance. For applications, in order to
demonstrate the computational and device capabilities of
neuromorphic computing, various types of neural networks
have been applied to different applications area, includ-
ing images [40], speech [41], data classification [42], con-
trol [43], and anomaly detection [44]. To achieve these types
of applications on hardware, neural networks matched lower
power consumption, faster calculations, and footprint ratios
delivered are superior to those delivered by using von Neu-
mann architecture.

The rest of the paper is organized as follows: Section II
introduces the details of Hopfield algorithm. Section III
extends to discrete Hopfield network architecture and hard-
ware implementation. Section IV describes the learning
method in Hopfield algorithm. Section V presents and com-
pares the applications of Hopfield algorithm and shows the
application development details. Section VI discusses some
of the research open challenges and future trends in the Hop-
field algorithm. Section VII summarizes the entire discussion
of hardware research on Hopfield algorithms and hardware
implementation.

II. HOPFIELD ALGORITHM
The Hopfield network is an important algorithm in the history
of neural network development. Hopfield [45], a physicist at
the California Institute of Technology, proposed in 1982 that
it is a single-layer feedback neural network. Hopfield neural
network is the simplest and most applicable model in feed-
back networks [46], because it has the function of associative
memory [47], which can accurately identify the object and
accurately identify digital signals even if they are contami-
nated by noise.

The Hopfield neural network model is a kind of recurrent
neural network [48]. There is a feedback connection between
the input and the output. Under the input excitation, it will
be in a constant state of flux. The feedback network can
be divided as stable and unstable, which is by judging its
stability. For a Hopfield network, the key is to determine its
weight coefficient under stable conditions [48]. If the weight
matrix W of the Hopfield the network is a symmetric matrix,
and the diagonal elements are 0 then it indicates that the
network is stable.

According to the discrete or continuous output of the
network, the Hopfield network is divided into two types:
discrete Hopfield neural network (DHNN) and continuous
Hopfield neural network (CHNN) [49]. Discrete Hopfield
Neural Network (DHNN): The output of a neuron takes only
1 and 0, which is respectively indicating the neuron in an acti-
vation and inhibition state [50]. Continuous Hopfield Neural
Network (CHNN) of topology structure is identical to the
DHNN. But the difference is whether its activation function
is a discrete step function [51] or a continuous function of
sigmoid [52].

Due to the structural characteristics of discrete Hopfield
network, the output data is equal to the mode size and dimen-
sion of the input. Meanwhile, it is the neurons that take
binary values (1, −1) or (1, 0) as input and output. The
synaptic weight between neuron i and neuron j is Wij [53].
So for a Hopfield neural network with N numbers of neurons,
the weight for the matrix is NxN size. Its unique associative
memory process is through a series of the iterative process
until the system is stable [54].

Discrete Hopfield network is a feature that can be used for
associative memory. This is one of the intelligent characteris-
tics of human beings, so the Hopfield algorithm can simulate
human ‘‘want’’ [55]. By reviewing and thinking about the
past scenes, it is used as the associative memory of the
Hopfield Neural network. Firstly, learning training process
to determine the weight coefficient of the network, and then
the memorized information is stored with minimal energy
in the N-Dimensional hypercube of a certain corner [56].
Meanwhile, after the weight coefficient of the network is
determined, as long as a new input vector is given to the
network, this vector may be local data, incomplete or partially
incorrect data, but the network still produces a complete
output of the information being remembered [57].

The most prominent feature of the Hopfield neural net-
work concept is designed closely related to circuit hardware
deployment [58]. The main idea of the Hopfield is the use
of the hardware circuit to simulate neural network optimiza-
tion process. This process can be fast that takes an analog
circuit processing advantage rather than digital circuit [59].
Unlike the software realization of the Hopfield neural net-
work, the hardware implementation of the algorithm makes
brain-like computations possible [60].

