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ABSTRACT In this paper, we investigate the spectrum access for energy harvesting cognitive radio sensor
network (EH-CRSN), where sensor nodes (SNs) connected to different sinks share several channels. Tomax-
imize the sum of system energy efficiency (EE) and spectrum efficiency (SE), different from traditional
works modeling the interference relationship by binary graph and unweighted hypergraph, we apply a novel
weighted directed hypergraph (WDH) to accurately characterize the degree of interference among neighbor
SNs and formulate the channel access problem in multi-sink network as a WDH game. We analyze the
existence of Nash equilibrium (NE) and design a spectrum access algorithm to achieve the optimal solution
which is one of NE. Moreover, simulation results are presented to verify the effectiveness of the proposed
algorithm.

INDEX TERMS Weighted directed hypergraph game, spectrum access, energy harvesting, cognitive radio,
sensor network.

I. INTRODUCTION
Energy harvesting (EH) and cognitive radio (CR) are
expected to provide a new solution to deal with the short-
age of energy and spectrum, respectively. However, the effi-
ciency of EH is low and the wireless terminals are growing
exponentially, which make the research on increasing energy
efficiency (EE) and spectrum efficiency (SE) crucial. Among
such research, the appropriate spectrum sharing scheme is a
key issue. In this paper, we are concerned with the spectrum
access problem for cloud-assisted energy harvesting cog-
nitive radio sensor network (EH-CRSN). In cloud-assisted
network, the cloud plays a role as the concentrated controller
to control the communication among whole sensor nodes
(SNs), while sinks play a role as the cluster head to relay
the information of SNs in a local region to the cloud. In this
context, since the cloud has more powerful computing and
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storage capabilities, we can get more exact interference rela-
tionship and more complicated optimization objective.

There exist some researches on the spectrum allocation for
EH-CRSN. A resource allocation solution was proposed to
minimize the energy consumption of battery powered data
sensors while spectrum sensors were EH-enabled in [1].
In [2], channel and energy were jointly managed to protect
the primary user (PU). In [3], channel access and sampling
rate were controlled to maximize the network utility. The pre-
viously selected cluster head in [4] assigned channels to SUs
based on integer linear program to report their data. In [5],
Lyapunov optimization approach was used to jointly control
the channel allocation and energy management, in order to
maximize the sensed data. The multichannel selection was
modeled as a convex optimization problem in [6], which
maximized average throughput by controlling the channel
selection probability. In [7], considering a realistic rectenna
characteristic function, channels for energy harvesting and
data transmission were selected simultaneously to improve
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FIGURE 1. Illustration of cloud-assisted EH-CRSN.

system throughput. Multiple users were allowed to transmit
on the same channel at the same time in [8] which judged the
success of a transmission by the number of users access the
same channel. However, the above works only considered the
channel allocation within one cluster (sink).

Actually, due to the nature of overlaps of the communica-
tion coverage of multiple sinks, SNs connected to different
sinks could share the same channel when their interferences
are less than the threshold, which provides a possibility of
spatial spectrum reuse [9]. Our previous work [10] abstracted
the interference relationship of SNs’ communications as a
binary graph and modeled the channel selection as a binary
graph game. However, considering the cumulative effect of
weak interference, existing binary graph failing to explore
more accumulative interference relationships. As the example
in Fig. 1, neither SN 3 nor 5 can collide with the transmission
of SN 7 to sink 2, for they are far from sink 2. Whereas,
SN 3 and SN 5 can collide with the communication of SN
7 when they transmit simultaneously, for their accumulative
interference exceeds the threshold.

To respond to the limitation of binary interference, some
hypergraph models have been proposed in the literatures.
In [11], [12], [13], hypergraph were introduced to capture the
accumulative interference relationship to device-to-device
(D2D) networks, small cell networks, and general ad hoc
network, respectively. Based on [11], [14] firstly incorporated
the directed hypergraph to further represent cumulative and
asymmetric interference. The anti-jamming channel selection
was further studied in [15], jointly considering the mutual
interference and external jamming. However, the aforemen-
tioned works can only qualitatively represent the existence of
interference rather than quantitatively capture the degree of
interference.

