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ABSTRACT In recent years, several deep learning networks are proposed to segment 2D or 3D bio-medical
images. However, in liver and lesion segmentation, the proportion of interested tissues and lesions are tiny
when contrasting to the image background. That is, the objects to be segmented are highly imbalanced in
terms of the frequency of occurrences. This makes existing deep learning networks prone to predict pixels of
livers and lesions as background. To address this imbalance issue, several loss functions are proposed. Since
no researches are having made a comparison among those proposed loss functions, we are curious about
that which loss function is the best among them? At the same time, we also want to investigate whether
the combination of several different loss functions is effective for liver and lesion segmentation. Firstly,
we propose a novel deep learning network (cascade U-ResNets) to produce liver and lesion segmentation
simultaneously. Then, we investigate the performance of 5 selected loss functions, WCE (Weighted Cross
Entropy), DL (Dice Loss), WDL (Weighted Dice Loss), TL (Teverskry Loss), WTL (Weighted Teversky
Loss), with our cascade U-ResNets. We further assemble all cascade U-ResNets trained with different loss
functions together to segment livers and lesions jointly on the liver CT (Computed Tomography) volume.
Experimental results on the LiTS dataset1 showed our ensemble model can achieve much better results than
every individual model for liver segmentation.

INDEX TERMS
Data imbalance, deep learning, ensemble learning, lesion segmentation, liver segmentation, medical image
segmentation.

I. INTRODUCTION
Liver and lesion segmentation are to delineate a liver and its
lesions in medical images (such as CT, MRI, PET images).
In computer-aided detections and diagnoses, precise auto-
matic segmentation of the liver is meaningful, but manually
delineating liver outline for millions of medical image slices
is time-consuming. Automatic liver segmentation is one of
the most difficult tasks in computer vision because of the
diverse shapes of livers and low contrast with nearby tissues.
Many algorithms have been proposed to cope with liver and
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1https://competitions.codalab.org/competitions/17094#

lesion segmentation, such as region-based methods, thresh-
olding, graph-cut, machine learning, and so on.

In recent years, applications of deep learning on medical
image analysis are soaring. Particularly, deep convolutional
neural networks can learn high-level features automatically
and give reasonable output. Different from common image
classification, liver and lesion segmentation is a pixel-level
classification task, where a classification model needs to
assign a label to each pixel and output the same size mask.

Long et al. [11] did some adjustments on VGG-16 by
replacing the fully-connected layers in VGG-16 with decon-
volution layers, which can return feature maps to the original
size of an image by deconvolution operations. This is the
first work to make pixel-level predictions. U-Net [24] is also
based on a fully convolution neural network (FCN) with a
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good performance on biomedical image segmentation. This is
because it introduces lateral connections to the structure. The
lateral connections make U-Net able to capture context infor-
mation and precise localization with fewer training images.

However, CT slices are a time sequence data. The informa-
tion extracted from 2D images is not sufficient for accurate
segmentation. In order to use the time axis of CT sequences,
Ben-Cohen et al. [2] and Vorontsov et al. [34] stacked three
adjacent slices as input to improve the performance of seg-
mentation. Sun et al. [31] utilized three different phases of
CT images to train a multi-channel FCN. Another problem in
liver and lesion segmentation is that the location and the shape
of lesion vary hugely in different slices. Some researchers
used an extra model to perform precise lesion segmentation.
Vorontsov et al. [34] proposed a cascade structure to combine
two FCNs to get more precise results. Its first FCN finds the
liver area firstly, and then its second FCNs can focus on the
liver area to detect lesion.

Except for the problems mentioned above, the data imbal-
ance problem should also be considered. The proportion of a
liver and its lesion is tiny, contrasting to images background.
That is, objects (a liver and its lesion) to be segmented are
highly imbalanced in terms of the frequency of their occur-
rences. This phenomenon is obvious in FIGURE 1.

FIGURE 1. Liver and lesion segmentation. The red and blue lines in the
above images denote the outline of a liver and its lesions respectively,
the lesion may absence in some CT slices.