Hopfield is based on the idea of energy function to create
a new calculation method, which is through the nonlinear
dynamics method for developing this neural network. It has
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clarified the relationship between the neural network and
dynamics model [61]. Then, established the stability crite-
rion of the neural network on this algorithm. Meanwhile,
it points out that the information is stored in the connection
between the neurons of the network, eventually results build
a Hopfield network. In addition, Hopfield algorithm com-
pares the feedback network with the Ising model in statistical
physics and defines the upward and downward directions of
the magnetic rotation as neuron’s two states of activation and
inhibition [62]. That means the magnetic rotation interaction
as the synaptic weight on the neuron. This logicality helped
many physics theory and physicists to enter the field of neural
networks. In 1984, Hopfield designed and developed the
circuit of the network algorithm model [63], it is stating that
neurons can be implemented with operational amplifiers, and
all neuron connections can be simulated by electronic cir-
cuits [64]. One of the continuousHopfield networks using cir-
cuit deployed, which is successfully solved travelling sales-
man problem (TSP) calculation problem. It proves that the
Hopfield circuit can address the optimization problem [65].

Moreover, Hopfield network can convert analog signals
into a digital format that is to realise associative mem-
ory, signal estimation and combination optimization appli-
cations [66]. This solution is similar to the method of the
human first layer to achieve signal processing. So, it belongs
to the neuromorphic calculation. Due to the algorithm sta-
bility of output digital signal, Hopfield neural can withstand
the redundant input of analog signal noise or variable [67].
This situation is in contrast to the interface circuit between
the traditional analog transmission medium and the digital
computing device [68]. It takes the speed advantage of the
analog circuit and the noise reduction ability of the digital
circuit into account.

III. DISCRETE HOPFIELD NETWORK
Hopfield algorithm as a single-layer fully interconnected
feedback network that includes symmetric synaptic con-
nections to stores information on the connections between
neurons. It is forming a discrete neural network that is char-
acterized by parallel processing [69], fault tolerance and
trainability [70].

Discrete Hopfield network of function that simulates the
memory of biological neural network is often called asso-
ciative memory network. Associative memory (AM) is an
integral part of neural network theory [71], and it is a sig-
nificant function in artificial intelligence and other fields that
are used for pattern recognition [70], image restoration [72],
intelligent control [73], optimal computation [74] and optical
information processing [75]. It mainly uses the good fault tol-
erance of neural networks to restore incomplete, defaced and
distorted input samples achieve complete prototypes, which
are suitable for recognition, classification purposes [76].

Association is based on memory where the information
is stored first, and then retrieved in a certain way or rule.
Associative memory is also called content-addressed mem-
ory, which means the process of associative memory is the

process of accessing information [77]. Information is dis-
tributed in the content of biological memory, rather than a
specific address. The storage of information is distributed,
not centralized. The storage of information is content address-
able memory (CAM) that is distributed, not centralized [78].
Whereas traditional computers are based on addressable
memory, which is a group of information with a certain
storage unit [79]. In comparison, Hopfield neural networks
are more consistent with the information storage mode of
biological memory. It is distribution stores the information in
the connection weight matrix of the neural network that can
be recalled directly from the content of the information [53].

According to different memory recall methods, associative
memory networks can be divided into static memory and
dynamic memory networks. The former advocated a forward
mapping of inputs, while the latter of the memory process
is the interactive feedback of input and output. Since the
dynamic network has good fault tolerance, it is the most com-
monly used associative memory [80]. The common dynamic
memory network is the Hopfield model (auto-associative
memory) [81] and Kosko’s Bidirectional Associative Mem-
ory (BAM) model (hetero-associative memory) [82].

The applied classification based on associative mem-
ory can be divided into auto-associative memory and
hetero-associative memory. Auto-associative memory refers
to recovering from the damaged input mode to the complete
mode; it can map the input mode in the network to one
of the different modes stored in the network. At this point,
the associative memory network can not only map the input
to the self storedmodes, but also have some fault tolerance for
the input mode with default or noise [50]. Hetero-associative
memory refers to obtaining other relevant patterns from input
patterns. When the hetero-associative network is excited by
input patterns with certain noise, it can associate the pattern
pairs of the original samples through the evolution of the
state [83].

In the process of realizing associative memory, discrete
Hopfield neural network is divided into two working stages:
learning-memory stage and associative memories stage. The
task of the learning-memory stage is to adjust the weights
based on the input samples, so that the stored samples become
dynamics factors [84]. The task of the associative memories
stage is to make the final steady state as attractor dynamics
after the weights are adjusted, it is according to the given
incomplete or affected information as the associative key-
word [85]. In fact, this associative memory process is the con-
tinuous movement of the energy function inside the Hopfield
neural network, so that the energy is continuously reduced,
eventually reaching a minimum value, and in a steady-state
process [86].