In this paper, we propose the weighted directed hyper-
graph (WDH) based channel allocation for cloud-assisted
EH-CRSN. In particular, we firstly analyze the energy and
data stored in the SNs, and then give the formula for EE
and SE in case of sufficient energy and insufficient energy,

respectively. Second, we incorporate the weight vector to
propose a general WDH model in cluster network and a
WDH game for channel selection. Then, we validate that
Nash equilibriums (NEs) exist in the proposed game and one
of them is the global optimal solution with the maximal EE
and SE. Finally, we design a WDH-based spectrum access
algorithm to converge to the optimal NE solution. To the best
of our knowledge, this is the first work to incorporate the
WDH into the wireless resource management.

The rest of the paper is organized as follows. The sys-
tem model is given in Section II. The problem formulation
is presented in Section III. In Section IV, we propose a
centralized-distributed spectrum access algorithm. The simu-
lation results are conducted in Section V, and the conclusion
is given in Section VI.

II. SYSTEM MODEL
As shown in Fig. 1, we consider a cloud-assisted EH-CRSN
consisting of one cloud, a set of N sink nodes (access point)
N = {1, 2, . . . ,N }, a set of M SNs M = {1, 2, . . . ,M},
and a set of D dedicated radio frequency (RF) sources D =
{1, 2, . . . ,D}. Dedicated RF sources are powered via wire.
Besides, the position of RF sources is fixed. Each SN estab-
lishes connection with the nearest sink as long as the distance
between SN and sink dT is less than the maximum transmis-
sion distance rT . Besides, each SN senses the information
in a certain distance range and sends the generated data
to network through the connected sink. Meanwhile, sinks
would be interfered by the SNs those are located within the
interference distance rI (rI > rT ). Define the interfering
zone and transmitting zone as the disk with radius rI and
rT centered at a sink, respectively. It is assumed that the
interference generated by SNs outside the interference zone
is ignored. And denote Cs and Is as the set of connecting SNs
and the set of interfering SNs of sink s, respectively. What’s
more, SNs opportunistically access Q orthogonal channels
Q = {1, 2, . . . ,Q} under the control of cloud. Specifically,
each SN i is allowed to select one (possibly empty) from
available channel set Ai ⊆ Q. And SNs connect the same
sink should select different channels.

In terms of energy, SNs harvest RF energy for energy
supply and we define the harvesting zone as the disk with
radius rH centered at RF source. It is supposed that each
SN locates in the harvesting zone of at least one RF source.
We denoteRi as the set of RF sources whose harvesting zone
can cover SN i.

A. TIME SLOT STRUCTURE
In the beginning, it takes a period of time to complete the
network parameters initialization in cloud. In this phase,
each SN i ∈ M reports energy harvesting efficiency ηi,
average energy expended in data generating βi (measured in
Joule/bit), and data generating rate vi (measured in bits/s). ηi
and βi are determined by the hardware of sensors, and vi is
preset based on user preference. At the same time, each sink
s ∈ N detects the received powerPis = PTidi,s−α of the signal
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FIGURE 2. Illustration of time slot structure.

sent by each SN i in their interfering zone, where PTi is the
transmit power of SN, di,s is the distance between i and s, and
α is path loss exponent. Note that sink directly detects Pis, and
the formula of Pis is written for facilitating the analysis. Then,
sinks report these initialization parameters to cloud and the
cloud stores them for subsequent channel selection.

Specifically, PUs and the CR network both work in a
synchronous slotted model [16]. We denote MA (t) ⊆ M
as the set of active SNs which have enough energy and
data for one transmission. At the beginning of slot t , new
active SNs would request for transmission while the others
would keep silent. At the same time, each new active SN
i ∈ MA (t) reports individual energy harvesting rate hi to
the connected sink which equals to

∑
j∈R(i)

PHdi,j−α where

PH is transmit power of RF source. Then, sinks perform
spectrum sensing to get the channel state information (CSI).
In addition, it is assumed that the spectrum sensing is perfect.
Next, sinks report energy harvesting rates and current CSI
to cloud. Afterwards, cloud makes channel access decision
according to the initialization parameters, energy harvesting
rates and channel state, where the initialization parameters
are uploaded when SNs initially join the network. After that,
cloud feeds back its decisions on channel access strategy to
sinks to broadcast to SNs and delete the SNs transmit in
this slot. Finally, SNs transmit data to network through the
connected sink according to the channel access strategy. The
time slot structure of new active SNs is illustrated in Fig. 2.
It is assumed that the slot duration is T and the spectrum
sensing duration is TS . The data transmitting duration is TT =
T −TS , since the time spent reporting the current information
and feeding back decision is marginal compared to the time
spent on spectrum sensing and data transmission. Besides,
we assume that data generating and energy harvesting can
take place simultaneously.

