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ABSTRACT A novel system and its corresponding method for the measurement and the exact reconstruction
of a pair of parallel profiles are designed. There are six sensors installed on the measuring device and
they are divided into two groups with different sensor spacings. The exact reconstruction can be realized
under the condition of a high lateral resolution, as the straightness error, the yaw error, the zero-adjustment
error, and the data processing error can be all eliminated through two scannings and certain data processing
method. The measurement error of the displacement sensors can also be suppressed. The new method has
the following advantages: (i) the realization of the exact reconstruction, (ii) a high lateral resolution of
the reconstruction result which is independent of the sensor spacings, (iii) the skip of the zero calibration
before the measurement process, and (iv) the suppression of the sensor random error. These advantages are
demonstrated by the theoretical analyses and the simulations. Experiments are also conducted to prove some
of these characteristics.

INDEX TERMS Data processing error, error elimination, exact reconstruction, high lateral resolution.

I. INTRODUCTION
The guiding devices, such as a set of guide-ways or parallel
plates in equipment, are generally regarded as a pair of par-
allel profiles whose accuracy greatly influences the smooth-
ness and service life of the devices. Therefore, monitoring
the main parameters of a pair of parallel profiles (including
distance, straightness, and parallelism et al) is of significance
proposition. The most commonly used method to address
this problem is the scanning measurement method. How-
ever, the most remarkable disadvantage of this method is the
inevitable errors introduced into the measurement and recon-
struction results because the motion trajectory of the mea-
suring device is always used as the measurement reference.
Especially for the on-machine measurement, as the measur-
ing device is driven by the machine tool spindle, the accuracy
of the measurement reference is always at the same level
as the accuracy of the measured profiles, thus impacting on
the measurement and reconstruction results more seriously.
Therefore, people are working on the researches and the
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developments of the measurement and reconstruction meth-
ods to eliminate different errors in scanning measurement,
wherein the multi-sensor method can achieve fairly good
results. The main errors that influence the accuracies of the
measurement and reconstruction results include the straight-
ness error and the yaw error of the measurement reference,
the data processing error, the zero-adjustment error, and the
measurement error of sensors. In general, the exact recon-
struction of measurement profiles needs to eliminate all of
these errors except the sensor measurement error.

For the measurement and reconstruction of a single mea-
sured profile, the reversal method using a single displacement
sensor can overcome the systematic error in the straightness
error of the measurement reference [1], [2]. With two side-
by-side sensors, the two-point method [3]–[7], including the
sequential two-point method (STP), the generalized two-
point method (GTP) and the combined two-point method
(CTP), can remove both the systematic error and the random
error of the straightness error, but it will amplify the influ-
ence of the yaw error of the measuring device at the same
time. Correspondingly, the three-point method, including
the sequential three-point method (STRP), the generalized
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three-point method (GTRP) and the combined three-point
method (CTRP), can eliminate the yaw error [8], but the
zero-adjustment error will have a relatively large impact
on the reconstruction result. And if the measurement and
reconstruction of the profile are performed by the two-point
method or the three-point method when the step distance of
the measuring device (equal to the interval of the sampling
points and of the reconstruction points) is equal to the spac-
ing between adjacent sensors, which is called the ‘‘shear’’,
the method is STP or STRP, and the positions of the recon-
struction points are not affected by the data processing error.
Nevertheless, the density of the sampling points is limited by
the size of the sensors and the lower lateral resolution will
result in fewer reconstruction points, which makes the fea-
tures of themeasured profilemore likely to be lost. In theGTP
andGTRPmethods, the interval of the sampling points can be
smaller than the shear, which improves the lateral resolution.
However, as the higher-order harmonic component distortion
exists, the results in this method suffer from the data process-
ing error. The CTP method combines the STP and the GTP
methods, and the CTRP method blends the STRP and the
GTRP methods. Using these two methods, the reconstruction
result without data processing error can be obtained under
a high lateral resolution theoretically, but in order to adjust
the relative positions of the different groups of reconstruction
points, these methods assume a completely smooth part of
the measured profile, which limits the feasibility and the
accuracy of the measurement result. Thus, it is hard to realize
the exact reconstruction without data processing error and
retain a high lateral resolution at the same time.