Several strategies have been proposed based on loss func-
tions to solve this problem. Re-weighting is a frequently used
strategy by assigning high weights on rare classes to offset
the negative impact of the imbalanced distribution of samples.
Both reweighted cross entropy and generalized dice [4] adopt
this strategy. Similarity-based methods, such as Dice loss,
Jaccard loss, and Tversky loss, are originally used to evaluate
image segmentation since these methods are not related to
the size of the segmented object. That is, they are resistant to
unbalanced data.

In this paper, we try to develop a novel deep learning
network for liver and lesion segmentation. We will alleviate
the impact of the imbalanced problem in the liver and lesion

segmentation by investigating the performance of different
loss functions, and further, improve the performance of our
novel deep learning network using ensemble learning. In gen-
eral, the main contributions of this paper are as follows:
(i) We propose a novel network (cascade U-ResNets) to use
a cascade structure to produce liver and lesion segmentation
respectively. (ii) Then, we investigate the performance of dif-
ferent loss functions on the liver and lesion segmentation with
our proposed model. (iii) We further assemble all cascade
U-ResNets trained with different loss functions together to
produce joint segmentation. Our experimental results show
that the ensemble model produces the best performance in
terms of multiple different evaluation measurements.

II. RELATED WORK
A. FULLY CONVOLUTION NEURAL NETWORKS
As shown in FIGURE 2, there are three classes in the liver and
lesion segmentation task: a background class in grey, a liver
class in red, and a lesion class in green. For liver and lesion
segmentation, the goal of a learning model is to classify each
pixel in the CT image to one of the three classes (liver, lesion
or background). That is, a learning model will assign a label
for each pixel in the input image and the output size will be
the same as the input. Otherwise, the input and output can’t
match.

FIGURE 2. An example of semantic segmentation.

Several famous convolutional frameworks had been pro-
posed, such asAlexNet [19], VGG-Net [27], GoogLeNet [28],
ResNet [15], and so on. However, there are two main obsta-
cles for them to perform semantic segmentation. As we know
that there are max-pooling layers inherent in convolutional
networks, and max-pooling layers decrease the resolution of
an input image. The final feature map will become 16 or
32 times smaller than the original size of an input image
after 4 or 5 pooling operations. But the output we need for
medical image segmentation is the same size image as that
of the input image. That is, we need to train a model to
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return a final feature map to the same size as the input image.
The second obstacle is that the fully-connected layer at the
bottom of the above-mentioned networks destroys the spatial
information of the feature map extracted from each image
because the fully-connected layer flats the features extracted
from an image to a vector.

To address two obstacles above, Long et al. [11] proposed
the Fully Convolution Neural Network (FCN), which is a
network composed of all convolutional layers. FCNs abandon
the fully connected layer on VGG-Net and replace it with
deconvolution (i.e., transpose convolution) layers, which can
be seen as a transpose operation of normal convolution. The
deconvolution layer can up-sample the feature map extracted
from the original image. Following this strategy, a ‘‘Pixel-to-
Pixel’’ segmentation can be achieved.

There exist a few neural networks following FCN’s way
for medical image segmentation, such as U-Net [24], which
introduced the inter-skip connection to enhance the feature
learning of its decoder. Except for using the deconvolution
layer, SegNet [3] used the ’max-pooling indices’ to perform
non-linear upsampling. This eliminates the need for learning
to upsample. Li et al. [13] and Vorontsov et al. [34] used
the nearest neighbor interpolation to up-sample the feature
map extracted from the input image to avoid checkerboard
artifacts created by deconvolution. In the vanilla FCNs [11],
extracted features only flow layer by layer from the top to
the bottom. In comparison, U-Net adds a lateral path from its
down-sampling phase to its up-sampling phase. The lateral
pathmakes features flow from a previous layer to a latter layer
easier. Its effectiveness has been demonstrated in medical
image segmentation.