B. TRANSMISSION CYCLE
Each SN may harvest a tiny amount of RF energy in one time
slot due to severe channel fading and path loss, which are
caused by poor channel quality or long transmission distance.
So SNs may take a long time to harvest enough energy for
transmission. Besides, there is not always generated data
waiting to be transferred. Thus, because of the limitation of

TABLE 1. Changes of energy and data in one transmission cycle.

harvested energy and generated data, SNs could only period-
ically transmit data. For a better analyzing of the EE and SE,
let’s define the transmission cycle as the shortest transmitting
interval of each SN. That is, each SN must harvest energy
and generate data for at least one transmission cycle before
conducting transmission. We denote XiT as the transmission
cycle of SN i.

Then, the harvested energy and the consumed energy of
SN i in one transmission cycle can be computed by XiTηihi
and XiTviβi + PTiTT , respectively. We denote si as the con-
necting sink of SN i. And the generated data and transmitted

data can be computed by XiTvi andWTT log
(
1+

PTidi,si
−α

Ii+N0

)
,

respectively, whereW is the bandwidth of each channel, Ii is
the jamming power which will be discussed in Section III. C,
and N0 is the noise power. The changes of energy and data of
SN i in one transmission cycle are summarized in Table 1.
(1) Case 1: RF energy supply is adequate. The energy har-

vested in one transmission cycle is larger than the con-
sumed energy in this case, which makes the transmission
cycle determined by the rate of generating the sensed
data. That is, SN is able to transmit the data if and only if
it has generated enough data to perform one transmission.
Here, one transmission refers to the transmission within
one time slot. Then, XiTvi = WTT log

(
1+

PTidi,si
−α

Ii+N0

)
for the generated data in a transmission cycle is equal to
the transmitted data. Thus, the transmission cycle is

XiT =
WTT log

(
1+

PTidi,si
−α

Ii+N0

)
vi

(1)

(2) Case 2: In the just-right scenario, the time it takes to
sense enough data for one transmission is exactly equal
to the time it takes to harvest enough energy for one
transmission. In this extreme case, the transmission cycle
is

XiT =
WTT log

(
1+

PTidi,si
−α

Ii+N0

)
vi

=
PTiTT

ηihi − viβi
(2)

(3) Case 3: RF energy supply is insufficient. In this case,
it takes a long time to harvest energy, which makes the
transmission cycle is determined by the rate of energy
harvesting. That is, in a transmission cycle, the har-
vested energy XiTηihi is equal to the consumed energy of
data generating and transmitting XiTviβi + PTiTT . Thus,
the transmission cycle is

XiT =
PTiTT

ηihi − viβi
(3)
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TABLE 2. Transmission cycle under three cases.

The transmission cycle of SN i under different three cases
are summarized in Table 2. Note that the transmission cycle
is a time-variant value which is determined by location of
SNs. In this paper, we assume SNs move slowly so that their
positions will not change for at least one transmission cycle.

C. ENERGY EFFICIENCY AND SPECTRUM EFFICIENCY
With the derived transmission cycle, we could analyze the EE
and SE of single SN. The EE (measured in bits/Joule/Hz)
of SN i is defined as the energy consumed per bit in unit
bandwidth [17]. Owing to the assumption that the positions
of SNs stay the same in one transmission cycle, the EE of SN
i can be formulated as

EEi =
θiTT

W (XiTviβi + PTiTT )
=

TT log
(
1+

PTidi,si
−α

Ii+N0

)
XiTviβi + PTiTT

(4)

where

θi = W log
(
1+

PTidi,si
−α

Ii + N0

)
(5)

is the channel capacity between SN i and the connected sink.
Similarity, the SE (measured in bits/s/Hz) of SN i is defined
as the transmission rate per unit bandwidth which can be
formulated as

SEi =
θiTT
TW
=

TT log
(
1+

PT di,si
−α

Ii+N0

)
T

(6)

III. PROBLEM FORMULATION
For the promotion of system EE and system SE of EH-
CRSN, we need quantitatively describe the local interaction
relationship. In this section, we first present and analyze the
existing directed hypergraph model. Then, a novel WDH
model applies to clustered network is illustrated. Finally,
we proposed the WDH-based spectrum access algorithm.