Several methods have been developed to remove the data
processing error under a high lateral resolution [9]–[12].
However, many of thesemethods are still affected by the zero-
adjustment error of sensors. Yin et al. developed newmethods
including time domainmethod and frequency domainmethod
[13], [14], which can retain a high lateral resolution without
the intervention of data processing error or zero-adjustment
error in the reconstruction result. However, if the influence
of yaw error is to be overcome, an additional collimator is
required to measure the yaw error. Using an interferometer
as multiple sensors, they also developed a new method to
eliminate both the straightness error and the yaw error and
realize the exact reconstruction with a high lateral resolution
[15]. Clemens Elster et al. developed a newmethod [16], [17]
which combines a multi-sensor systemwith a laser collimator
to eliminate several errors that have major impacts on the
reconstruction results, including straightness error and yaw
error of the measurement reference and the zero-adjustment
error. And with a high lateral resolution, the method is also
free from the data processing error, which means the exact
reconstruction can be achieved. However, both the interfer-
ometer which is used to implement the same function of
multiple sensors and the collimator are optical instruments,
which require complicated installation and adjustment pro-
cesses as well as professional operators’ operations. More-
over, the stability of the optical instruments is easily affected

by the environments, including temperature, humidity, and
vibrations et al. These factors all limit the feasibility of
the measurement systems with the optical instruments in
the industrial sites for the complexity of the environment.
Besides, some vision measurement methods and image pro-
cessing technologies are developed, and the measurement
accuracy is getting higher and higher. However, for the on-
machine measurement, the camera calibration and changes
in ambient light all limit the feasibility of these methods, and
image stitching is often needed when measuring large-scale
workpieces.

Based on the single profile measurement and reconstruc-
tionmethods described above, manymethods for parallel pro-
files have been developed, including methods for measuring
cylinder workpieces and parallel guideways [18]–[21]. The
advantages and disadvantages of these methods are similar
to those for a single profile. In order to realize the exact
reconstruction, the straightness error and the yaw error of
the measurement reference, the data processing error, and the
zero-adjustment error all need to be eliminated. To ensure
the measurement accuracy in the industrial sites, the optical
instruments also need to be forbidden. For a better measure-
ment result, a high lateral resolution is needed. Therefore,
in this paper, we developed a six-probe system, which uses
six displacement sensors to collect data for the measurement
and the reconstruction of a pair of parallel profiles. The new
method can eliminate several errors mentioned above and
realize the exact reconstruction with a high lateral resolution
if the sensor measurement error is ignored. At the same time,
this method has better stability in complex environments as
no optical instruments are used. Moreover, benefiting from
the average effect, the sensor measurement error can be sup-
pressed better.

II. THE SIX-PROBE METHOD
A. THE STRUCTURE OF THE MEASUREMENT SYSTEM
To eliminate the straightness error of the reference in the
z-direction (referred as straightness error hereinafter) and the
yaw error at the same time without using an additional device
to measure the yaw error, each measured profile needs to
be reconstructed using measurement data of at least three
probes side by side. Therefore, the measuring device pro-
posed here consists of six displacement sensors. As shown
in Fig.1, the device is mounted on a mobile stage and placed
between two measured profiles. The sensors P1,P2, and P3
are mounted on the one side of the stage, and P4,P5, and P6
are fixed on the other side. P4 is opposite to P1. Set the sym-
metry point of P1 and P4 as the origin of the coordinate, and
the motion direction of the device, which is also the extension
direction of the measured profiles, as the positive direction of
the x-axis. During the scanning, after the measuring device
stepped s each time, sensors collect displacement data once.

It is required to satisfy d1 = δ1 · s and d2 = δ2 · s, where
δ1 and δ2 are coprime (the following analyses are performed
under the setting of δ1 > δ2). Both the measured profiles can
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FIGURE 1. The schematic diagram of the six-probe method.

be reconstructed by the three-point method using the outputs
of P1 -P3 and P4-P6 after one scanning. According to the
existing theories, the three-point method can eliminate the
straightness error and the yaw error effectively.

B. THE ELIMINATION OF THE ZERO-ADJUSTMENT ERROR
According to the existing researches, almost all the multi-
probe methods include a differential process and an inte-
gral process. When reconstructing a measured profile using
the three-point method, the reference error (including the
straightness error and the yaw error) can be eliminated during
the differential process. However, there are errors in differ-
ential values as the zero-adjustment error exists. In order
to reduce this impact, a higher precision reference plane is
often used to calibrate the zero points of sensors, which
improves the cost but fails to meet the requirements some-
times, as the integral process is an iterative process which
means the errors in differential values accumulate rapidly
and even small errors can make a harmful influence on the
reconstruction result. Therefore, when the requirement for
zero calibration accuracy becomes higher, it is necessary
for the measurement and reconstruction method to lessen
the influence of zero-adjustment errors, so that not only the
measurement accuracy can be improved, the cost can also be
reduced as the calibration of sensor zero points is spared.

Using the new method described in this paper, the zero-
adjustment error can be removed during the differential part
before the integral part. The measuring device is rotated
around the x-axis for a second scanning (as shown in Fig.2),
with the same start point, end point, and the stepping distance
as the first scanning in Fig.1.

