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ABSTRACT By introducing a frequency dependence source prior including full-band and clique models,
independent vector analysis (IVA) has been successfully used for convolutive blind source separation (BSS).
In addition, independent low-rank matrix analysis (ILRMA) learns a low-rank approximation of the time-
frequency structure of source signals. This paper presents IVA using a clique-based frequency dependence
model with time-varying clique variances to combine advantages of both ILRMA and clique-model-based
IVA for BSS of speech signals. Although conventional clique models are effective in separating sources with
specific spectral structures, the dependency among the cliques is considered by overlaps between cliques or a
global clique of all frequency bins if there is. To avoid the permutation problem by strengthening the
dependency among the cliques, we develop a generalized probability-density-function (pdf) model imposing
a variable exponent on the summed cliques with overlaps and time-varying clique variances, which may
include most conventional source models as particular cases. In addition, update rules of the clique variances
and demixingmatrices are derived byminimization of the cost function of BSS aswell as non-negativematrix
factorization (NMF) and auxiliary function techniques for fast and robust convergence, respectively. Through
experiments on BSS of speech mixtures with various mixing conditions, the proposed IVA showed improved
separation performance than the conventional methods. Experimental results consistently demonstrated that
the performance of a method could be determined in general by the trade-off between the degree of freedom
of source models (as long as model parameters were accurately estimated) and the vulnerability to the
permutation problem.

INDEX TERMS Blind source separation, clique, independent vector analysis, time-varying variance.

I. INTRODUCTION
Blind source separation (BSS) recovering source signals from
their mixtures without knowing the mixing process has still
been one of the most interesting topics in the field of sig-
nal processing [1], [2]. If multiple mixtures are available,
instead of single-channel separation such as deep cluster-
ing [3], independent component analysis (ICA), which is
a signal processing method that expresses multivariate data
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as linear combinations of statistically independent random
variables, has attracted considerable interest because of its
successful performance in many BSS applications [1], [4].
Because acoustic mixing in real-world situations involves
complex reverberations, ICA has been extended to the decon-
volution of mixtures in both the time and frequency domains.
Although the frequency-domain approach is generally pre-
ferred because of the intensive computations and slow con-
vergence of the time-domain approach, it has the permutation
problem caused by the random permutation of the separated
frequency components [4].
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Independent vector analysis (IVA) can effectively mitigate
this problem and improve the separation performance by
introducing a source prior with a full-band radially symmetric
joint probability density function (pdf) that assumes the uni-
form dependency across frequency instead of using an inde-
pendent prior at each frequency bin [5]–[7]. Then, improved
frequency dependence models were presented by assign-
ing the dependency among close frequency bins by using
subband local cliques [8] and by introducing a harmonic
clique model that was more effective in separating sound
sources with strong harmonic structures than the conventional
model [9]. Since these full-band or clique models are fixed
in advance without considering actual sources, separation
performance may be poor by using models different from
those of sources. Especially, the performance is significantly
degraded due to the block permutation problem when some
sources have similar spectral properties [10].

The original IVA adopted the natural-gradient-based opti-
mization [5]. However, a large step size to speed up the con-
vergence may result in diverged parameters whereas a small
step size to avoid the divergence may lead to slow conver-
gence. Therefore, the natural gradient update rule for IVA has
a trade-off between the convergence speed and the stability
like other gradient-based methods. An IVA method using an
adaptive step size was proposed to increase the convergence
speed [11], and the fixed-point IVAmethodwas derived based
on Newton method [12]. Especially, a fast and robust update
rule was developed that was based on auxiliary function
techniques as an extension of the expectation-maximization
algorithm, AuxIVA, which improved the convergence speed
further without requiring environment-sensitive parame-
ters such as the step-size parameter [13]–[15]. AuxIVA
also employed clique models to obtain improved perfor-
mance [10], [16]. Recently, independent low-rank matrix
analysis (ILRMA), that learns a low-rank approximation of
the time-frequency structure of source signals by using non-
negative matrix factorization (NMF) [17], [18] in addition
to independence between sources, achieved remarkable per-
formance for separating music signals [19], [20]. Instead
of a complex Gaussian distribution as a source model in
the conventional ILRMA, a complex Student’s t-distribution
including a complex Cauchy distribution as a special case was
employed in the framework of ILRMA to consider sources
with heavy tails [21]. In addition, the separation performance
of ILRMA for speech mixtures was improved by imposing
strong dependencies between neighboring frequency bins
with source models of multivariate complex exponential
power distribution [22].

In this paper, we propose IVA using a multivariate clique-
based frequency dependence model with time-varying clique
variances to combine advantages of both ILRMA and clique-
model-based IVA for BSS of speech signals. Although the
conventional clique-model-based IVA is effective in separat-
ing sources with specific spectral structures, the dependency
among the cliques is considered by overlaps between adjacent
cliques or a global clique of all frequency bins if there is.