A. EXISTING DIRECTED HYPERGRAPH
Before introducing the existing directed hypergraph model
in channel allocation, we introduce some preliminaries of
directed hypergraph [18].
Definition 1 Directed hypergraph: Let V = {v1, v2, . . . ,

vV } be a finite set, a directed hypergraph H on V is a family

FIGURE 3. A simple network with 3 sinks and 7 SNs.

E = (e1, e2, . . . , eE ) of subset of V , such that

en 6= ∅ (n = 1, 2, . . . ,V )
V⋃
n=1

en = V (7)

The elements v1, v2, . . . vV of V are vertices of directed
hypergraph H, and the sets e1, e2, . . . , eE are the directed
hyperedges of directed hypergraph H. A directed hyperedge
en = (T (en) ,H (en)) is an ordered pair of disjoint subsets
of vertices, where T (en) is the tail set of en andH (en) is the
head set.
1) Directed Hypergraph Construction: The intension of

existing directed hypergraph in [14] is to capture the asym-
metric cumulative interference effect in D2D networks. For
the considered EH-CRSN in Section III, we formulate the
directed hypergraph H =

(
M, E = (en)n∈3

)
(3 is a finite

set of indexes, E = |3|) by referring the SN setM as the ver-
tex set and referring the asymmetric cumulative interference
relationships as the directed hyperedge set E ⊆ M ×M.
In one directed hyperedge, refer the interfering SNs as the
head set and the interfered SNs as tail set. Besides, if all the
head vertices in a hyperedge transmit on the same channel
with one tail vertex, the SINR of the tail vertex is less than the
worst case transmitting SINR. Furthermore, for one directed
hyperedge, if any head vertex is removed, the remaining
head vertices would not collide with the tail vertex for the
cumulative interference are less than threshold.
2) Incidence Matrix of Directed Hypergraph: The directed

hypergraph can be specified from its one to one correspond-
ing incidence matrix [19]. In an incidence matrix, each row
corresponds to one vertex and each column corresponds to
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FIGURE 4. Illustration of the directed hypergraph model and the proposed WDH model of the network shown in Fig. 3,
and their incidence matrixes. Note that in WDH, we use different colors to distinguish the weights of different
hyperedge.

one hyperedge. If vertex vm belongs to the head set of hyper-
edge en, then (m, n)-entry in the matrix is 1; if vertex vm
belongs to its tail set, then (m, n)-entry is -1; otherwise, it is
0. As an example, Fig. 4(a) illustrates the directed hypergraph
model of a simple network in Fig. 3 and gives the incidence
matrix.

As mentioned above, directed hypergraph qualitatively
capture the asymmetric cumulative interference relationships.
Since head vertices in H (en) is assumed to has the same
degree of interference with different tail vertices in T (en),
the throughput formula (5) becomes unavailable. Existing
works describe the throughput in the binary normalized
form. That is, the goal is maximizing the normalized net-
work capacity or minimizing the system MAC-layer inter-
ference. However, maximizing the system EE and SE not
only depends on the interference relationships, but also on
the actual SINR of SN. The root cause is that the interference
degrees of vertices in one hyperedge are different. Obviously,
we need a more accurate model to describe the interference
relationship to improve the spectrum access strategy.

B. PROPOSED WDH MODEL
In order to maximize the system EE and SE of clustered
network, we extend the existing directed hypergraphmodel to
a WDHmodel [18] which takes the exact interference degree
into account and is more succinct.
Definition 2 Weighted directed hypergraph: An WDH is a

tuple 〈V, E,W〉, where V is a finite set of vertices, E is a finite
set of hyperedge, andW is the set of weights. A hyperedge e ∈
E is a triple e = 〈H (e) , T (e) , ω (e)〉, where H (e) ⊆ V is

the head set, T (e) ⊆ V is the tail set, andω (e) is a hyperedge
weight vector.
1) WDH Construction: Unlike existing hypergraph model