Define the two measured profiles as f (x) and g(x) respec-
tively. When the measurement data are collected N times
in one scanning, the outputs of Pj(j = 1, 2, . . . , 6) can be
expressed as mj(xn), where n = 0, 1, 2, . . . ,N − 1 and xn =
n ·s. Set the zero-adjustment error of Pj to ej. In the first scan-
ning, when the output of Pj is mj(xn), the straightness error is
expressed as ez(xn), and the yaw error of themeasuring device
is eyaw(xn). In the second scanning, the measurement data are
defined as mjr (xn), and the straightness error and the yaw

FIGURE 2. The schematic of the scanning after rotation.

error are ezr (xn) and eyawr (xn). Considering the straightness
error, the yaw error and the zero-adjustment error, the outputs
of sensors in two scannings are:

m1(xn) = f (xn)− ez(xn)+ e1 (1)

m2(xn) = f (xn + d1)− ez(xn)− d1 · eyaw(xn)+ e2 (2)

m3(xn) = f (xn + 2d1)− ez(xn)− 2d1 · eyaw(xn)+ e3 (3)

m4(xn) = −[g(xn)− ez(xn)]+ e4 (4)

m5(xn) = −[g(xn + d2)− ez(xn)− d2 · eyaw(xn)]+ e5 (5)

m6(xn) = −[g(xn+2d2)−ez(xn)−2d2 ·eyaw(xn)]+e6 (6)

m1r (xn) = −[g(xn)− ezr (xn)]+ e1 (7)

m2r (xn) = −[g(xn + d1)−ezr (xn)−d1 · eyawr (xn)]+e2 (8)

m3r (xn) = −[g(xn + 2d1)− ezr (xn)− 2d1 · eyawr (xn)]+ e3
(9)

m4r (xn) = f (xn)− ezr (xn)+ e4 (10)

m5r (xn) = f (xn + d2)− ezr (xn)− d2 · eyawr (xn)+ e5 (11)

m6r (xn) = f (xn + 2d2)−ezr (xn)−2d2 ·eyawr (xn)+e6 (12)

Define the differential value with different selections of x
increment as:

f ′′1 (xn) =
1

d21
[f (xn + 2d1)− 2f (xn + d1)+ f (xn)] (13)

f ′′2 (xn) =
1

d22
[f (xn + 2d2)− 2f (xn + d2)+ f (xn)] (14)

g′′1(xn) =
1

d21
[g(xn + 2d1)− 2g(xn + d1)+ g(xn)] (15)

g′′2(xn) =
1

d22
[g(xn + 2d2)− 2g(xn + d2)+ g(xn)] (16)

The calculation process of the second-order differentials that
are not affected by the zero error is:

df1(xn) =
1

d21
[m3(xn)− 2m2(xn)+ m1(xn)]

= f ′′1 (xn)+
1

d21
(e3 − 2e2 + e1) (17)

df1r (xn) =
1

d21
{m1r (xn + 2d1)+ m4r (xn + 2d1)
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−m3r (xn)− 2[m1r (xn + d1)

+m4r (xn + d1)

−m2r (xn)]

+m4r (xn)}

= f ′′1 (xn)−
1

d21
(e3 − 2e2 + e1) (18)

df2(xn) =
1

d22
{m1(xn + 2d2)+ m4(xn + 2d2)

−m6(xn)− 2[m1(xn + d2)

+m4(xn + d2)

−m5(xn)]+ m1(xn)}

= f ′′2 (xn)−
1

d22
(e6 − 2e5 + e4) (19)

df2r (xn) =
1

d22
[m6r (xn)− 2m5r (xn)+ m4r (xn)]

= f ′′2 (xn)+
1

d22
(e6 − 2e5 + e4) (20)

The second-order differential values of f (x) with x incre-
ments of d1 and d2 are:

mf1(xn) =
1
2
[df1(xn)+ df1r (xn)] = f ′′1 (xn) (21)

mf2(xn) =
1
2
[df2(xn)+ df2r (xn)] = f ′′2 (xn) (22)

Similarly, with x increments of d1 and d2, the calculation
process of the second-order differentials of g(x) (mg1(xn) and
mg2(xn)), can be calculated:

mg1(xn) = −
1

2d21
{m1(xn + 2d1)+ m4(xn + 2d1)

−m3(xn)− 2[m1(xn + d1)

+m4(xn + d1)

−m2(xn)]

+m4(xn)+ m3r (xn)

−2m2r (xn)+ m1r (xn)}

= g′′1(xn) (23)

mg2(xn) = −
1

2d22
{m6(xn)− 2m5(xn)+ m4(xn)

+m1r (xn + 2d2)

+m4r (xn + 2d2)

−m6r (xn)− 2[m1r (xn + d2)

+m4r (xn + d2)

−m5r (xn)]

+m1r (xn)}

= g′′2(xn) (24)

We can see that the differential values in (21)-(24) are free
from the zero-adjustment error. The reconstruction result cal-
culated from these values will not be impacted by this type of
error.