In a normal semantic segmentation, an input image is
usually a 2D image. However, CT imaging produces a
3D sequence, which contains cross-sectional (tomographic)
images. The 2D FCNs neglect the volumetric context in the
CT sequence, so they can’t capture the inter-slice informa-
tion between slices. Some works were proposed to directly
segment 3D volume. V-Net [22] is a 3D FCNs, which can
directly handle 3D medical images. However, it suffers from
the heavy computation cost and the limitation of GPU mem-
ory resources. Therefore, the tradeoff between the inference
time and the segmentation accuracy should be considered.
Li et al. [13] proposed a hybrid structure, which is composed
of a 2D FCN and a 3D FCN. This structure can effectively
extract intra-slice and inter-slice features, and also reduce the
computation complexity.

We will develop a novel deep learning network to take the
advantages of both U-Net and ResNet for liver and lesion seg-
mentation. We intend to perform the liver and lesion segmen-
tation simultaneously and allow information communications
between liver and lesion segmentation so that we can achieve
better performance for both liver and lesion segmentation.

B. DATA IMBALANCE IN SEMANTIC SEGMENTATION
Designing a good loss function can help build a better
model. One of the commonly used loss functions in sematic

segmentation is cross entropy. However, objects to be seg-
mented in different images always vary hugely. Cross entropy
does not consider data imbalance. We can expect that it could
fail to detect tiny objects, like lesions in a liver. For solving the
data imbalance problem, Christ et al. [6] assigned a weight to
each class, which is the reciprocal of the proportion of pixels
belonging to the class (i.e. wi = 1/ni, where ni denote the
number of pixels in class i). However, the proportion of lesion
pixels is usually less than 1% in an image. In this manner,
the reciprocal of the lesion occurrence probability will be very
tiny. Christ et al. [7] further proposed a method to calculate
the weight following, where N denotes all the total number of
pixels in an image.

The similarity based loss functions are frequently used
in medical image segmentation [8], [22], [27], [30].
Milletari et al. [22] introduced the dice coefficient
score (DSC) as a loss function to solve the data imbalance
problem, which is originally used to evaluate the performance
of segmentation. Since the value of dice is unrelated to the
number of object pixels, the dice is not affected by the
proportion of each class. Cai et al. [8] employed another
segmentation criterion Jaccard coefficient as a loss function.
In medical image segmentation, recall is more important.
Since the dice loss ignores the difference between false posi-
tives and false negatives, Salehi et al. [29] proposed Tversky
loss function based on Tversky similarity index (Tversky,
1977) to make the difference between false positives and false
negatives into consideration. Specifically, the Tversky loss
function adopts two parameters α and β to make a tradeoff
between false positives and false negatives. For multi-class
segmentation, Sudre et al. [30] used re-balanced properties of
generalized dice overlap [4] to enhance detecting rare classes.

We will investigate the performance of popular loss func-
tions for liver and lesion segmentation with our proposed
deep learning network.

III. CASCADE U-RESNETS
FIGURE 3 shows the structure of our proposed deep learning
network cascade U-ResNets for liver and lesion segmen-
tation, which contains two U-ResNets. Briefly, we employ
a cascade structure to segment livers and their lesions

FIGURE 3. The architecture of cascade U-ResNets.
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simultaneously, since those two tasks are correlated. The liver
lesion is abnormal tissue within the liver and we consider
that conducting them together will reduce the false positive
of lesion segmentation. The correlation of liver and lesion
segmentation is also a reason why we utilize two same struc-
tures for those two tasks. First, the above U-ResNet shown
in FIGURE 3 will segment the liver from a given medical
image (an input image). Second, the input image will be
concatenated with liver segmentation results, and then fed to
the below U-ResNet shown in FIGURE 3 to delineate the
lesion area from the segmented liver. Finally, two networks
will be trained in an end-to-end manner.