makes the smallest interfering SNs set and their common
interfered SNs set form a hyperedge, which applied to D2D
communication networks, the proposed WDH model makes
the interfering SNs and the connecting SNs of sink n ∈ N
together form a hyperedge en, which applied to clustered
communication networks. Specifically, in hyperedge en, refer
the interfering SNs set In as the head setH (en) and refer the
connecting SNs set Cn as the tail set T (en). As an example,
the EH-CRSN in Fig. 1 consists of two hyperedges. One
edge is made up of SNs 1, 2, 3, 4 and 5 which are all tail
vertices. And the other edge is made up of SNs 3, 4, 5,
6 and 7, with SNs 3, 4 and 5 as the head vertices and SNs
6 and 7 as tail vertices. The concrete absolute value of vertex
weight |ωm (en)| ,m ∈ In ∪ Cn in hyperedge en may depend
on specific problem, but should obey the general rule that
|ωm (en)| should positively relate with the contribution of
interference relationship of sink n. Moreover, the interfering
SNs and the connecting SNs of one sink can all be regarded as
the interference sources that interfere with the sink’s wireless
communication. That is, |ωm (en)| is exactly a measure of the
received power Pmn of the signal sent by SNm to sink n. In this
way, the hyperedge weight vector provides the feasibility of
distinguishing the interference degree of different SNs. In this
paper, the weight vector ωm (en) is defined as follows:

ωm (en) =

{
PTmdm,n−α, m ∈ H (en)

−PTmdm,n−α, m ∈ T (en)
(8)
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2) Incidence Matrix of WDH: According to (8), the inci-
dence matrix of WDH can be written as

bmn =

{
ωm (en) , m ∈ H (en) ∪ T (en)
0, otherwise

(9)

which is an M × N matrix B = [bmn]M×N . As an example,
Fig. 4(b) shows a weighted directed hypergraph model and
its incidence matrix of the network in Fig. 3. In the next
subsection, we discuss the optimization problem based on the
proposed WDH model.

C. OPTIMIZATION PROBLEM
Given the WDH model, we first denote the selected channel
of SN i as ai ∈ Ai which is 0 when no transmission is
attempted. Let a = (a1, a2, . . . , aM ) be the joint strategy pro-
file of all SNs with space A = ×

i∈M
Ai. Then, we introduce

inter-sink interference δij (ai, a−i) and intra-sink interference
ϕi (ai, a−i) which are two binary variables. δij (ai, a−i) spec-
ifying whether SN j ∈ Isi actually interferes with SN i,
as follows:

δij (ai, a−i) =

{
1, ai 6= 0, aj = ai, j ∈ H

(
esi
)

0, otherwise.
(10)

ϕi (ai, a−i)specifying whether any SN ∀j ∈ Csi , j 6= i collides
with SN i, as follows:

ϕi (ai, a−i) =

{
1, ai 6= 0, aj = ai,∀j ∈ T

(
esi
)
, j 6= i

0, otherwise.

(11)

where a−i is the strategy vector of all SNs except for SN
i. Accordingly, given the channel selection strategy profile
a = (ai, a−i), the cumulative interference which equals to
the jamming power applied on SN i is defined as

Ii (a) =
∑

j∈Isi ,j 6=i
δijPTidj,si

−α

=

∑
j∈Isi ,j 6=i

δijωj
(
esi
)
. (12)

Thus, the SINR of SN i is γi (a) =
∣∣ωi(esi )∣∣
Ii(a)+N0

and we denote
the worst case transmitting SINR as γmin. Obviously, when
γi (a) ≥ γmin, SN i can decode the packet correctly; when
γi (a) < γmin, the communication of SN i collides. So,
we define an indicator function as follows:

χi (a) =

 1,

∣∣ωi (esi)∣∣
Ii (a)+ N0

≥ γmin

0, otherwise.
(13)

Hence, the throughput of SN i is given by

θi (a) = χi (a) (1− ϕi (a))W log
(
1+

PTidi,si
−α

Ii (a)+ N0

)
= χi (a) (1− ϕi (a))W log (1+ γi (a)) . (14)

According to (14), the EE and the SE of SN i could be
respectively expressed as

EEi (a) =
χi (a) (1− ϕi (a))W log (1+ γi (a))TT

W (XiTviβi + PTiTT )
(15)

SEi (a) =
χi (a) (1− ϕi (a))W log (1+ γi (a))TT

TW
. (16)

Define the sum of EE and SE of SN i as:

φi (a) = EEi (a)+ SEi (a) (17)

Let U (a) denote the sum of system EE and system SE as

U (a) =
∑
i∈M

φi (a). (18)

Finally, we have the optimization problem that

max
a=(a1,a2,...aM )

U (a) =
∑
i∈M

φi (a)

s.t.ai ∈ Ai, i = 1, 2, . . . ,M (19)

In the next subsection, we construct a WDH game to solve
this optimization problem.