C. THE RECONSTRUCTION OF THE MEASURED PROFILES
As the differential process in Section II(B) eliminates the
zero-adjustment error, the differential values can be used in
the integral process without worrying about the accumulation
of this type of error. To meet the measurement requirements
and realize the exact reconstruction of profiles without data
processing error, the number of measurement points N needs
to be at least 2δ1δ2, that is to say, the measurement length is at
least L = (2δ1δ2 − 1)s. When n = 0, 1, 2, . . . ,N − 1, f (xn)
is represented by f (n) for the convenience of representation.
Using xα, α = 0, 1, 2, . . . , δ1 − 1 as the starting point and

mf1(xn), conduct δ1 sets of double integrals with x increment
of d1 (the STRP method). It will result in δ1 reconstruction
profiles with at least 2δ2 reconstruction points on each profile.
Similarly, using xβ , β = 0, 1, 2, . . . , δ2 − 1 as the starting
point and mf2(xn), conduct δ2 sets of double integrals with x
increment of d2, and δ2 reconstruction profiles with at least
2δ1 reconstruction points on each profile can be obtained. The
integral processes can be implemented by:

f ′1(xi) = f ′′1 (xi−δ1 ) · d1 + f
′

1(xi−δ1 ) (25)

f1(xi) = f ′1(xi−δ1 ) · d1 + f1(xi−δ1 ) (26)

f ′2(xi) = f ′′2 (xi−δ2 ) · d2 + f
′

2(xi−δ2 ) (27)

f2(xi) = f ′2(xi−δ2 ) · d2 + f2(xi−δ2 ) (28)

We define a pair of measured profiles, and simulating the
data collection and the data processing processes, one of the
measured profiles and δ1 + δ2 profiles calculated from (25)-
(28) of it are shown in Fig. 3 and Fig. 4 (here we define
δ1 = 11, δ2 = 9).

FIGURE 3. δ1 profiles with a reconstruction point interval of d1.

Since the mentioned reconstruction profiles are obtained
by the STRP method, the two groups of profiles with point
intervals of d1 and d2 are not affected by the data processing
error. However, due to the selections of the initial values in
iterations (all selected as 0 here), the reconstruction profiles
have tilts and translations compared with the actual profile,
and for each profile, the tilt and the translation are always
different from others’. Adjusting the poses of these recon-
struction profiles by rotating and translating them, each group
of reconstruction profiles can construct a whole profile with
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FIGURE 4. δ2 profiles with a reconstruction point interval of d2.

the reconstruction point interval of s and more than 2δ1δ2
reconstruction points.

Store the reconstruction values of points on these profiles
in arrays F1 and F2. Define rem(a, b) as the remainder of a
divided by b, and floor(a) as the largest integer not bigger
than a. When rj = rem(n, δj), tj = floor(n/δj), set Fj(rj+1, :)
as the (rj+ 1)th profile of the profile group which consists of
profiles with point interval of dj, and Fj(rj + 1, tj + 1) as the
(tj + 1)th point on it, whose x coordinate is xn = ns. When
the tangent of the angle of which Fj(rj + 1, :) relative to the
actual profile f (x) is defined as kj(rj + 1), the reconstruction
points on Fj(rj + 1, :) can be expressed as:

Fj(rj + 1, tj + 1) = f (n)+ kj(rj+1)·(n− rj)s−f (rj) (29)

In the process of adjusting reconstruction profiles, when
using F1(p + 1, :), p = 0, 1, 2, . . . , δ1 − 1 as the target
profile, other profiles in F1 need to be adjusted to coincide
with the target profile, and F2(q + 1, :), q = rem(p, δ2)
should be used as the reference profile. We know that, in the
measurement positions of n0 = p and n′0 = p + δ1δ2
(x = n0s and x = n′0s), there are reconstruction points on
both F1(p + 1, :) and F2(q + 1, :). Rotating and translating
F2(q + 1, :), the result is F2_a(q + 1, :) and the purpose of
this operation is to make the points on F2_a(q + 1, :) and
F1(p+1, :) coincide in twomentioned positions where n = n0
and n = n′0. Next, make other profiles in F1 also coincide
with F2_a(q + 1, :) and F1(p + 1, :), and this process takes
the points onF2_a(q+1, :) as references. There are δ1 profiles
in F1 and at least 2δ1 points on F2_a(q+1, :). In each profile
in F1, there are two reconstruction positions where there are
points on F2_a(q+ 1, :) as well.
For example, we use the 2nd reconstruction profile in

F1, the points on which are expressed as F1(2, i1), i1 =
1, 2, · · · , 2δ2, · · · , as the target profile when adjusting the
relative positions and poses among profiles in F1. According
to the introduction above, the reference profile should be
F2(2, :) (with points F2(2, i2), i2 = 1, 2, . . . , 2δ1, . . .). The
values of reconstruction points on these two profiles are:

F1(2, i1) = f (n)+ k1(2) · (n− 1)s− f (1),

n = (i1 − 1)δ1 + 1 (30)

FIGURE 5. The adjustment of the reference profile.