From the perspective of learning processing, Hopfield
algorithm is a powerful learning system with simple structure
and easy programming. The Hopfield network operates in a
Neural Dynamics, and its working process is the evolution
of the state, which means the evolution from the initial state
in the direction of energy reduction until it reaches a stable
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FIGURE 1. The fully connected network architecture of the Hopfield network (adapted
from [91]).

state, which is the output results. Therefore, the state of
the Hopfield network evolves in the direction of decreas-
ing energy function. Since the energy function is bounded,
the system will incline to a stable state, which is the output of
the Hopfield network [87].

From a system perspective, the feedforward neural net-
work model has limited computing power, and the feedback
dynamics of a feedback neural network more stronger com-
puting power than a feedforward neural network, which is
based on feedback to enhance global stability [88]. In feed-
back neural networks, all neurons have the same status and
there is no hierarchical difference. They can be connected
to each other and also feedback signals to themselves [89].
In contrast, although the back-propagation neural network
model can handle learning problems, it is not suitable for
combinatorial optimization problems. In theory, if the appli-
cation is properly set, Hopfield Neural networks can be more
robust on the applications. It is a static nonlinear mapping,
and the nonlinear processing capability of the complex sys-
tem can be obtained by the compound mapping of the simple
nonlinear processing unit [90].

The discrete Hopfield neural network (DHNN) which
is also known as a feedback neural network is fully con-
nected network architecture and is shown in Fig 1. The
circles represent neurons, and the output of each neuron
as the input of other neurons, which means that the input
of each neuron comes from other neurons. In the end,
other neurons will return the output data to themselves.
At this time, each neuron the input and output has a delay
z−1 [91]. In the Hopfield neural network each neuron is of
the same model, and x represents the neuron output at the
current time, and y represents the neuron output at the next
time.

So, in the time t, the output of x in the neuron i can be
expressed as:

xi (t) =
n∑
j=1

wijyj (t) (1)

In the time t+1, the output of y in the neuron i can be
expressed as:

yi (t + 1) = f (xi (t)) (2)

where f (·) is the transfer function:

f (a) =

{
+1 a ≥ 0
−1 a < 0

(3)

Converting the network structure into a circuit topology
that is shown in Fig 2, Hopfield neural networks are equiv-
alent to amplified electronic circuits. Input data for each
electronic component (neuron), including constant external
current input, and feedback connections that to linkwith other
electronic components [92].

As shown in Fig 2, each electronic component is based on
amplifiers. It includes a non-inverting amplifier and an invert-
ing amplifier (depending on the positive and negative weight
of the connection to select corresponding output needs) [93].
All states are feedback to the input of the circuit through the
bias current Is (S= 1,2,3,. . . , N) [94]. At the connection point
of each neuron, there is has a resistor, which represents the
impedance Rij(Rij = 1/Wij) connected to other neurons [95],
and the constant Wij represents the network weight between
neuron i and neuron j.

For the bias current calculation is shown in the following:

Ii =
s∑
j=1

xi
rij
=

s∑
j=1

xjwij (4)
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FIGURE 2. Circuit topology of Hopfield network.

IV. LEARNING METHOD
The neural network learning method can be classified by
event sequence and time series [96]. This occurrence is due to
the asynchronous timestamps, where the sequence of events
depend on the network dynamics, and the time-series is
deterministic [97]. For instance, in the RNN (recurrent neural
network) architecture of the Backpropagation Through Time
Algorithm (BPTT), Forward propagation is calculated each
time in sequence order, while the Backpropagation delivers
the accumulated residuals starting from the last time sequence
number through themultiple layers [98]. In contrast, the event
information can be captured based on the event sequence
method, thereby, adjusting the time steps of the conditional
intensity function [96]. On the other hand, the Hopfield algo-
rithm training is based on the dynamics evolving in discrete
time with time steps to discrete learning [99].