D. PROPOSED WDH GAME
Firstly, we give the definition of WDH game as follows:
Definition 3 WDH game: The WDH game is G =(

M, {Ai}i∈M, {ω (e)}e∈E , {ui}i∈M
)
where the SN set M is

the player set, the available channel set Ai is the strategy set
of player i, ui is the utility function of player i.

To achieve the optimization object, the remaining issue
is designing the utility function for SNs. For convenience,
we denote the SNs may be interfered by SN i as Zi ={
j|di,s < rI , s ∈ N , j ∈ Cs, j 6= i

}
. As the example in Fig. 3,

for SN 3, Z3 = {2, 4, 6, 7}. In this paper, the utility function
of SN i is defined as

ui (a) = φi (a)+
∑
j∈Zi

φj (a) (20)

which is inspired by [20]. Note that the utility function is
able to enforce the network to get the equilibriums with the
maximum objective, which will be proved in the following.

Then, we discuss the equilibrium of the WDH game.
We present the definition of pure Nash equilibrium (PNE) as
follows:
Definition 4 PNE: A joint strategy profile a∗ =(
a∗1, a

∗

2, . . . , a
∗
M

)
is PNE if and only if no player can increase

its utility by unilaterally deviating its strategy. Namely,
the PNE satisfies

ui
(
a∗
)
≥ ui

(
ai, a∗−i

)
,∀i ∈M,∀ai ∈ Ai. (21)

In the following, we formally validate that PNE does exist.
Theorem 1: The WDH game with weight vector in (8)

possesses at least one PNE. The point with maximal sum of
system EE and system SE in (18) constitutes one PNE.

Proof: Firstly, we denote the SNs that may interfere with
SN i asJi =

{
j|j ∈ Csi ∪ Isi , j 6= i

}
. As the example in Fig. 3,

for SN 3, J3 = {4, 6, 7}. Since the sum of EE and SE of SN
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i is only influenced by SNs in Ji, the sum of its EE and its
SE could be written as φi (ai, a−i) = φi

(
ai, aJi

)
where aJi

is the strategy profile of SNs in Ji.
Suppose any SN i improves the sum of its EE and its SE by

unilaterally change its strategy from ai to a′i, then the change
in the utility of SN i is

ui
(
a′i, a−i

)
− ui (ai, a−i)

=

[
φi
(
a′i, aJi

)
+

∑
j∈Zi

φj
(
a′i, aJi

)]

−

[
φi
(
ai, aJi

)
+

∑
j∈Zi

φj
(
ai, aJi

)]
(22)

Besides, from (18), we derive the change in the sum of
system EE and system SE from SN’ s strategy in (23).

U
(
a′i, a−i

)
−U (ai, a−i)=

∑
j∈M

φj
(
a′i, a−i

)
−

∑
j∈M

φj (ai, a−i)

=

[
φi
(
a′i, aJi

)
+

∑
j∈Zi

φj

(
aj, a′Jj

)
+

∑
j∈M,j/∈Zi,

j 6=i

φj

(
aj, a′Jj

)]

=

φi (ai, aJi

)
+

∑
j∈Zi

φj

(
aj, aJj

)
+

∑
j∈M,j/∈Zi,

j 6=i

φj

(
aj, aJj

)
(23)

For any SN j ∈M, j /∈ Zi, j 6= i, set Jj doesn’t include SN i.
Thus, we have∑
j∈M,j/∈Zi,j 6=i

φj

(
aj, a′Jj

)
=

∑
j∈M,j/∈Zi,j 6=i

φj

(
aj, aJj

)
(24)

From (24), (23) can be expressed by

U
(
a′i, a−i

)
− U (ai, a−i)

=

[
φi
(
a′i, aJi

)
+

∑
j∈Zi

φj
(
a′i, aJi

)]

−

[
φi
(
ai, aJi

)
+

∑
j∈Zi

φj
(
ai, aJi

)]
(25)