F2(2, i2) = f (n)+ k2(2) · (n− 1)s− f (1),

n = (i2 − 1)δ2 + 1 (31)

The two points on F2(2, :), whose x coordinates satisfy n0 =
1 and n′0 = 1 + δ1δ2, can be used to adjust it to make it
coincide with F1(2, :). In these two positions, both F1(2, :)
and F2(2, :) has reconstruction points, and according to (30)-
(31) the values of these four reconstruction points can be
expressed as:

F1(2, 1) = F2(2, 1) = 0, n = n0 (32)

F1(2, δ2 + 1) = f (n′0)+ k1(2) · δ1δ2 · s− f (1),

n = n′0 (33)

F2(2, δ1 + 1) = f (n′0)+ k2(2) · δ1δ2 · s− f (1),

n = n′0 (34)

Define the slope difference between F1(2, :) and F2(2, :) as
1k(0):

1k(0) =
F1(2, δ2 + 1)− F2(2, δ1 + 1)

δ1δ2s
= k1(2)− k2(2) (35)

The process of obtaining F2_a(2, i2), which are the points
after F2(2, :) being adjusted, can be expressed as:

F2_a(2, i2) = F2(2, i2)+1k(0) · (n− 1) · s

= f (n)+ k1(2) · (n− 1) · s− f (1) (36)

The adjustment process of the reference profile F2(2, :) in
(35)-(36) is shown in Fig 5.

Then adjust the positions and poses of other profiles in F1
to make them coincide with the target profile F1(2, :), that is,
coincide with the reference profile after adjustment (F2_a(2, :
)). When i2 takes i2 ∈ {x|x ∈ Z , 1 ≤ x ≤ δ1 and x 6= 2},
each point in F2_a(2, i2) can be used as the reference for the
position and pose adjustment of one of profile in F1. Define
that:

n̂1 = (i2 − 1)δ2 + 1

n̂2 = (i2 − 1)δ2 + δ1δ2 + 1
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When n is equal to n̂1 or n̂2, in the corresponding two posi-
tions, the values of points on F2_a(2, :) and points in F1 are
expressed as:

F2_a(2, i2) = f (n̂1)+k1(2) · (n̂1 − 1)s− f (1) (37)

F2_a(2, i2+δ1) = f (n̂2)+k1(2) · (n̂2 − 1)s− f (1) (38)

F1(r̂+1, t̂+1) = f (n̂1)+k1(r̂+1) · (n̂1 − r̂)s− f (r̂)

(39)

F1(r̂+1, t̂+δ2+1) = f (n̂2)+k1(r̂+1) · (n̂2 − r̂)s− f (r̂)

(40)

where r̂ = rem(n̂1, δ1) and t̂ = floor(n̂1/δ1). According to
(39)-(40), we know that in F1, the reconstruction points in
these two positions are both on the (r̂ + 1)th reconstruction
profile (F1(r̂ + 1, :)). Define the slope difference between
F1(r̂ + 1, :) and F2_a(2, :) (which is equal to the slope dif-
ference between F1(r̂ + 1, :) and F1(2, :)) as 1k(r̂ + 1):

1k(r̂ + 1) =
1

δ1δ2s
[F2_a(2, i2 + δ1)

−F2_a(2, i2)

−F1(r̂ + 1, t̂ + δ2 + 1)

+F1(r̂ + 1, t̂ + 1)]

= k1(2)− k1(r̂ + 1) (41)

The profile F1(r̂ + 1, :) is rotated according to the slope
difference1k(r̂ + 1), and the profile after rotation is defined
as F1_r(r̂ + 1, :):

F1_r(r̂ + 1, :) = F1(r̂ + 1, :)+1k(r̂ + 1) · (n− r̂)s

= f (n)+ k1(2) · (n− r̂)s− f (r̂) (42)

After rotation, we know that F1_r(r̂ + 1, :) and F2_a(2, :)
are parallel according to (36) and (42). In these two corre-
sponding positions, the values of the reconstruction points on
F1_r(r̂ + 1, :) are expressed as:

F1_r(r̂ + 1, t̂ + 1) = f (n̂1)+ k1(2) · (n̂1 − r̂)s− f (r̂)

(43)

F1_r(r̂ + 1, t̂ + δ2 + 1) = f (n̂2)+ k1(2) · (n̂2 − r̂)s− f (r̂)

(44)

The vertical translation between F1_r(r̂+1, :) and F2_a(2, :)
(equal to the translation between F1_r(r̂ + 1, :) and F1(2, :))
is:

1d(r̂ + 1) =
1
2
[F2_a(2, i2)− F1_r(r̂ + 1, t̂ + 1)