By strengthening the dependency among the cliques in the
multivariate pdf model of sources and also by introducing
time-varying clique variances, the block permutation prob-
lem can be effectively addressed. Instead of the bases with
a dimension of the number of frequency bins to find the
frequency-dependent time-varying variances in the conven-
tional ILRMA, the proposed method requires the bases with
a dimension of the number of cliques that is much less
than the number of frequency bins. In particular, we develop
a generalized pdf model imposing a variable exponent on
the summed cliques with overlaps, which may include most
of the conventional source pdf models as particular cases.
In addition, update rules of the clique variances and demixing
matrices are derived by minimization of the cost function of
BSS as well as NMF and auxiliary function techniques for
fast and robust convergence, respectively.

The remainder of this paper is organized as follows.
Section II describes the BSS problem and proposed AuxIVA
developed from the conventional methods. The performance
of the proposed method is evaluated in Section III, and some
concluding remarks are presented in Section IV.

II. PROPOSED AuxIVA
A. PROBLEM FORMULATION
Let us considerM observations that are convolutive mixtures
of M mutually independent unknown sources. Assuming the
length of the window function for the short-time Fourier
transform (STFT) is sufficiently longer than the effective
length of the mixing filter, the convolution in the time domain
is approximately transformed into multiplication in the fre-
quency domain as follows: [23]

x(k, τ ) ≈ A(k)s(k, τ ), (1)

where x(k, τ ) = [X1(k, τ ), · · · ,XM (k, τ )]T and s(k, τ ) =
[S1(k, τ ), · · · , SM (k, τ )]T denote vectors composed of the
time-frequency segments of mixture and source signals,
respectively, at frequency bin k and frame τ . A(k) represents
a mixing matrix at the k-th frequency bin. Like many nat-
ural sounds including speech, dependencies are assumed to
exist among frequency components of a source correspond-
ing to the elements of ŝm(τ ) = [Sm(1, τ ), · · · , Sm(K , τ )]T ,
m = 1, · · · ,M , where K is the number of frequency bins.

The aim of BSS for convolutive mixtures is to restore
source signals by estimating separating matrices such that

y(k, τ ) =W(k)x(k, τ ), (2)

where y(k, τ ) = [Y1(k, τ ), · · · ,YM (k, τ )]T denotes a vec-
tor composed of the time-frequency segments of estimated
source signals at frequency bin k and frame τ , andW(k) is a
demixing matrix at the k-th frequency bin.

Since IVA accomplishes BSS by finding a linear transform
of mixtures to obtain statistically independent signals that
corresponds to source signals s(k, τ ), the demixing matrices
are estimated by minimizing the dependency between esti-
mated time-frequency segments of source signals measured
by the Kullback-Leibler (KL) divergence between an exact
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joint pdf p(ŷ1(τ ), · · · , ŷM (τ )) and the product of hypoth-
esized pdf models of the estimated source

∏M
m=1 q(ŷm(τ ))

given as [4], [24]

D

(
p(ŷ1(τ ), · · · , ŷM (τ ))||

M∏
m=1

q(ŷm(τ ))

)

=

∫
p(ŷ1(τ ), · · · , ŷM (τ )) log

p(ŷ1(τ ), · · · , ŷM (τ ))∏M
m=1 q(ŷn(τ ))

× d ŷ1(τ ), · · · , d ŷM (τ )

= const.−
K∑
k=1

log | detW(k)| −
M∑
m=1

E{log q(ŷm(τ ))},

(3)

where ŷm(τ ) = [Ym(1, τ ), · · · ,Ym(K , τ )]T , m = 1, · · · ,M
and E{·} denotes the expectation operator.

B. CONVENTIONAL MULTIVARIATE PDF
MODELS OF SOURCES
In the original IVA [5] and AuxIVA [13], the multivariate pdf
model of sources assumes uniform dependency among fre-
quency components by using a full-band radially symmetric
joint pdf expressed as

q(ŷm(τ )) ∝ exp{−||ŷm(τ )||2}

= exp

−
√√√√ K∑

k=1

|Ym(k, τ )|2

, (4)

where || · ||2 denotes the L2 norm of a vector. The pdf can be
generalized to be given as [14]

q(ŷm(τ )) ∝ exp{−||ŷm(τ )||
β

2 }, (5)

where β is a shape parameter of the generalized Gaussian
distribution within (0, 2]. Improved frequency dependence
models for IVA are developed by using subband local cliques
to assign the dependency among close frequency bins [8],
and by introducing a harmonic clique model to exploit sound
sources with strong harmonic structures, such as speech and
music signals [9]. The pdf can be expressed as [8], [9], [16]

q(ŷm(τ )) ∝ exp

−
C∑
c=1

√∑
k∈�c

|Ym(k, τ )|2

, (6)

where C and �c denote the number of cliques and a set
of frequency bins that belongs to the c-th clique. In [8],
�c consists of consecutive frequency bins, and the series
of cliques have chain-like overlaps. In [9], the fundamental
frequency of the c-th harmonic clique, Fc, is defined as