Obviously, the change in SN’ s utility equals to the change
in the sum of system EE and system SE. According to the
definition of exact potential game (EPG) [21], the WDH
game is an EPG and the sum of system EE and system SE
constitutes the potential function. Since EPG has at least one
PNE that maximizes the potential function [20], the WDH
game possesses one PNE with maximal sum of system EE
and system SE. Therefore, Theorem 1 is proved. �

IV. WDH-BASED SPECTRUM ACCESS ALGORITHM
The framework we proposed above is generic in which
many learning algorithms can be applied. spatial adaptive
play (SAP) is a learning algorithm which has been proved
in [20] that it can converges to PNE in potential game and

Algorithm 1 WDH-Based Spectrum Access Algorithm
(1) Hypergraph Construction
1: Each SN i establishes a connection to the nearest accessi-

ble sink to report energy harvesting efficiency ηi, average
energy expended in data generating βi, data generating
rate vi, and individual energy harvesting rate hi to the sink.
Each sink s detects the received power Pis of the signal sent
by each SN i in their interfering zone. Then, each sink s
reports the connecting SNs set Cs, the interfering SNs set
Is and the their information to the cloud.

2: The cloud collects sinks’ reports and constructs the WDH
and its incidence matrix specified by (8)(9).

(2) Iteration update
3: Initially: t = 0, πi,k (0) = 1

|Ai+1|
,∀i ∈ N ,∀k ∈ Ai

4: Loop t = t + 1
5: Randomly select one updating SN i, and marks each

SN l ∈ Zi and each SN j ∈ Jl as non-updating state.
For those remaining unmarked SNs, successively
perform the above operation until all SNs’ states are
determined.

6: The selected SNs update the strategy probability distri-
bution π i (t) as following:

πi,ai(t−1) (t)=
exp

(
µui

(
ai (t−1) , aJi (t−1)

))∑
a′i∈Ai

exp
(
µui

(
a′i, aJi (t−1)

)) (26)

where µ > 0 is the learning parameter and
ui
(
ai (t − 1) , aJi (t − 1)

)
is the utility function specified

by (20).
7: The selected SNs choose a channel ai (t) according to

π i (t).
8: If t < tmax, where tmax is the fixed maximum number

of iteration set by cloud, the algorithm stops;
otherwise, go to step 4.

9: End Loop

guarantee to maximize the potential function with an arbi-
trarily high probability. The kernel of the SAP is: randomly
select exactly one SN to update its channel selection accord-
ing to its strategy probability distribution while other SNs
repeat their selection. Based on SAP, we desire a practical
for energy-efficient and spectrum-efficient dynamic spectrum
access in EH-CRSN.

Generally, as shown in algorithm 1, the proposed algo-
rithm includes two phases: hypergraph construct phase and
iteration update phase. In the first phase, cloud formulates
the interference relationship. In the second phase, multiple
concurrent independent SNs update mixed strategy at each
iteration in the cloud. In order to select multiple independent
SNs, we mark SNs with state which indicate whether the SNs
update their strategy probability distribution. The specific
marking method is shown in step 5. For any two independent
SNs i and j, the intersection of i’s interfered SNs set and j’s
interfered SNs set is empty. That is, Zi ∩ Zj = φ. Note
that the action of independent SNs won’t affect each other’s
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utility so that the WDH-based spectrum access algorithm
can be seen as reformative SAP working in a concurrent
manner. Similar to [20], we can easily prove that it has the
same convergence property with SAP that if the learning
parameter µ is sufficiently large, the WDH-based spectrum
access algorithm canmaximize sum of system EE and system
SE with an arbitrarily high probability.

As we can see, the global optimization of EE and SE
requires a large amount of information interaction between
SNs. But learning algorithm is easy to be performed in the
cloud with a limited cost. This centralized-distributed frame-
work is practical in situations where energy and spectrum
resources are scarce, because SNs don’t carry on spectrum
sensing and strategy learning. In reality, SNs access the spec-
trum according to the convergence result from cloud in each
slot so that it has the advantages of powerful calculating
ability and lower complexity requirements for sensors, which
is crucial for wireless powered network.