A. U-RESNET
Our proposed U-ResNet is inspired by U-Net and ResNet.
The structure of U-ResNet is shown in TABLE 1. It is
comprised of two phases, i.e., a down-sampling phase and
an up-sampling phase. In the down-sampling phase, four
layers (i.e. Res-block1_x, Res-block2_x, Res-block3_x, Res-
block4_x) are used to extract features from input images.
Each Res-block layer is comprised of a series of the residual
block, which contains two 3 × 3 convolutions. The input
of Res-block is added to the output as ResNet did. In this
way, the loss can quickly backpropagate to the early layer.
The structure of the Res-block is shown in FIGURE 4. Each
time, the feature map is transformed from one layer to another
layer. The size of it will be halved and we employ a 3 × 3
convolution with stride 2 to do this work. The shrink of the

TABLE 1. The architecture of U-ResNet

FIGURE 4. The architecture of Res-Block.

resolution from an input image to its final feature map is
called ‘output stride’. Although setting the output stride as
32 can reduce the model’s inference time, the output stride
is commonly set as 16 in semantic segmentation for denser
feature extraction [9].

The up-sampling phase includes three Res-block layers
and four transpose convolution (Tran-Conv) layers. A trans-
Conv layer is comprised of ‘‘BN (Batch Normalization) -
ReLU - Transpose Convolution’’. When a feature map goes
through it every time, its feature map size is doubled. The
transpose convolution will learn to up-sample the feature
map with trainable parameters. Note that the structure of the
Res-block layers in the up-sampling phase is the same as that
of the Res-block layers in the down-sampling phase. In some
CT slices, the size of the liver and its lesion is very tiny, which
is hard to detect. Image Pyramid [1] is a common method
to enrich the image information by mapping a raw image to
different scales, which can endow a learning model able to
detect variable-sized objects. However, using the output of
Image Pyramid as the input will obviously increase the infer-
ence time. Feature Pyramid Network (FPN) [33] uses dif-
ferent sized feature maps, which is inherent in the network
to detect different scale objects. We followed the strategy
of FPN, and have different sized feature maps outputted by
each Res-block layer in the up-sampling phase to predict the
segmentation result in parallel. The prediction produced by
each Res-block layer will be merged with a 1×1 convolution
layer to generate final results.

B. SKIP-CONNECTIONS
In our cascade U-ResNets, we introduce the intra-network
and the inter-network skip connections to reuse the infor-
mation inherent in the two U-ResNets. They are denoted by
purple lines and dark-red lines respectively in FIGURE 3.

The intra-network skip connections (purple lines) from the
down-sampling phase to the up-sampling phase is employed
to concatenate the feature maps with the same size in two
phases. U-Net has already demonstrated the effectiveness
of this intra-connection in medical image segmentation.
It endows a deep learning network to capture the context
information during training.
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In addition to the intra-network skip connections of
U-ResNet, we also employed the inter-network skip connec-
tions between twoU-ResNets to enhance both liver and lesion
segmentation. As shown in FIGURE 3, features extracted by
the above U-ResNet will flow to the belowU-ResNet through
this inter-path (dark-red lines). From one side, these inter-
network skip connections help the above U-ResNet ‘‘inform’’
the below U-ResNet where the liver is by enhancing informa-
tion flow. On the side, the below U-ResNet can also provide
feedback to the above U-ResNet to correct the liver location
through the inter-path, since the loss can backpropagate to the
former layer in the first U-ResNet easier by inter-connection.
It will update the parameters in the first U-ResNet to pro-
duce a better liver segmentation or produce less loss. The
inter-network skip connections between two U-ResNet make
two models share the features in real-time.

As shown in FIGURE 3, the intra-network skip connec-
tions concatenate the feature map directly on their channel,
while the inter-network skip connections firstly let the feature
map go through a 1 × 1 convolution operation, and then
concatenate the features on their channel. As we mentioned
before, the two U-ResNets have different tasks. We expect
that the convolution operation in the two U-ResNets can
learn some features that are much suitable for lesion seg-
mentation. Besides, we also expect that the inter-network
and intra-network skip connections can help the two models
convergence faster and produce better segmentation results.

C. LOSS FUNCTIONS
Since a loss function can impact the performance of deep
learning, we try to choose a proper loss function for our
cascade U-ResNets by investigating the effectiveness of five
popular loss functions on liver and lesion segmentation.
These five loss functions can be roughly divided into three
categories: reweight-based loss functions (i.e., reweighed
cross entropy (WCE)), similarity-based loss functions
(i.e., Dice loss (DL), Tversky loss (TL)) and integrated loss
functions (i.e., Generalized Dice loss (GDL), Generalized
Tversky loss (GTL)).