+F2_a(2, i2 + δ1)

−F1_r(r̂ + 1, t̂ + δ2 + 1)]

= k1(2) · (r̂ − 1)s+ f (r̂)− f (1) (45)

According to 1d(r̂ + 1), translate F1_r(r̂ + 1, :) and obtain
the profile F1_a(r̂ + 1, :):

F1_a(r̂ + 1, :) = F1_r(r̂ + 1, :)+1d(r̂ + 1)

= f (n)+ k1(2) · (n− 1)s− f (1) (46)

The component k1(2) · (n − 1)s is the difference between
F1_a(r̂+1, :) and the actual profile f (x) due to tilt, and−f (1)
is the difference caused by the translation. The expressions of
F1_a(r̂+1, :) and F1(2, :) are the same ((30) and (46)), which
means that each profile in F1_a(r̂+1, :) has the same tilt and
translation as F1(2, :). That is to say, they all coincide with
F1(2, :), and the mentioned result is shown in Fig.6.

FIGURE 6. The δ1 reconstruction profiles in F1 after adjustment.

Therefore, based on the mentioned steps, δ1 profiles in F1
could coincide with each other and combine a whole profile
with at least 2δ1δ2 points and an interval of s. It’s an exact
reconstruction with a high lateral resolution and without data
processing error as all the profiles in F1 and F2 are calculated
by the STRP method, and the sampling point interval (s) can
be controlled independently with the sensor spacing.

Based on the same method, using different reconstruction
profiles in F1 or F2 as the target profile, different profiles can
be obtained. Although they have different tilts and transla-
tions compared with the actual profile, after being deprived
of the linear trends, they can overlap with each other theoret-
ically if the measurement error of sensors is ignored. When
considering the measurement error of sensors, the averaging
of them can suppress the random error. The reconstruction
profile of the other measured profile g(x) can be calculated
using the same method as well. What must be noticed is
that when p ≥ δ2, it is needed not only to rotate the profile
according to (35)-(36) but also to translate it when adjusting
the position and the pose of the reference profile.

D. THE EVALUATION OF THE PARALLELISM
After the steps described in Section II(C), we can obtain two
reconstruction profiles without the influence of the straight-
ness error, the yaw error, the zero-adjustment error, and the
data processing error. It is equivalent to achieving an exact
reconstruction and the reconstruction profiles are similar to
the actual profiles, but there are still tilts and translations
between the reconstruction profiles and their corresponding
actual profiles. These tilts and translations will not affect the
evaluation result if the reconstruction profiles are used to
evaluate their straightnesses. However, when the tilt angles of
these two reconstruction profiles compared with their actual
profiles are different from each other, there will be a large
impact on the evaluation result of the parallelism. Therefore,
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to evaluate the parallelism, adjusting the relative position
between the reconstruction profiles obtained in Section II(C)
is the basis, so that the angle between them is equal to that
between the actual profiles (the angle here refers to the angle
between the fitting straight lines of profiles). The method
used here is similar to that in [18], and differently, we can
calculate the slope difference of profiles using the data from
two scannings:

1p =
N

∑N−1
n=0 xn · mp(xi)−

∑N−1
n=0 xi

∑N−1
n=0 mp(xi)

N
∑N−1

n=0 x
2
n − (

∑N−1
n=0 xn)

2 (47)

where mp(xi) = [m1(xn)+ m4(xn)+ m1r (xn)+ m4r (xn)]/2.
Define that the reconstruction profiles obtained in
Section II(C) are Zf (xn) and Zg(xn), and the slopes of their
fitting straight lines are pf and pg, the adjustment process is:

Zfr (xn) = Zf (xn)+ (
1p
2
− pf )xn (48)

Zgr (xn) = Zg(xn)+ (−
1p
2
− pg)xn (49)

The angle betweenZfr (xn) andZgr (xn) is equal to that between
two actual profiles. As a result, Zfr (xn) and Zgr (xn) can be
used to evaluate both the straightnesses of them and the
parallelism.

As the proposed method is based on the STRP method,
the final reconstruction result will not be affected by the
straightness error and the yaw error of the measurement
reference as well as the data processing error. According
to Section II(B), the zero-adjustment error of sensors is
removed during the differential part of the data processing.
That is to say, the new method proposed in this paper can
eliminate the main factors that influence the reconstruction
results most including the errors mentioned above, and the
exact reconstruction can be realized if the measurement error
of sensors is ignored. Considering the measurement error
of sensors, the mentioned δ1 + δ2 profiles calculated using
different target profiles can be averaged to reduce the impact
of this type of random error. The reconstruction profiles can
be used to evaluate the straightnesses of them. After the
rotation expressed above, the profiles can be used to evaluate
the parallelism as well.