Fc = F1 × 2(c−1)/rf , (7)

where F1 = 55 Hz and rf denotes a parameter to determine
the resolution of harmonic cliques. For each clique, �c con-
sists of the frequency bins of the first eight to ten multiples
of Fc. The bandwidth of the h-th multiple of Fc is 2δhFc, and

δ is a parameter to determine the degree of overlap for two
consecutive harmonic cliques. Another clique consisting of
all the frequency bins is added to prevent the permutation of
frequency bins below 55Hz and to increase the learning speed
of demixing matrices.

Instead of these stationary models, a non-stationary Gaus-
sian distribution is also introduced to model non-stationary
acoustic sound sources such as speech, as follows: [14]

q(ŷm(τ )) ∝ exp

{
−
||ŷm(τ )||22
λ′m(τ )

}
, (8)

where λ′m(τ ) represents the time-varying variance at frame
τ for the m-th source. As an efficient method combining
specific spectral structures, such as the harmonic structures,
and non-stationarity of sound sources, in addition, the time-
varying variance in ILRMA is estimated by NMF decompo-
sition, which can be formulated as [20], [21], [25]

q(ŷm(τ )) ∝ exp

−
(

K∑
k=1

|Ym(k, τ )|2

λ′′m(k, τ )

)β (9)

and

λ′′m(k, τ ) =
L∑
l=1

t ′′m(k, l)v
′′
m(l, τ ), (10)

where λ′′m(k, τ ) denotes the frequency-dependent time-
varying variance at frequency bin k and frame τ for the m-th
source. t ′′m(k, l) and v

′′
m(l, τ ) are the corresponding basis and

activation, respectively, and L is the number of bases.
In the previous method, the dimension of bases t ′′m(k, l)

in (10) for the pdf of non-stationary sources in (9) may be
too large to be accurately estimated especially for insufficient
input data. In order to reduce the dimension of bases, the fre-
quency range division is introduced to group consecutive fre-
quency bins by using a time-varying variance for a frequency
range [22]. Therefore, the source model is changed into

q(ŷm(τ )) ∝ exp

−
D∑
d=1

∑dg
k=df |Ym(k, τ )|

2

λ′′′m (d, τ )

γ (11)

and

λ′′′m (d, τ ) =

(
L∑
l=1

t ′′′m (d, l)v′′′m (l, τ )

)ε
, (12)

where D and γ are the number of frequency ranges and
a shape parameter, respectively. df and dg denote the first
and last frequency bins for frequency range d . λ′′′m (d, τ )
denotes the frequency-range-dependent time-varying vari-
ance at range d and frame τ for them-th source while t ′′′m (d, l)
and v′′′m (l, τ ) are the corresponding basis and activation with
a power of ε, respectively.
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C. PROPOSED MULTIVARIATE PDF MODELS OF SOURCES
Although IVA using the clique models of (6) is more effective
in separating sound sources with specific spectral structures
than the original method using a full-band model assum-
ing uniform dependency across frequency, the dependency
among the cliques is considered by overlaps between adjacent
cliques and one additional global clique of all frequency
bins in [9]. Since the square root applied to summed fre-
quency components in (4) imposes dependency among the
frequency components, we impose the dependency among
cliques explicitly by formulating the pdf model as

q(ŷm(τ )) ∝ exp

−
√√√√√ C∑

c=1

√∑
k∈�c

|Ym(k, τ )|2

. (13)

For the sake of simplicity,
√∑

k∈�c |Ym(k, τ )|
2 is denoted

as ỹm(c, τ ) from now on. Extending the non-overlapped fre-
quency ranges in (11) to clique models that allow various
types including overlaps and harmonics, and imposing the
dependency among cliques, another pdf model is derived as

q(ŷm(τ )) ∝ exp

−
√√√√ C∑

c=1

(
ỹ2m(c, τ )
λm(c, τ )

)γ (14)

and

λm(c, τ ) =

(
L∑
l=1

tm(c, l)vm(l, τ )

)ε
, (15)

where λm(c, τ ) denotes the clique-dependent time-varying
variance at clique c and frame τ for the m-th source. tm(c, l)
and vm(l, τ ) are the corresponding basis and activation,
respectively.