Before we provide the definitions of each loss function,
notations used in the following formulations are defined here.
i denotes the index of the channel in a ground truth image,
j denotes the index of a pixel in the image, l denotes the
total number of classes in a segmentation task, N denotes the
total number of pixels in an image, p denotes the probability
outputted by a classification model, and g denotes the ground
truth. Then, we use pijto present the probability of pixel j
belonging to class i, and gij to present the value of pixel
j in channel i of the ground truth image. If pixel j in the
input image belongs to the class 0, the value of g0j=1 while
g1j,g2j,..., glj,= 0.

ReWeighed Cross Entropy (WCE): The re-weight strategy
erases data imbalance by adding weights to rare classes.
WCE is one of the frequently used loss functions based on
this manner, which is defined as follows. We choose it as a

benchmark.

WCE =
∑N

j=0

∑l

i=0
wigij log(pij) (1)

where wi denotes the class weight. In this paper, all wi is
defined as follows.

wi =
N − ni
ni

(2)

where ni presents the number of pixels belonging to class i.
Dice Loss (DL) and Generalized Dice Loss (GDL):

A similarity-based loss function has a similarity criterion,
which is independent of the size of objects, so the loss of
a small object will not be affected by its background. Dice
Score Coefficient (DSC) is a criterion for evaluating the
overlap between a segmentation result and its corresponding
ground truth. Milletari et al. [22] proved its performance
when DSC is adopted as a loss function. Since we need
to segment the liver and its lesions from medical images,
we have two foreground classes. Including one background
class, which presents other organs or tissues, there are three
classes (multi-class) in our image segmentation task. For
multi-class segmentation, multi-class DSC can be expressed
as follows.

DL = 1−
2

∑l
i=0

∑N
j=0 pijgij∑l

i=0
∑N

j=0 p
2
ij +

∑l
i=0

∑N
j=0 g

2
ij

(3)

For highly unbalanced data, Generalized Dice loss [4]
combines the re-weight strategy with dice loss for further
improvement, which is defined as follows.

GDL = 1−
2

∑l
i=0

∑N
j=0 wipijgij

(
∑l

i=0
∑N

j=0 wip
2
ij +

∑l
i=0

∑N
j=0 wig

2
ij)

(4)

Tversky Loss (TL) andGeneralized Tversky loss (GTL): In
medical diagnoses, the false negatives are much less tolerable
than false positives. Therefore, a variation of dice loss called
Tversky loss (TL) is proposed. Two parameters α and β are
introduced to adjust the ratio between false negatives and
false positives. The formula of TL is defined as (5), as shown
at the bottom of the next page.

Where pĩj = 1 − pij and gĩj = 1 − gij. Inspired by
(4) and (5), we propose Generalized Tversky Loss (GTL)
based on re-weight and the Tversky loss, which can be
defined as (6), as shown at the bottom of the next page.

IV. EXPERIMENTS
A. EXPERIMENTAL DATASET AND ENVIRONMENT
In this section, we give more details about the experiment
dataset and the implementation environment. The experiment
data we choose is the LiTS dataset, which contains 131 liver
CT volumes for training a model and 70 CT volumes for
testing the model. We randomly select 120 volumes from
131 volumes to train our model and validate our model on the
remaining 11 volumes aiming to adjust its hyper-parameters.
Finally, we use the 70 testing volumes to evaluate our model.
The CT slices in the dataset involve two foreground classes
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(i.e., liver and lesion) and one background class comprised of
unrelated organs. The resolution of each CT slice is 512×512.
Since the limitation of the computation capacity of our

experimental environment, we first resize each image to
224 × 224 and train our model on the resized images for
70 epochs with a batch size 16 with an initial learning rate 1e-
3. Then, we finely tune our model on the original size images
for 20 epochs with a batch size 6 with an initial learning
rate 1e-4. The learning rate decayed is also employed, so the
learning rate will be updated according to the formula:

lr = lr ∗ (1−
iterations

totalIterations
)0.9 (7)

Parameters α and β in the Tversky loss function are set as
0.3 and 0.7 by following [29].