III. SIMULATIONS
In order to demonstrate and verify the feasibility of the new
method proposed in this paper, as well as its advantages in
eliminations or suppressions of different types of errors and
in the exact reconstruction of a pair of profiles, some simu-
lations about the measurement and reconstruction processes
are conducted. Suppose that the measured profiles are com-
posed of smooth profiles and irregular variations. The smooth
profiles for measured profiles f (x) and g(x) are expressed as
(unit: µm):

fb(x) = 20 sin(2π ·
0.09
150
· x)− 20 sin(2π ·

0.8
150
· x)+ 50

gb(x) = −50 sin(2π ·
0.3
150
· x)− 10 sin(2π ·

1.34
150
· x)− 50

FIGURE 7. The measured profiles and the measurement data: (a) the
measured profiles, (b) the measurement data of the first scanning, (c) the
measurement data of the second scanning.

Add pulse signals and step variations into the smooth profiles
to simulate the irregular variations of the measured profiles,
and the whole measured profiles f (x) and g(x) are shown
in Fig.7(a). Set d1, the spacing between P1-P3, is 11mm, and
9mm for d2, the spacing between P4-P6. The step distance of
the device during the scannings is 1mm. That is to say, the two
coefficients (δ1 and δ2) are 11 and 9, respectively.

In order to compare the performances of the new method
described in this paper and the existingmethods, themeasure-
ment data of six sensors are processed by different methods
to reconstruct the measured profiles.

A. THE ELIMINATION OF THE DATA PROCESSING ERROR
In the two scannings before and after the rotation, add
Gaussian error with the standard deviation of 2µm as the
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straightness error of the measurement reference into simu-
lations, as well as yaw errors with the standard deviation
of 5µrad . The outputs of six sensors reflect the tendency
of measured profiles and are impacted by different types of
errors. The measured profiles and the outputs of sensors are
shown in Fig.7(b)(c):

Firstly, the simulations are conducted without adding the
zero-adjustment error and the measurement error of the sen-
sors. Using the outputs of P1-P3 during the first and the
second scanning, the reconstruction result in Fig.8(a) is cal-
culated by the STRP method. From Fig.8(a), we can see that
the STRP method can realize exact reconstruction ignoring
the zero-adjustment error and the measurement error of sen-
sors, as each point on the reconstruction profiles coincides
with the measured profiles. However, the interval among the
reconstruction points is limited by the shear value, and due to
the large interval, a lot of information cannot be displayed on
the reconstruction profiles.

Using outputs of six sensors during the first scanning and
the GTRP method, the reconstruction profiles are shown
in Fig.8(b). That is to say, Zf _gtrp(x), the reconstruction
profile of f (x), is calculated by a GTRP process with the
shear value of 11mm and the sampling interval of 1mm, and
Zg_gtrp(x) is calculated by a GTRP process with the shear
value of 9mm and the sampling interval of 1mm. According
to the existing researches, as the GTRPmethod can overcome
the straightness error and the yaw error of the measurement
reference, the differences between the measured profiles and
the reconstruction profiles shown in Fig.8(b) are caused by
data processing error of the method.

What is shown in Fig.8(c) is the reconstruction result
calculated using outputs of sensors during two scannings
and the new method proposed in this paper. Compared with
Fig.8(a) and Fig.8(b), the new method can realize the exact
reconstruction and retain a high lateral resolution.

B. THE ELIMINATION OF THE ZERO-ADJUSTMENT ERROR
Set that all of the sensors have zero-adjustment error not more
than 0.5µm when installing. Reconstruct the profiles using
the same three methods in Section III(A), and the reconstruc-
tion results are shown in Fig.9. Compared with the results
in Section III(A), the accuracies of reconstructions will be
seriously impacted when using traditional STRP and GTRP
methods. The new method removes this influence during
the data processing process, which is consistent with the
analyses in Section II(B). Therefore, using the new method,
the calibration of the sensor zero points can be skipped. As
a result, the new method not only ensures the accuracy of
the measurement and reconstruction but also simplifies some
steps in the measurement process.

C. THE SENSOR MEASUREMENT ERROR SUPPRESSION
OF AVERAGE EFFECT
As the reference errors (including the straightness error and
the yaw error), the zero-adjustment error and the data process-
ing error are all removed, the error that affects the final result

FIGURE 8. The reconstruction result using different methods (ignoring the
zero-adjustment error and removing the linear trends of profiles): (a) the
reconstruction result of the STRP method, (b) the reconstruction result of
the GTRP method, (c) the reconstruction result of the new method.

most is the measurement error of sensors. According to the
descriptions in Section II(C), using different profiles as the
reference profile when adjusting other profiles, different pro-
files can be obtained. When the average profile is calculated
by averaging these different reconstruction profiles, the aver-
age effect can suppress the sensor measurement error to some
degree. Assume that the measurement error of each displace-
ment sensor is Gaussian error with the standard deviation of
2µm and add them into sensor outputs, the comparison before
and after the averaging is shown in Fig.10. Fig.10(a) shows
Zf _1(x), usingF1(1, :) as the reference profile when adjusting
other profiles, and Zf _average(x) is the result of the profile
averaging 20 (δ1 + δ2) reconstruction profiles obtained by
using different profiles as reference profile. Fig.10(b) shows