According to different learning environments, neural net-
work learning methods can be divided into supervised learn-
ing and unsupervised learning [100]. In supervised learning,
the data of the training samples are loaded to the network
input end. Meanwhile, the corresponding expected output is
compared with the network results to achieve the difference
value [101]. So, it is to adjust the connection strength on the
weights and converge to a certain weight after repeated train-
ing [102]. If the sample situation is changed, then weights
can be modified to adapt to the new environment after train-
ing [103]. Neural network models using supervised learning
include back-propagation networks [104], perceptrons [105],
etc. In unsupervised learning, the network is directly placed
into the environment without giving standard samples, and
the learning and the working combined as a stage [106].
At this point, the learning rule transformation is based on
the evolved equation of connection weight [107]. The clas-
sic example of unsupervised learning is the Hebb learning
rule [108].

Hebb learning rules are the basis of artificial neural net-
works. The adaptability of neural networks is realised through

learning approaches [109]. It is a behaviour according to the
environment changes, which is used to adjust weights and
then to improve the system [110]. Hebb rules believe that the
learning process occurs in the process of synapse between
neurons. At the synapse, the strength of synaptic connections
varies with the activity of neurons between synapses [111].
Some artificial neural network learning rules can be regarded
as deformation by the Hebb learning rules [112]. Based on
this, researchers have proposed various learning rules and
algorithms to meet the needs of different network mod-
els. Effective learning algorithms enable neural networks to
construct different target and object representations, which
is through adjustment of connection weights. It is forming
distinctive information processing methods that to enabling
information storage and processing is reflected in network
connections [113].

In 1949, D.O. Hebb proposed the ‘‘synaptic correction’’
on the learning mechanism of neural networks by psychology
hypothesis [111]. Its means when neuron i and neuron j are
excited at the same time, the connection strength between
the two neurons should be enhanced. For example, in animal
experiments when a bell rings, a neuron is excited, and at
the same time the appearance of food will stimulate the
other nearby neurons, then the connection between these
two neurons will be strengthened, so that there is a relation-
ship between these two things connected. On the contrary,
if two neurons are always unable to stimulate simultaneously,
the connection between them will become weaker [114].

The neuron stores the learned knowledge on the connection
weights of the network. From the biological field, when the
A cell’s neuron axon is close enough to B cells, it repeat-
edly and continuously stimulates to cell B. At this point,
the connection between the two cells will be strengthened.
This means one or two cells in A or B will produce some kind
of growth process ormetabolic change, thereby enhancing the
stimulation effect of cell A into cell B [115].

The Hebb learning rule can be mathematically expressed
as follows:

Wij (t + 1) = Wij (t)+ a ∗ yi ∗ yj (5)

The Wij represents the connection weight of neuron j to
neuron i, yi and yj represent the output of two neurons, ‘a’
is a constant representing the learning rate. If yi and yj are
activated at the same time, that means yi and yj are positive,
and theWij will increase. If yi is activated and yj is inhibited,
that means yi is positive and yj is negative, then Wij will
decrease. This equation shows that the change in weightWij is
proportional to the product of the transfer function values on
both sides of the synapse. This is an unsupervised learning
rule, which does not require any information from object
outputs [116].

Hopfield neural network weight learning uses the sum of
the outer-products method by Hebb rule. Given P pattern
samples (n dimensional orthogonal vector) that is Xp, P =
1, 2, 3, . . . , P, x ∈ {−1, 1}n, and the samples are orthogonal to
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each other. The n> p, then the weight matrix is outer product
sum of memory samples [117].

Outer product sum:

W =
P∑

P=1

xp
(
xp
)T (6)

Component-wise manner:

Wij =

{∑P

P=1
xpi x

p
j , i 6= j

0, i = j
(7)

At this point, W satisfies the symmetry requirement, and
its need to check whether is an attractor on the algorithm.

Since P samples Xp, P= 1, 2, 3, . . . , P, x∈{−1, 1}n is pair-
wise orthogonal. The calculation according to the following
equation: (

xp
)T xk = {0 p 6= k

n p = k
(8)

Due to n > p, the attractor xp will be calculated by the
following

f
(
wxp

)
= f

[
(n-p) xp

]
= sgn

[
(n-p) xp

]
= xp (9)

The weights computing workflow of Hopfield net-
work [118] as following:

Algorithm 1 Hopfield Algorithm Workflow
Input: Pn pattern samples (n dimensional orthogonal vec-

tor);
1: Set to the initial state of the network X = P;
2: Set the number of iteration steps;
3: Calculate the W weight of the network: W
=
∑

i=1
n
[
PTP− I

]
;