We implemented our model in the Tensorflow framework
and run our experiments onUbuntu 16.04with CPU i7 8700K
CPU, NVIDIA GTX 1080Ti GPU and 12G memory.

B. DATA PRE-PROCESSING AND DATA AUGMENTATION
Before training, some preparations should be made on the
original images. First, we truncated the pixel value of CT slice
into [−200, 250] to remove the unrelated organs from the
images. Then, since even experienced expert radiologists still
need to combine the above and the below slice to determine
the liver or its lesion area from a current slice, we take the
above and the below slice of the current one into considera-
tion and stack three consecutive 2D slices as themodel’s input
for each slice.

For data augmentation, we randomly vertically or horizon-
tally flip each medical image with 50% change, scale images
between 0.9 and 1.1 with 50% chance, and rotate images up
to 15 degree with 20% chance. FIGURE 5 shows a series of
results generated by the data augmentation from a CT slice.
All the data augmentation operations are combined based on
their own probability during training.

C. EVALUATION METRICS
According to the evaluation metrics of liver segmentation
challenges [23], we selected three evaluation measures from
all metrics to evaluate our sliver and lesion segmenta-
tion results, i.e., Volumetric Overlap Error (VOE), Relative
Volume Difference (RVD), and Dice coefficient.

For VOE, the smaller the value, the better the performance
of the model is. For RVD, the smaller the absolute value, the
better the performance of the model is. Note that the value
of 0 for RVD doesn’t imply that the ground truth and the
segmentation result is identical. For this reason, RVD can’t

FIGURE 5. Data augmentation; (a) Raw image; (b) Horizontal flip;
(c) Vertical flip; (d) Zoom in; (e) Zoom out; (f) Rotation.

be the only criterion for segmentation evaluation [14]. For
Dice, a greater value indicates better segmentation in terms
of Dice.

V. RESULTS
Our experimental results are shown in TABLE 2. From
TABLE 2, we can first see that the reweight-based loss func-
tion (i.e., WCE) is not a good loss function here. It performs
the worst and has a big gap to other loss functions. We can
also see that all similarity-based loss functions (i.e., DL and
TL) perform much better than WCE, even though the WCE
loss takes the data imbalance into consideration. Between
the two similarity-based loss functions (i.e., DL and TL),
TL performs slightly better than DL. Between the two inte-
grated loss functions (i.e., GDL and GTL), our Generalized
Tversky function (GTL) performs slightly better than GDL.
In addition, we can also observe that GDL performs slightly
better than the Tversky function in terms of VOE and Dice,
and GDL performs slightly worse than DL.

Our lesion segmentation results of the five different loss
functions are shown in TABLE 3. Again, TABLE 3 shows
that WCE has the worst performance. The other four loss
functions perform much better than WCE. Between the two
similarity-based loss functions (i.e., DL and TL), DL out-
performs TL in terms of all three measurements, which is
completely opposite on the liver segmentation. Between the
two integrated loss functions (i.e., GDL and GTL), GDL
outperforms GTL on the lesion segmentation, which is also
completely opposite on the liver segmentation.

TL = 1−

∑l
i=0

∑N
j=0 pijgij∑l

i=0
∑N

j=0 pijgij + α
∑l

i=0
∑N

j=0 (pijgĩj)
2 + β

∑l
i=0

∑N
j=0 (pĩjgij)

2
(5)

GTL = 1−

∑l
i=0

∑N
j=0 wipijgij∑l

i=0
∑N

j=0 wipijgij + α
∑l

i=0
∑N

j=0 wi(pijgĩj)
2 + β

∑l
i=0

∑N
j=0 wi(pĩjgij)

2
(6)
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TABLE 2. Evaluation of liver segmentation (the best is in bold, and
the second best is in italic.)

TABLE 3. Evaluation of lesion segmentation (the best is in bold, and
the second best is in italic.)