VOLUME 8, 2020 68165



X. Chen et al.: Novel Six-Probe Method for the Measurement and Exact Reconstruction of a Pair of Parallel Profiles

FIGURE 9. The reconstruction results using different methods considering
the zero-adjustment error (ignoring the sensor measurement error and
depriving the linear trends of profiles): (a) the reconstruction result of the
STRP method, (b) the reconstruction result of the GTRP method, (c) the
reconstruction result of the new method.

their corresponding reconstruction errors. It can be seen that
the average effect suppresses the measurement error of the
sensors.

IV. EXPERIMENT
The following experiment was conducted to verify the advan-
tages of the new method. As shown in Fig.11, install six
pneumatic displacement sensors (Solartron DP/10/P) with
a measurement range of 10mm on the scanning stage. The
spacing between P1-P3 was 16mm (d1), and 14mm (d2) for
the other three sensors. The measured objects were a pair of
grinding marble rulers, and two feeler gauges of thickness

FIGURE 10. The sensor measurement error suppression of average effect:
(a) A single reconstruction profile and the average reconstruction profile,
(b) Reconstruction errors of profiles in (a).

FIGURE 11. Experimental device.

0.5mm and 0.3mm were attached to the marble rulers to
simulate step variations on the measured profiles. The device,
driven by a motorized linear stage, collected measurement
data after stepping every 2mm. According to the mentioned
analyses, δ1 and δ2 were equal to 8 and 7. Before and after the
measuring device was rotated, two scanning measurements
were performed to complete one measurement process, and
each scanning needed to collect at least 112 times of mea-
surement data.

In order to verify the performance and advantages of the
new method under high lateral resolution, the data collected
from the same measurement process was processed by differ-
ent methods, and the reconstruction results were compared.
We know that the results of the three-point method are free
from the straightness error and the yaw error, and we compare
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FIGURE 12. The reconstruction results of different methods (the new
method, the GTRP method, and the STRP method).

FIGURE 13. The reconstruction results of different methods (the new
method, the GTRP method, and the GTP method).

the result of the newmethod with that of the traditional STRP
and the GTRP methods. As shown in Fig.12, using the new
method proposed in this paper and the measurement data
of two scannings, the reconstruction result of two measured
profiles are f1 and g1. f2 and g2 are reconstruction result
calculated from the data of P1-P4 and the GTRP method,
and f3 and g3 are obtained by the STRP method. The main
purpose here is to compare their abilities to eliminate the
data processing error, as a result, when using the GTRP and
the STRP method, the zero-adjustment error is eliminated by
the theory in Section II(B). Actually, besides the limitation
shown in Fig.12 and Fig.13, their reconstruction results are
also be affected by the zero-adjustment error seriously. f4
and g4 in Fig.13 are calculated from the data of P1 and
P2 and the GTP method. It is obvious that f3 and g3 have
fewer reconstruction points as the low lateral resolution of
the STRP method. Some features are missed, that why a
high lateral resolution is required. The other three reconstruc-
tion profiles all have high lateral resolutions. Comparing the
reconstruction results of feeler gauge edges on f2, and f4 with
that on f1, the stepwise variations are smoothed by the data
processing error when using the GTRP and the GTP method.
Therefore, the experiment results show that compare with
several traditional methodsmentioned above, the newmethod
has a better performance when measuring and reconstructing
the profiles with a high lateral resolution.

As expressed in Section III(C), the influence of the mea-
surement error of the sensors can be suppressed through
the averaging of the reconstruction profiles which are cal-
culated using different reference profiles. Evaluating the
straightnesses of the profiles which is constituted of the first
50 reconstruction points (without additional step variations),
the straightness of f1 in Fig.13 is 7.66µm, and that of a single
profile without averaging is 40.10µm. We know that the
marble rulers used here have a straightness less than 10µm,
thus the suppression of the measurement error is effective.

V. CONCLUSION
A new six-probe system and its corresponding method for
the measurement and the reconstruction of a pair of parallel
profiles are introduced in this paper. Sensors collect measure-
ment data during two scannings before and after a rotation of
the measuring device. Several reconstruction profiles can be
obtained using the measurement data and the STRP method.
After the adjustments of these profiles, they can combine
whole profiles and the exact reconstruction can be realized.
The reference error (the straightness error and the yaw error)
and the zero-adjustment error can be eliminated during the
data processing process. The data processing error can be
overcome while a high lateral resolution can be retained. The
measurement error of sensors can be suppressed due to the
average effect.
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