4: Since Wij = 0, subtract the unit matrix I;
5: Perform iterative calculation;
6: Until the number of iteration steps is reached or the

state of the network is stabled, stop the network learning
operations, otherwise iteration continues;

Output: Weight matrix of Hopfield Neural Network

However, when the network size is fixed, the number of
memory mode is limited. For the allowed association error
rate, the maximum number of memory modes Pmax that the
network store ability of the capacity is N/log(N). It is related
to the network size, algorithm and the distribution of vectors
in the memory mode [119]. When designing a DHNN net-
work using an outer product method, if the memory patterns
all meet the pairwise orthogonal condition, the n-dimensional
network can memorise at most n patterns [120]. Nonethe-
less, the pattern samples cannot all meet the orthogonality
condition, and the information storage of the network will
be greatly reduced for the non-orthogonal patterns. In fact,
when the network size n is set, the more patterns to be
memorised, which cause the high possibility of errors in
associations. On the contrary, if it is required the lower error

FIGURE 3. Hopfield network of the recognition application workflow.

rate, which needs the smaller information storage capacity
of the network. When it exceeds 0.14n proportion, an error
may occur during the association on the network [121]. The
error result corresponds to a local minimum of energy, or a
pseudo-attractor [122].

V. APPLICATIONS
In daily life, character recognition has high practical appli-
cation value in the postal [128], transportation [129] and
document management process [130], such as the recog-
nition of car numbers and license plates in transportation
systems [131]. However, the images captured in the natural
environment are often blurred due to the limitations of camera
hardware [111], or uncleared by the font is occluded andworn
out. At these points, the complete information of the char-
acter cannot be obtain and identification of noisy characters
become a key issue [132].

At present, there are several methods for character recog-
nition, which are mainly divided into a neural network [133],
probability statistical [134], and fuzzy recognition [135].
The traditional character recognition method cannot recog-
nize well under the condition of noise interference. How-
ever, the discrete Hopfield neural network has the function
of associative memory, which is reasonable for anti-noise
processing [136]. By applying this function, characters can
be recognized and satisfactory recognition results can be
achieved. Besides, the convergence calculation becomes fast
for processing.

A. CASE STUDY: CHARACTER RECOGNITION
The associative memory can be designed based on the dis-
crete Hopfield neural network concept, and the network can
recognize the 10 digits that fall in the range from 0-9. Fur-
thermore, despite any disturbance by certain noise due to the
specified range of numbers, still has a good recognition effect
by network feedback. At this point, the network is composed
of a total of 10 stable states that reach to 0-9 numbers.
These numbers are represented by 10 × 10 matrices and are
directly described by the binarymatrix. In the 10× 10matrix,
the number pixel is represented by 1, and the non-number
pixel is defined −1 as blank display.
The network through learning the above matrices on the

function of associative memory is performed to achieve
10 steady states reach 10 numbers. When noisy data are
applied to the network, the output of the network which is
a feedback, used to determine the comparison of 10 steady
states such as the object vector. Finally, the purpose of the
whole operation is to achieve the effect of correct recognition.

The Hopfield network of recognition application workflow
is depicted as below:
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TABLE 1. Algorithm comparison on the character recognition cases.

1) STANDARD SAMPLES
In this study, standard samples are selected to convert into
binarisation matrix. In this application of characters recog-
nition, all the numbers from 0-9 are converted into 10 × 10
matrices.

2) DESIGN HOPFIELD NETWORK
In this case, network T is a matrix of R*Q with Q target
vectors (the element must be binary of −1 or 1). According
to the above matrices requirements that to design a network
architecture, it is a 10 × 10 matrix on number sample size.
At this point, the Hopfield network should contain 100 neu-
rons, which reach input a 10 × 10 matrix into an algorithm.

3) HOPFIELD NETWORK TRAINING
The learning processing adopts a neurodynamic method. The
working process is based on the evolution of the state. For
a given initial state, it evolves of energy decreasing manner,
and finally reaches a stable state. The network starts from the
initial state X (0) to multiple recursions, where its state does
not change to form a stable state, which means the network is
stable by X (t + 1) = X (t).

When the X state is reached to a steady-state, then it is
considered as an attractor. For the attractors, it is determined
of final behaviour on a dynamic system. The system require-
ment of remembers information that is stored in different
attractors. When the input sample containing part of the
memoried information applied to a network, the evolution
process of the network is resumed all the required sample
information from the inputted part of the information. The
aforementioned procedure is called the process of associative
memories.