Generalizing the pdf models in (13) and (14), we develop
a generalized pdf model given as

q(ŷm(τ ))=
α∏C

c=1 λ
Nc
m (c, τ )

exp

−
[

C∑
c=1

(
ỹ2m(c, τ )
λm(c, τ )

)γ]β,
(16)

where α and Nc denote a constant and the number of fre-
quency bins in �c, respectively. Shape parameters β and γ
are between 0 and 1 in common. If both β and γ are 0.5 and
λm(c, τ ) is fixed to 1, the pdf model of (16) becomes (13).
If β is 0.5, the pdf model of (16) corresponds to (14). γ and
λm(c, τ ) impose the intra-clique dependency. Although the
inter-clique dependency is implicitly considered by the over-
laps between cliques, β imposes the inter-clique dependency
explicitly.

D. DERIVATION OF THE PROPOSED AuxIVA
Using the generalized pdf model of (16) with replacement
of (15), the KL divergence of (3) without the constant

term is used as the cost function for the proposed method,
which is

J = −
K∑
k=1

log | detW(k)|

+

M∑
m=1

E


 C∑
c=1

 ỹ2m(c, τ )(∑L
l=1 tm(c, l)vm(l, τ )

)ε

γ

β

+

C∑
c=1

Ncε log

(
L∑
l=1

tm(c, l)vm(l, τ )

)}
. (17)

In order to derive update rules for NMF parameters,
the partial derivatives of the cost function with respect to the
parameters are written as

∂J
∂tm(c, l)

= E

−εζm(τ )ηm(c, τ ) ỹ2m(c, τ )vm(l, τ )(∑L
l=1 tm(c, l)vm(l, τ )

)ε+1
+Ncε

vm(l, τ )∑L
l=1 tm(c, l)vm(l, τ )

}
(18)

and

∂J
∂vm(l, τ )

= −εζm(τ )
C∑
c=1

ηm(c, τ )
ỹ2m(c, τ )tm(c, l)(∑L

l=1 tm(c, l)vm(l, τ )
)ε+1

+

C∑
c=1

Ncε
tm(c, l)∑L

l=1 tm(c, l)vm(l, τ )
, (19)

where ζm(τ ) and ηm(c, τ ) are as follows:

ζm(τ ) = β

 C∑
c=1

 ỹ2m(c, τ )(∑L
l=1 tm(c, l)vm(l, τ )

)ε

γ

β−1

,

(20)

ηm(c, τ ) = γ

 ỹ2m(c, τ )(∑L
l=1 tm(c, l)vm(l, τ )

)ε

γ−1

. (21)

Therefore, we have the update rules expressed as

tm(c, l) = tm(c, l)

·


E

{
εζm(τ )ηm(c, τ )

ỹ2m(c,τ )vm(l,τ )(∑L
l=1 tm(c,l)vm(l,τ )

)ε+1
}

E
{
Ncε

vm(l,τ )∑L
l=1 tm(c,l)vm(l,τ )

}

κ

(22)
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and

vm(l, τ )= vm(l, τ )

·


εζm(τ )

∑C
c=1 ηm(c, τ )

ỹ2m(c,τ )tm(c,l)(∑L
l=1 tm(c,l)vm(l,τ )

)ε+1∑C
c=1 Ncε

tm(c,l)∑L
l=1 tm(c,l)vm(l,τ )


κ

,

(23)

where κ is a learning parameter to be determined for stable
and fast convergence.

Without the decomposition of λm(c, τ ) in (15), λm(c, τ ) can
be directly estimated by minimizing the cost function of (17)
as follows:

∂J
∂λm(c, τ )

= −ζm(τ )ηm(c, τ )
ỹ2m(c, τ )
λ2m(c, τ )

+ Nc
1

λm(c, τ )
= 0,

(24)

λm(c, τ ) =
1
Nc
ζm(τ )ηm(c, τ )ỹ2m(c, τ ), (25)

where

ζm(τ ) = β

[
C∑
c=1

(
ỹ2m(c, τ )
λm(c, τ )

)γ]β−1
, (26)

ηm(c, τ ) = γ
(
ỹ2m(c, τ )
λm(c, τ )

)γ−1
. (27)

In order to introduce an auxiliary function for the cost
function of (17), let us select − log q(ŷm(τ )) for a real-
valued continuous and differentiable function GR(r) satisfy-
ing thatG′R(r)/r is continuous everywhere andmonotonically
decreasing in r ≥ 0, where a real variable r is equal to

ρm(τ ) =

√√√√ C∑
c=1

(
ỹ2m(c, τ )
λm(c, τ )

)γ
. (28)

Then,

GR(r) ≤
G′R(r0)
2r0

r2 + GR(r0)−
r0G′R(r0)

2
(29)

holds for any r and a real constant r0. The equality is satisfied
if and only if r0 = r [13], [26]. Using

G′R(ρm(τ ))

= 2βρ2β−1m (τ ), (30)

E{GR(ρm(τ ))}

≤ E
{
G′R(ρm(τ ))
2ρm(τ )

ρ2m(τ )
}
+ R

= E

{
βρ2β−2m (τ )

C∑
c=1

(
ỹ2m(c, τ )
λm(c, τ )