Since DL and TL perform well on liver segmentation and
lesion segmentation respectively, we want to take advan-
tage of different loss functions and make them complement
each other. Therefore, we ensembled models trained with
DL, GDL, TL, and GTL to jointly decide the final segmen-
tation. Simply, we added the probability maps outputted by
each model together, and then the average value was used to
determine the liver and the lesion area in the liver CT volume.

The segmentation results of the ensemble approach are
shown in the last row of TABLE 2 and TABLE 3 respectively.
From TABLE 2 and TABLE 3, we can observe an obvious
improvement in both liver and lesion segmentation in terms
of VOE and Dice. The Dice of liver and lesion segmentation
got 0.9% and 0.6% increment respectively, comparedwith the
second-best in TABLE 2 and TABLE 3 respectively. In addi-
tion, we can also see that the ensemble approach improves
significantly the performance in terms of VOE, but not RVD.

Slices displayed in FIGURE 6 and FIGURE 7 illustrate that
the ensemble approach can take a comprehensive considera-
tion from the segmentation results produced by every single
model. We can find that every single model has some false
positive predictions on the displayed slices, and the ensemble
model got the best segmentation results among them without
over-segmentation.

The blue line denotes the Ground truth, while the red
line denotes the automatic segmentation result of each loss
function: (a) DL; (b) GDL; (c) TL; (d) GTL; (e) Ensemble.

VI. DISCUSSION
A. THE SIMILARITY-BASED LOSS FUNCTION
By jointly analyzing the results in TABLE 2 and
TABLE 3, it is obvious that WCE is inferior to the other

FIGURE 6. Liver segmentation conducted by different Loss functions.

FIGURE 7. Lesion segmentation conducted by different loss functions.
The blue line de-notes the Ground truth, while the red line denotes the
automatic segmentation result of each loss function: (a)DL; (b) GDL;
(c) TL; (d) GTL; (e) Ensemble.

TABLE 4. Comparing with different deep learning models on liver
segmentation.

4 similarity-based loss functions. Despite WCE introduce
weights to eliminate the effect of data imbalance, it still
can’t compete with the similarity-based methods. In other
words, the result shows that adapting the similarity-based
measurements as loss function is a better strategy than only
adding weights to the loss. Furthermore, we find that the
combination of the re-weighting strategy and similarity-
based methods doesn’t mean better results. As the GTL adds
weights to the TL, we observe an apparent decline in the
lesion segmentation result. The GDL also get a minor decline
on the performance on lesion after introducing the re-weight
item. We attribute this results to the formula ‘‘N-n/n’’ which
may cause the instability of the network.
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TABLE 5. Comparing with different deep learning models on lESION
segmentation.

B. COMPARISONS WITH EXISTING POPULAR DEEP
LEARNING NETWORKS
We further compared our cascade U-ResNets with six
popular deep learning structures: U-Net [24], SegNet [3],
FCN-8s [2], Cascade-2D-FCN [7], 2D-Densenet [21] and
3D-2D FCN+CRF [25], 2D-FCNs [17] on the liver and
lesion segmentation, and our comparison results are shown
in TABLE 4 and TABLE 5.

VII. CONCLUSION
In this paper, we first proposed an end-to-end liver and lesion
segmentation model, which is composed of two cascaded
U-ResNets. In the cascaded structure, besides the
intra-network skip connection inherent in U-ResNet, the
inter-network skip connections are introduced to our model
to ensure the information exchange between two U-ResNets
during training. We further investigated the performance of
our model using five popular loss functions (i.e., WCE, DL,
GDL, TL, and GTL). Our experimental results show that
the similarity-based loss functions perform much better than
WCE. To take advantage of each loss function, we assembled
models trained with different loss functions (i.e., DL, GDL,
TL, and GTL) to jointly segment the liver CT volume. Our
experimental results showed our ensemble model can achieve
much better results than each model.

In this paper, we only used a fix re-weight term
(N-ni)/ni to adjust the two popular similarity loss functions
(i.e., DL and TL). This is a very simple solution. In the
future, we will find re-weighted strategies to integrate the re-
weighted strategies to similarity-based loss functions on the
liver and lesion segmentation. We also have a great interest in
introducing our model to other medical image segmentation
tasks.
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