4) INPUT TEST SAMPLE TO HOPFIELD NEURAL NETWORK
In this section, test samples are converted to the matrix, and
the size is the same as the training sample. This new test
matrix is then placed into a trained Hopfield network, and the
network output of the feedback, which is found to the closest
of the object vector. In this case, the feedback will be in a
range from 0-9 matrices.

5) RESULT ANALYSIS
The test results are analyzed and compared with the
trained object vector. Through a confidence level calcula-
tion, the resulting output the closest of the object vector
can be obtained. Finally, the classification result is achieved.
Further research shows the recognition effect decreases by
the increase of noise intensity. When the noise intensity

exceeds 30%, the Hopfield network hardly recognizes the
number [137], and fail to remember correct object when the
noise intensity destroy the input over 50% [138].

The table 1 has shown some similar approaches with Hop-
field algorithm. And compared accuracy with in the charac-
ter recognition application. The Hopfield algorithm is most
dataset request and best accuracy on the application, which
is means the Hopfield algorithm is suitable on this character
recognition field.

B. OTHER APPLICATIONS
Based on the discrete Hopfield neural network, it has the
function of associative memory. In recent years, many
researchers have attempted to apply Hopfield network to
various fields in order to replace conventional techniques to
address the issues, such as water quality evaluation [139] and
generator fault diagnosis [147], and have achieved consider-
able results by applying aforementioned method. For exam-
ple, in the Internet of Things (IoT) applications, where mul-
tiple links fail and break the real-time transmission services,
and due to this reason, the fault cannot be quickly located
at that particular point [148]. The relationship between the
fault set and the alarm set can be established through the
network topology information and the transmission service,
which is compatible with the proposed Hopfield Neural Net-
work [149]. The built-in Hopfield algorithm of the energy
function is used to resolve fault location, and hence, it is found
that integration of aforementioned algorithmwith the IoTwill
improve transmission services in smart cities [150].

However, the application will have a wider framework to
suitable more applications in addition to limited applicabil-
ity for the field. When the Hopfield neural network collab-
orates with some notable optimisation algorithms, not the
network alone, that provides its associative memory stronger
but also improves the application efficiency. For example,
the existence of many pseudo-stable points in general discrete
Hopfield neural networks, limit the proficiency of network.
Therefore, a Genetic algorithm can be considered for the dis-
crete Hopfield network [151], and the global search capability
of the Genetic algorithm is used to optimise the steady-state
of Hopfield associative memory function. So that makes the
associative mode jump out of the pseudo-stable point, and
then the Hopfield network maintains a high associative suc-
cess rate under the condition of higher noise to signal ratio.

C. APPLICATION COMPARISON
The workflow details of Hopfield algorithm are similar to
those of above in section B mentioned. However, the main
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TABLE 2. Algorithm extraction and use cases for Hopfield.

difference is that varied projects need to design suitable tem-
plates for different objects to matching data-sets, and then to
input object data into the neural network algorithm for learn-
ing. Appropriate templates will help the algorithm learning
features more easily and improve processing accuracy.

The actual practice of Hopfield neural network involves a
surprising number of scientific disciplines, which is the key
technical areas it covers include Data Classification, Pattern
Recognition, Image Recognition, Feature Match, Image seg-
mentation, Image retrieval. The result of the investigation was
reported as shown in Table 2. By comparing the applications
in various fields, we can find that the application of the
algorithm is a different implementation method. It is mainly
depending on the design of the neural network weights that
the algorithm uses the weights for associative memory to
output results. Under the appropriate template of input data,
which to corresponding output analysed and predicted results.

VI. FUTURE PLAN AND CHALLENGES
For the future of neuromorphic chips, it is the key to
break through the development direction of von Neumann’s
structure limitations. Because the basic operations of neural
networks are the processing of neurons and synapses [152],

the conventional processor instruction set (including ×
86 and ARM, etc.) was developed for general-purpose com-
puting [153]. These operations are arithmetic operations
(addition, subtraction, multiplication and division) and log-
ical operations (AND-OR-NOT) [154]. It often requires hun-
dreds or thousands of instructions to complete the processing
of neuron computing, making the low processing efficiency
of the hardware inefficient.