)γ}
+ R

= E

{
C∑
c=1

βρ2β−2m (τ )ỹ2m(c, τ )
ỹ2γ−2m (c, τ )

λ
γ
m(c, τ )

}
+ R, (31)

where R is a constant term independent of W(k). Since
ỹ2m(c, τ ) =

∑
k∈�c |Ym(k, τ )|

2 and Ym(k, τ ) = wH
m (k)x(k, τ )

with the m-th row vector wH
m (k) ofW(k),

E{GR(ρm(τ ))} ≤
C∑
c=1

∑
k∈�c

wH
m (k)Vm(c, k)wm(k)+ R, (32)

where H denotes the Hermitian transpose, and

Vm(c, k) = E

{
βρ2β−2m (τ )

ỹ2γ−2m (c, τ )

λ
γ
m(c, τ )

x(k, τ )xH (k, τ )

}
.

(33)

In (32), minimizing
∑C

c=1
∑

k∈�c w
H
m (k)Vm(c, k)wm(k)−

log | detW(k)|with respect towm(k) yields an optimalwm(k)
for the cost function of (17). Therefore, the equation to find
an optimal wm(k) is∑

c∈9k

Vm(c, k)wm(k)−∇w∗m(k) log | detW(k)| = 0, (34)

where 9k denotes a set of cliques that includes the k-th fre-
quency bin. Since (∂/∂W(k)) detW(k) =W−H (k) detW(k),
(34) is rearranged to give [13], [14]

wH
n (k)

∑
c∈9k

Vm(c, k)wm(k)=δnm, 1≤n≤M , 1≤m≤M .

(35)

Because a closed-form solution for updating all of wm(k)
simultaneously is still an open problem, a sequential update
of wm(k) while fixing the other vectors wn(k) (n 6= m) is
considered similar to [13], [14]. Then, the update of wm(k)
can be simply given by

wm(k)←

W(k)
∑
c∈9k

Vm(c, k)

−1 em, (36)

where em denotes the unit vector with the m-th element of
unity. Although the updated wm(k) should be normalized to
hold for wH

m (k)
∑

c∈9k Vm(c, k)wm(k) = 1 in (35), different
numbers of elements in 9k of

∑
c∈9k Vm(c, k) can cause

an imbalance of the scales of wm(k), k = 1, · · · ,K . The
imbalance may be avoided as follows:

wm(k)←
wm(k)√

1
N ν9k

wH
m (k)

∑
c∈9k Vm(c, k)wm(k)

, (37)

where N9k and ν denote the number of elements in 9k and a
balancing parameter, respectively. To prevent possible diver-
gence ofwm(k), furthermore, the scale normalization without
the burden of large calculations should be performed by

W(k)←
W(k)√

1
MK

∑K
k=1 E

{
||y(k, τ )||22

} (38)

for each iteration such that E
{
|Ym(k, τ )|2

}
= 1 is

satisfied [14].
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In summary, the overall procedure of the proposedmethod1

is as follows:
• Begin

Step 1 Transform input data into x(k, τ ) in the time-
frequency domain using the STFT.

Step 2 InitializeW(k), tm(c, l), and vm(l, τ ).
Step 3 Compute y(k, τ ) by (2) with the currentW(k).
Step 4 Compute ỹm(c, τ ) =

√∑
k∈�c |Ym(k, τ )|

2.
Step 5 Compute ζm(τ ) and ηm(c, τ ) by (20) and (21),

respectively.
Step 6 Update tm(c, l) and vm(l, τ ) by (22) and (23),

respectively.
Step 7 Compute λm(c, τ ) by (15).
Step 8 Compute ρm(τ ) by (28).
Step 9 Compute Vm(c, k) by (33).
Step 10 Update wm(k) by (36) and (37).
Step 11 UpdateW(k) by (38).
Step 12 Go to Step 3 until convergence.
Step 13 Estimate source signals from y(k, τ ) using the

inverse STFT and the overlap-add method [27].
• End

With the direct estimation of λm(c, τ ), Step 2 is replaced by
‘‘Initialize W(k) and λm(c, τ ).’’ Also, Step 5 is replaced by
‘‘Compute ζm(τ ) and ηm(c, τ ) by (26) and (27), respectively.’’
Steps 6 and 7 are replaced by ‘‘Compute λm(c, τ ) by (25).’’2

Using the pdf model of (16) with λm(c, τ ) = 1, Step 2 is
replaced by ‘‘Initialize W(k),’’ and Steps 5, 6, and 7 are
skipped.3 In practice, the expectation E{·} in these equations
can be replaced by the sample mean.