It is hard solve complexity analysis problem in learning
algorithm. Roughly speaking, one randomly selected SN
calculates C + 1 available utility to update the strategy
probability distribution in one iteration. Thus, for SAP,the
time complexity is O (tcon (C + 1)), where tcon is the num-
ber of iterations before getting convergence. And for the
WDH-based spectrum access algorithm, the time complexity
is O

(
tcon

[
M +M ′ (C + 1)

])
where M ′ is the number of

independent SNs. Because in one iteration, the complex of
independent SNs’ selection isO (M) and thenM ′ SNs update
their strategy probability distribution. Please note that the
number of convergence iterations of the proposed algorithm
is much smaller than SAP. Besides, in the clustered network
with a large number of SNs, theWDH-based spectrum access
algorithm requires less memory due to significant less hyper-
edge number compared with existing directed hypergraph.

V. SIMULATION RESULTS
We consider a simulation scenario consisting of 5 chan-
nels and 5 sinks with a transmission distance rT = 50m
and an interference distance rI = 55m. The locations of
SNs, dedicated RF sources and PUs follow independent
homogeneous Poisson point processes (HPPP) with different
densities. The SN density and RF-source density in each
transmitting zone are λSN = 0.003πrT 2 ≈ 23.5619 and
λRF = 0.00001πrT 2 ≈ 11.7810, respectively, and the PU
density in whole network is λPU = 4. The positions of SNs
and PUs don’t change until the end of once convergence.
Besides, the rest of the simulation parameters are shown
in Table 3.

In Fig. 5, we show the randomly generated network topol-
ogy which follows the HPPP as mentioned above. In each
convergence process, only the SNs locate in the harvesting
zone of at least one RF source are active players which par-
ticipate in spectrum allocation. Fig. 6 shows the interference
relationship of SNs to sinks corresponding to Fig. 5.

In Fig. 7, we present a convergence process of the classic
SAP algorithm and the proposed WDHG-based algorithm.

TABLE 3. Simulation parameters.

FIGURE 5. The randomly generated network topology which follows
HPPP. The SN density and RF-source density in each transmitting zone are
λSN = 0.003πrT

2 ≈ 23.5619 and λRF = 0.00001πrT
2 ≈ 11.7810,

respectively, and the PU density in whole network is λPU = 4.

FIGURE 6. The interference relationships and connected relationships
between SNs and sinks of the EH-CRSN topology in Fig. 5.

We can see that both SAP and the proposed algorithm can
converge to the same level. And the proposed algorithm has
a faster convergence speed than SAP.

The convergence behavior of the proposed WDHG-based
algorithm is shown in Fig. 8, and we arbitrarily select 5 SNs
as an example. At last, SN 1 and 5 access channel 5, SN 2 and
4 access channel 3, and SN 3 accesses channel 2. We can
also see that, in one iteration, multiple SNs can update their
strategies simultaneously.
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FIGURE 7. A convergence process of the classic SAP algorithm and the
proposed WDHG-based algorithm.

FIGURE 8. Partial SNs’ strategy update in the learning process of the
proposed WDHG-based algorithm.

FIGURE 9. Average sum of system EE and SE versus iteration steps.

Since the irrelevant updating SNs are randomly selected
in each iteration, the process of convergence is not the same
each time. So we repeat the convergence 100 times in the
same network topology and the convergence result averaged

by 100 running samples is presented in Fig. 9. It shows the
convergence process when best response (BR) [21], spatial
adaptive play (SAP) and the proposed WDHG-based algo-
rithm are used respectively. We can observe that using the
WDH, compared with unweighted directed hypergraph, both
SAP and the proposed WDHG-based algorithm can always
converge to the sum of system EE and system SE consistent
with the global optimum obtained by exhaustive search, while
BR algorithm can only converge to the suboptimal result.
This shows that the WDH game dose possess a PNE that
maximizes the sum of system EE and system SE, which is
consistent with Theorem 1. Besides,as we can see, the per-
formance of the weighted directed hypergraph is better than
that of the existing directed hypergraph. The reason is that
the WDH fully considers the accurate interference degree.
Thus, the spectrum allocation algorithmswithWDH aremore
appropriate.

VI. CONCLUSION
In this paper, we investigated the spectrum access for
cloud-assisted EH-CRSN to maximize the sum of system EE
and SE. We gave the formula for EE and SE and proposed
a WDH game for spectrum access. Then, we validated that
NEs exist and we designed a WDHG-based spectrum access
algorithm to converge to the optimal NE solution.
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