Currently, neural computing needs a completely different
design than the von Neumann architecture [2]. The storage
and processing are integrated into the neural network [11],
whereas in von Neumann’s structure, there it is separated
and realized respectively by memory and computational
unit [155]. There is a huge difference between the two com-
puting when using current classical computers based on the
von Neumann architecture (such as CPUs and GPUs) to run
neural network applications. They are inevitably restricted
by a separate storage and handling structure, which has
caused a lower efficiency over the impacts. Although the
current FPGA and ASIC can meet the requirements of some
neural network application scenarios, a new generation of
architecture like neuromorphic chips and integrated com-
puting design will be used as the underlying architecture
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to improve the neural network computing in the long-term
planning [156].

Among the above, ASIC is a kind of chip specifically
designed for this special purpose. Compared to FPGA, it fea-
tures stronger performance, smaller size, less power con-
sumption, lower cost and more progress in developing hard-
ware design. ASIC needs research, development time and
high risks of technology marketing that have become a
major obstacle to future promotion. However, some of its
advantages such as good mold size, low cost, great energy
consumption, great reliability, strong confidentiality, high
computing performance and high computing efficiency have
become the best choice for current formal nerve chips [157].

Another key point of neural computing is the challenge
of holding computing nodes [158]. Generally, the nodes of
bit computation are the conduction switches of the tran-
sistors [159]. However, formal neural computing requires
computational nodes like neurons, which is the penalty for
an alternative generalized alternative approach to achieve
non-bit computing. This means that artificial synapses and
excitement need improvement [160]. Nowadays, there are
a lot of explorations on how to simulate or create syn-
thetic synapses. Taken as a whole, for produced formal neu-
ronal chips, industrial circuits are used primarily to simulate
synapses that achieve formal neuronal computing [4]. But
manufacturing processes and technical costs are high and
production efficiency is low, causing neuronal simulation
efficiency to low.

There are still many problems in the research of new
materials for the neuromorphic hardware. In the future,
researchers in the neuromorphic disciplines consider new
materials belonging to neuromorphic computing can be found
in place of transistors to new hardware design [161]. For
example, the array composed of memristor that is a plas-
tic element can be stored and processed to integrate for
the neuromorphic hardware. It has a high switching current
ratio, a light effective mass, a large adjustable band gap and
large electron mobility, which provides a favourable basis
for successful preparation of low-power neuromorphic hard-
ware [162].

Eventually, the architecture, algorithm and programming
scheme of adaptive neuromorphic computing is in a wide
blank and a long way to reach a final goal that replaces to von
Neumann’s structure in the artificial intelligence discipline.
But the frontiers of neuromorphic computing knowledge are
being pushed farther outwards over the time, and the future
opens a bright prospects.

VII. CONCLUSION
Although neuromorphic computing has gained widespread
attention in recent years, however, it is still considered to
be in the infancy stage. The existing solutions mostly focus
on a single application at the hardware or software level,
and majority of them are only suitable for handling lim-
ited applications. In addition, there are many software-based
neural network applications that has been deployed, but

hardware-based neural network design has been the key to
the neuromorphic design. Convention neural network circuit
implementation is thought of time-consuming and inconve-
nient. In order to apply a simple and fast design method to
neural network hardware, which can optimise and manufac-
ture neuromorphic computing systems, needs to systemati-
cally unificate the requirements of the software calculation
process. Furthermore, it can process and improves the final
software-level application indicators to quantify hardware
attributes. Finally,a testable solution for a specification com-
ponent can be achieved.

In this study, we have attempted to give an overview of
work that has been carried out in the hardware implemen-
tation field on neural networks. In addition, we have also
discussed the various techniques and methods employed in
the overall progression and implementation of Hopefield
Algorithm. In this regard, it is found that this algorithm
has been extensively deployed in various disciplines based
on feasibility and efficiency. Moreover, we have also high-
lighted the existing solutions for neuromorphic computing
which are mainly focused on a single application at the
software-hardware level. In this regard, it is discovered that
there is significant room for further improvement to achieve
the most optimized design with a low computation process.
From in-depth research, we strongly believe that this paper
could provide a significant step towards the hardware imple-
mentation of low-power neuromorphic processing systems
using advanced Hopfield algorithm.
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