III. EXPERIMENTAL EVALUATION
To evaluate the performance of the proposed algorithm,
we conducted an experiment using the live-recorded
speech data obtained from underdetermined BSS tasks in
SiSEC2011 [28]. Figs. 1 and 2 describe configurations of
sources and microphones in dev1 and dev2 datasets, respec-
tively. In each dev. dataset, one female and one male utter-
ances were used as source signals in each source position.
Each utterance was recorded at microphones in Fig. 1 with
reverberation times of 130ms and 250ms for the dev1 dataset
whereas it was recorded in Fig. 2 with a reverberation time
of 250 ms for the dev2 dataset. Since the provided data are
stereo recordings at a sampling rate of 16 kHz with two
pairs of microphones whose distances were 1 m and 5 cm
as shown in Figs. 1 and 2, we selected recorded data for
two source locations among four locations and summed up
the data at the two microphones to obtain stereo mixtures
for determined BSS problems. Since there were female and
male source signals at each source location, 24 different

1Let us refer to this method as ILRMA using source pdf models with inter-
clique dependence (ILRMA-ICD) from now on.

2Let us refer to this method as AuxIVA using time-varying-variance
source pdf models with inter-clique dependence (AuxIVA-TVV-ICD) from
now on.

3Let us refer to this method as AuxIVA using source pdf models with
inter-clique dependence (AuxIVA-ICD) from now on.

FIGURE 1. Source and microphone positions using (a) 1-m-apart
microphones and (b) 5-cm-apart microphones in dev1 dataset of the
live-recorded speech data in SiSEC2011 [28]. The common room
height is 2.5 m.

mixture sets4 were generated for a configuration at a rever-
beration time.

The proposed AuxIVA-ICD, ILRMA-ICD, and AuxIVA-
TVV-ICD for subband and harmonic cliques were compared
with conventional AuxIVA [13]–[15], AuxIVA for sub-
band and harmonic cliques [10], [16], conventional ILRMA
[19], [20], and ILRMA based on multivariate complex expo-
nential power distribution (ILRMA-MEPD) [22]. In the
ILRMA-MEPD, two and eight frequency range divisions
were considered which showed better performance than oth-
ers in [22], and multivariate complex Gaussian distribution
was used as the source pdf. The commonly used subband and
harmonic cliques are shown in Fig. 3. The seven subband
cliques were the same as in [9] where the first and the last
frequency bins of the c-th clique were 128(c − 1) + 1 and
128(c + 1), respectively. Regarding the harmonic cliques,
rf and δ were set to 10 and 1 − 2−1/12, respectively,5 and
each harmonic clique consisted of the frequency bins of the
first ten multiples of Fc. Since the physical frequency at the
k-th frequency bin is Fs

K k with the sampling frequency Fs,
the indices k of the frequency bins belonging to the h-thmulti-
ple(harmonics) of the c-th clique among 39 cliques except for

4Six and twelve sets were generated from the same and different gender
source signals, respectively.

5Using the selected value for δ, two consecutive harmonic cliques over-
lapped by less than 50 % to avoid too large cliques obtained when cliques of
adjacent multiples were linked due to their large bandwidths.
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FIGURE 2. Source and microphone positions using (a) 1-m-apart
microphones and (b) 5-cm-apart microphones in dev2 dataset of the
live-recorded speech data in SiSEC2011 [28]. The common room
height is 2.5 m.

FIGURE 3. Plot of local clique index versus frequency bin for (a) subband
and (b) harmonic clique frequency dependence source models.

the last full-band clique should satisfy the following equation:

(1− δ)hFc ≤
Fs
K
k ≤ (1+ δ)hFc. (39)

In all ILRMA methods, L, ε, and κ were set to 2, 1, and 0.5,
respectively. Using the signal-to-distortion ratio (SDR) [29]
in decibels, the performance was measured by an SDR

FIGURE 4. SDR improvements averaged over 72 mixture sets with several
shape parameter values at configurations in Figs. 1b and 2b with
reverberation times of 130 ms and 250 ms using (a) AuxIVA-ICD for the
subband clique model, (b) AuxIVA-ICD for the harmonic clique model,
(c) ILRMA-ICD for the subband clique model, (d) ILRMA-ICD for the
harmonic clique model, (e) AuxIVA-TVV-ICD for the subband clique model,
and (f) AuxIVA-TVV-ICD for the harmonic clique model.

improvement between output and input signals. In all experi-
ments, we applied a 2048-point fast Fourier transform (FFT)
with a shift size of 512 samples to input signals for frequency
analysis. For all the experimented methods, the demixing
matrix was initialized by an identity matrix in each fre-
quency bin.

In order to show the dependency of the performances
of AuxIVA-ICD, ILRMA-ICD, and AuxIVA-TVV-ICD on
the values of shape parameters β and γ , Fig. 4 shows
SDR improvements averaged over 72 mixture sets at con-
figurations in Figs. 1b and 2b with reverberation times
of 130 ms and 250 ms. The performance of AuxIVA-ICD
was much more dependent than the others because the only
method to impose the frequency dependence of source sig-
nals except overlaps between cliques was shape parameter
values with λm(c, τ ) = 1. Inter- and intra-clique depen-
dencies are lost with β = 1 and γ = 1, respectively,
which resulted in significant performance degradation of
AuxIVA-ICD. For the subband clique model, the inter-clique
dependence is large enough because there are sufficient over-
laps between cliques. Unlike Fig. 4b, therefore, there was
little performance improvement in Fig. 4a by making β less
than 1 to impose the inter-clique dependence except that
γ = 1 corresponding to the case without the intra-clique
dependence.
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FIGURE 5. Plot of an example of time-varying clique variances at a
configuration in Fig. 1b with a reverberation time of 130 ms using (a)
ILRMA-ICD for the subband clique model, (b) AuxIVA-TVV-ICD for the
subband clique model, (c) ILRMA-ICD for the harmonic clique model, and
(d) AuxIVA-TVV-ICD for the harmonic clique model.

SDR improvements of ILRMA-ICD and AuxIVA-TVV-
ICD were less dependent on shape parameter values than
those of AuxIVA-ICD because time-varying clique variance
λm(c, τ ) with overlaps between cliques in addition to the
shape parameters can impose the frequency dependence of
source signals. Fig. 5 displays the time-varying clique vari-
ances of ILRMA-ICD and AuxIVA-TVV-ICD for a mixture
set at a configuration in Fig. 1b with a reverberation time
of 130 ms. At frames, the time-varying clique variances of
AuxIVA-TVV-ICD had more diverse profiles than those
of ILRMA-ICD because the time-varying clique variances
of ILRMA-ICD were a weighted sum of limited (or two)
bases tm(c, l).6 In particular, direct estimation of variances in
AuxIVA-TVV-ICD using (25) might provide clique variances
optimized for a source model determined by shape param-
eter values. Therefore, the variation in the performance of
AuxIVA-TVV-ICD according to the shape parameter values
was less than that of ILRMA-ICD.

Figs. 6 and 7 summarize averaged SDR improvements
for 1-m-apart and 5-cm-apart microphone pairs, respectively.
For AuxIVA-ICD, orange bars show SDR improvements for
β = 0.5 and γ = 0.5 corresponding to the source pdf model
of (13) while those for ILRMA-ICD and AuxIVA-TVV-ICD
represent SDR improvements for β = 1 and γ = 1
corresponding to source pdf models without inter-clique
dependence. β and γ were also tuned to achieve the best
overall performance and shown by red bars. Regardless of
the used methods, SDR improvements using input data mixed
at a reverberation time of 250 ms were less than those at

6More than two bases led to degradation of the overall performance.

FIGURE 6. SDR improvements averaged over (a) 24 mixture sets at a
configuration with two 1-m-apart microphones in Fig. 1a for a
reverberation time of 130 ms and (b) 48 mixture sets at configurations
with two 1-m-apart microphones in Figs. 1a and 2a for a reverberation
time of 250 ms. MEPD - 2 and 8 in ILRMA denote ILRMA-MEPD with two
and eight frequency range divisions, respectively. The first and second
numbers in the parentheses represent used values of β and γ ,
respectively.

a reverberation time of 130 ms because mixing systems were
more complex with larger reverberation. In addition, the SDR
improvements with 5-cm-apart microphones were less than
those with 1-m-apart microphones because of vulnerability to
the permutation problem of BSS on observations with similar
spectral properties acquired at close microphones.

Consistent with [10], [16], the subband or harmonic clique
frequency dependence source models achieved better SDR
improvements than a full-band model for the conventional
AuxIVA. Performance degradation for the subband clique
model by changing the microphone distance from 1m to 5 cm
was generally smaller than that for the harmonic clique model
since the inter-clique dependence through sufficient overlaps
between subband cliques might reduce the vulnerability to
the permutation problem. In addition, performance improve-
ments for the harmonic clique model compared with the
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FIGURE 7. SDR improvements averaged over (a) 24 mixture sets at a
configuration with two 5-cm-apart microphones in Fig. 1b for a
reverberation time of 130 ms and (b) 48 mixture sets at configurations
with two 5-cm-apart microphones in Figs. 1b and 2b for a reverberation
time of 250 ms. MEPD - 2 and 8 in ILRMA denote ILRMA-MEPD with two
and eight frequency range divisions, respectively. The first and second
numbers in the parentheses represent used values of β and γ ,
respectively.

full-band model were higher than that for the subband clique
model when the distance between microphones was 1 m.
That is because the harmonic clique model may exploit
the inherent harmonic structure of speech, as discussed in
[9], [16], without concern for the permutation with differ-
ent observations acquired at distant microphones. Particu-
larly, AuxIVA-ICD using the generalized pdf model in (16)
improved the performance regardless of the used clique mod-
els by imposing the inter-clique dependence with tuned shape
parameters β and γ .
Although the results confirmed that the conventional

ILRMA provided more SDR improvements than the con-
ventional AuxIVA and ILRMA-MEPD improved the per-
formance further, ILRMA-ICD for both the subband and
harmonic clique models generally achieved better perfor-
mance than ILRMA-MEPD by imposing the inter-clique

dependence through overlapped cliques as well as β ≤ 1.
As discussed above, the time-varying clique variances of
AuxIVA-TVV-ICD had more diverse profiles than those
of ILRMA-ICD due to limited bases of ILRMA-ICD, and
direct estimation of variances in AuxIVA-TVV-ICD using
(25) might provide clique variances optimized for a source
model determined by shape parameter values. Therefore,
the variance estimation of AuxIVA-TVV-ICD might be more
vulnerable to the permutaton problem than that based on
the bases in ILRMA-ICD although AuxIVA-TVV-ICD could
provide more accurate variances. This is consistent with the
results that ILRMA-ICD showed comparable performance
with AuxIVA-TVV-ICD with 5-cm-apart microphones due
to the vulnerability to the permutation problem of BSS on
similar observations acquired at close microphones. In addi-
tion, AuxIVA-TVV-ICD achieved more SDR improvements
than ILRMA-ICD for the harmonic clique model with 1-m-
apart microphones because of accurate estimation of more
variances in the harmonic clique model than in the subband
clique model without the concern for the permutation with
distant microphones.

FIGURE 8. Source and microphone positions using three microphones in
(a) dev1 and (b) dev2 datasets of the live-recorded speech data in
SiSEC2011 [28]. The common room height is 2.5 m.

We used the same live-recorded speech data to conduct
an experiment with three sources and mixtures. As shown
in Fig. 8, both the 1-m-apart microphones and one of the
5-cm-apart microphones in Figs. 1 and 2 were selected to
compose three microphones. To make up determined BSS
problems, we selected recorded data for three source loca-
tions among four locations and summed up the data at the
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FIGURE 9. SDR improvements averaged over (a) 32 mixture sets at a
configuration in Fig. 8a for a reverberation time of 130 ms and (b)
64 mixture sets at configurations in Figs. 8a and 8b for a reverberation
time of 250 ms. MEPD - 2 and 8 in ILRMA denote ILRMA-MEPD with two
and eight frequency range divisions, respectively. The first and second
numbers in the parentheses represent used values of β and γ ,
respectively.

three microphones. Considering female and male source sig-
nals at each source location, 32 different mixture sets7 were
generated for a configuration at a reverberation time. Asmen-
tioned above, recordings at microphones were available with
both the reverberation times of 130 ms and 250 ms for the
dev1 dataset and with a reverberation time of 250 ms for the
dev2 dataset.

Fig. 9 summarizes averaged SDR improvements for BSS
with three sources and mixtures mentioned above.8 Most
aspects inferred from these results were similar to those of
the previous ones. Although the distance between adjacent
microphones was about 0.5 m, SDR improvements of the

7Four sets in 32 mixture sets were generated from source signals uttered
by either female or male speakers.

8A listening demo for a mixture set is available at http://iip.sogang.
ac.kr/BSS_AuxIVA.

conventional AuxIVA for the harmonic clique model were
less than those for the subband clique model, which meant
that at least a pair of two adjacent sources were selected when
choosing three of the four sources, making similar observa-
tions vulnerable to the permutation problem. However, it is
noteworthy that SDR improvements of AuxIVA-ICD using
the generalized pdf model were significant by imposing the
inter-clique dependence with tuned shape parameters espe-
cially for the harmonic clique model. Moreover, AuxIVA-
TVV-ICD for the harmonic clique frequency dependence
source model achieved higher SDR improvements than the
others. All the results including the previous cases consis-
tently demonstrated that the performance of a method could
be determined in general by the trade-off between the degree
of freedom of source models (as long as model parameters
were accurately estimated) and the vulnerability to the per-
mutation problem.

IV. CONCLUSION
In this paper, we presented IVA using a generalized mul-
tivariate source pdf model with inter-clique dependence by
imposing a variable exponent on summed cliques with over-
laps and time-varying clique variances, which may include
most of the conventional source models as particular cases.
In addition, update rules of the clique variances and demixing
matrices were derived by minimization of the cost func-
tion of BSS as well as non-negative matrix factorization
(NMF) and auxiliary function techniques for fast and robust
convergence, respectively. Through experiments on various
mixtures, the proposed methods showed improved separation
performances than the conventional methods. In particular,
AuxIVA-TVV-ICD for the harmonic clique frequency depen-
dence source model achieved higher overall SDR improve-
ments than the others. Experimental results consistently
demonstrated that the performance of a method could be
determined in general by the trade-off between the degree of
freedom of source models (as long as model parameters were
accurately estimated) and the vulnerability to the permutation
problem.
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